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Abstract

Single-use jumping robots that are mass-producible and biodegradable could be quickly released for environmental
sensing applications. Such robots would be pre-loaded to perform a set number of jumps, in random directions
and with random distances, removing the need for onboard energy and computation. Stochastic jumpers build
on embodied randomness and large-scale deployments to perform useful work. This paper introduces simulation
results showing how to construct a large group of stochastic jumpers to perform environmental sensing, and the
first demonstration of robot prototypes that can perform a set number of sequential jumps, have full-body sensing,
and are well suited to be made biodegradable.
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ToC Figure

Figure 1: Stochastically jumping, mass producible robots could be used to perform large
scale in situ sensing of outdoor environments. Herein, we report results from simulations of
the system for an area coverage scenario, and the first robot prototypes. The physical robot
developed can be rapidly assembled, and then is able to perform a series of jumps using envi-

ronmentally triggered latches.
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Figure 2: a) A Stochastic jumping robot covered in cantilever beam jumping mechanisms.
b) The system spreading over an area and changing color in the presence of environmental
stimuli. The proposed system releases robots in the center of the area of interest, from which

they perform a series of jumps to spread themselves out.

Robots operating in large numbers have been proposed as a solution to perform large scale
environmental monitoring (Schranz et al., 2020). Such robots can be scaled in number to fit
area coverage needs, and redundancy in these systems favors robust deployment (Sahin, 2005).
However, very few large multi-robot systems have been used in reality outside laboratories due
to the challenges navigating uneven terrain, or producing sufficient robot numbers for mean-
ingful area coverage in a cost-effective way. We propose to overcome both barriers by making
single-use stochastic jumpers that are easy to mass produce, cheap, and effective. Our jumpers
operate using embodied randomness, encoding stochastic jumping behavior in the design of the
body of the jumper (see Figure 2). Jumps are initiated upon releasing pre-loaded elastic energy
using mechanical components (latches) that are activated by an environmental stimulus. These
latches control the sequence and timings of the jumps. Sensing capability is directly painted on
the robot, and the lack of electronics makes it possible that in the future the robot can be made
fully biodegradable. Large numbers of jumpers could provide in situ sensory information of an
area for common tasks within agriculture or environmental remediation industries. As a first
step towards real-world application, this work focuses on a deployment and sensing scenario

over a target area.



Robots operating in large numbers are often individually simpler than those used in systems
consisting of a few robots or a single robot. The simplicity of the robots in these systems is
often compensated by their numbers and the design of strategies governing their deployment.
Algorithms using artificial forces (Howard et al., 2002), minimal or noisy sensors (E. Ugur
and Sahin, 2007; Ludwig and Gini, 2006; Ozdemir et al., 2019), and random walks (Beal,
2013; Siebold and Hereford, 2008; Dimidov et al., 2016) have all been proposed as methods
of dispersing robots over an area. Large-scale indoor deployments up to 3000 ft> have been
reported in (McLurkin and Smith, 2008) using the iSwarm system. Outdoor robot deployments
have been demonstrated at large scales using drones (Hauert et al., 2014) or surface water
vehicles (Zoss et al., 2018). However, large outdoor land based robotic deployments have not

yet been realized.

Jumping robots have been explored in the past as a way to navigate challenging outdoor terrain,
especially for small robots (Armour et al., 2007). Examples include miniature robots weighing
under 10 g that exploit flea-inspired elastic release mechanisms driven by shape memory al-
loys (Noh et al., 2012) and DC motors (Kovac et al., 2008), although many of these platforms
have not been designed for use in large numbers. This changes design priorities towards low
individual robot cost, simplicity, and potential for mass fabrication. Previous jumping robots
for environmental monitoring such as (Zhakypov et al., 2019; Dubowsky et al., 2008; Mintchev
et al., 2018) all use electrical power and control components in their designs limiting their po-
tential biodegradability (Rossiter et al., 2016; Hartmann et al., 2021). The dynamic simulations
shown in (Dubowsky et al., 2008) demonstrated how jump-height and robot size had a strong
influence on their robot’s ability to traverse an obstructed tunnel without becoming entrapped.
Meanwhile (Mintchev et al., 2018) performed physical trials of their robot, demonstrating the
robot’s ability to overcome obstacles 7 cm high and rapidly explore a flat 10 m by 10 m area
by exploiting dynamic instabilities in its locomotion mechanism to perform a random walk.
While (Mintchev et al., 2018) does explore the total area covered by the system based on their
robot’s trajectories, neither work examines the coverage capabilities of a large number of jump-

ing robots operating simultaneously.

The principles of morphological computation represent an emerging view of intelligence in
robotics, where mechanically pre-programmed control schemes and responses to environmen-
tal stimuli can be encoded in the robot’s body (Laschi et al., 2016; Hauser et al., 2011). These
principles are extended in this work to embody randomness within a robot’s structure, so that
the control of locomotion is encoded without pre-defined or deterministic path planning. Em-
bodied intelligence can also include sensing modalities, such as using observations of body
dynamics to sense environmental characteristics (Nakajima et al., 2015), and reactive pigmen-

tation for thermally (Soter et al., 2018) or chemically (Ding et al., 2020) responsive robots.



Overall, the work presented here provides the first steps towards mass production and deploy-
ment of large numbers of stochastic robots, with embodied randomness, for outdoor appli-
cations. The potential for jumping robots to perform area coverage in simulation is demon-
strated, and these simulations are used to inform the design of proof-of-concept single-use
jumpers. These prototypes can be stored in a compact way, assembled quickly with minimal
manipulation and are then capable of sensing their local environment via direct contact. The
prototype designs also operate at a low price point (approximately US$1.39 bulk cost of mate-
rials per robot). While the current design is not biodegradable, the limited number of materials
used in its construction alongside the lack of toxic electronic elements make the design well-

suited to be made fully biodegradable in the future.

Simulation-based Design

Simulations, programmed in Python, were carried out to evaluate the performance of the system
in covering a 10 m by 10 m area of interest after being released at the center. In the future, we
imagine a separate system might be able to produce and release the stochastic jumpers directly
into the environment. Alternatively, the stochastic jumpers could be released at ground level or

from the air by a human or robotic carrier.

Stochastic Robot

The ability of the system to cover the area of interest for environmental sensing is encoded in the
design of the robot’s body. Control of each robot is therefore determined not by a programmed
microcontroller as would typically be the case, but by mechanically programming the robots
to execute a specific number of jumps. By changing the body of the robot, these jumps could
be triggered after a certain time has elapsed, or by environmental factors. These jumps have
a noisy distribution of jump distances and directions due to the robot’s interaction with the

environment and open-loop operation.

In the simulation, the robots have n; pre-loaded elastic jumping mechanisms which in total
store a strain energy of I, joules. Each jumping mechanism is assumed identical as previous
simulations showed no difference in the system’s performance by having different energy re-
lease strategies when noise was present. Furthermore, having identical jumping mechanisms

lends itself to mass production.

The robots are modeled as spheres (7 = 5 cm) in continuous space. Their velocity is dictated
by the finite state machine shown in Figure 3. Robots are introduced into the world after the

previous robot has left the starting area, which is located at the origin. Robots start with a



random z rotation random z rotation (¢) and in the Not Deployed state. This can be imagined

as a person or a robotic system manually placing the robots into the environment.
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Figure 3: Finite state machine used to model each robot’s jumping behaviour in simulation.

Simulation Environment

The robots wait one second in the Waiting state, to model the delay caused by the release latch
reacting to the environment. After this, robots jump and transition into the Airborne state.
When the robots jump, ballistic physics with air resistance neglected is used to determine their
jumping velocity (Figure 4).

Figure 4: A robot jumping from the origin. Jumping is modeled using projectile motion. The
direction of the jumping velocity u is determined by a noisy take-off angle «,, and the robot’s z
rotation 6, which can be considered to be the orientation of the next jumping mechanism. The

z component of u is a function of jumping time ¢, which is zero at take-off.

This velocity is calculated from jumping energy and take-off angle after noise has been applied.
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As each mechanism is identical, the ideal jumping energy used in a single jump E is an even

fraction of F,,;.

o Etot

Uz

E (1)
Noisy jumping energy F, is calculated by multiplying £ by a number sampled from the Gaus-
sian distribution N (1.0, 1/9). Meanwhile, the noisy take-off angle «, is obtained by sampling
the distribution N (/4,72 /144). The robot’s jumping velocity u during the airborne state can

then be calculated using the following.

cos(0)cos(an)\/2E,/m
u = |sin(f)cos(a,)\/2E,/m (2)
sin(an)/2E, /m — gt,

Where ¢, 1s the time the robot has been in the air. In these simulations m = 50 g and g = 9.81
m/s>. When the robot lands, its velocity is set to zero and it enters the Landed state. When
landing the robot’s orientation is unpredictable so in this work the robot’s # after landing is
chosen at random between —7 and 7. If the number of jumps the robot has done does is less

than n; then the robot will return to the Waiting state.

During these movements, robots can collide if the distance between them is less than the sum
of their radii and they are either both in the air or both on the ground. If collisions are being
considered in the particular simulation then both robots involved in the collision are moved into
the Immobilized state. In this state the robot will not move any further, but is considered to
be laying on the ground, where it can still perform sensing. This can be considered the worst
result of a collision. In reality it is likely that one or both of the robots involved in the collision

would continue moving, if they had jumps left to perform.

Performance Evaluation

To calculate the area covered by the robots, their positions are recorded over time during the
simulation. A 10 by 10 grid of squares is then used to divide the area of interest into coverable
sections. If any of the robots’ centers lie within a grid square then it is classified as being
covered for sensing purposes, otherwise the square is classified as uncovered. Coverage is then

given as the percentage of all grid squares that are covered (see Figure 5).
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Figure 5: The deployment area modeled as an infinite plane with no obstacles (apart from other
robots). A grid with a 1 m resolution is used to measure the coverage of the robots over a 10 m
by 10 m area of interest. Here 2 out of 100 squares are covered (shown in yellow). The purple
lines show the robots’ trajectories through space from the deployment point at the origin. Along
these lines the circular markers indicate where the robot has landed. The starting area at the

origin is shown as the orange dotted circle. This circle has a radius of 5.25 cm.

Results

Here we present the insight from simulations in the design of area coverage strategies using
stochastic jumpers, and the subsequent design of the first prototype robots. These prototypes
fulfil the design requirements of area coverage, mass production, sensing, and potential for

biodegradability.
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Figure 6: Coverage against time for different numbers of robots for i, = 4.0 J and n; =
7. The solid lines show the mean coverage value over 10 trials, while the whiskers show

minimum/maximum values over all trials.

Figure 6 shows how releasing up to IV robots with £,,; =4.0 J and n ;=7 covers the 10 m by 10
m area of interest. As NV is increased the system’s total coverage also increases in a nonlinear

fashion.
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Figure 7: Heatmap of the final grid based area coverage for different deployments of robots
that have different combinations of £, and n;. The surrounding images show the final robot
distribution for particular values of £, and n;. In these images the area of interest is outlined
in blue and the yellow squares show the covered sections of the grid where at least one robot

lies. In these simulations collisions between robots have no effect.

To design the correct robot for the area of interest, Figure 7 shows how varying the values of
n; and E, affects the system’s final coverage performance for N = 500 robots. From Equation
(1) it can be seen that straight lines that pass through the origin represent different ideal jump
lengths. The large red area demonstrates the large design space that exists in choosing n;
and L to achieve a high performance in both total coverage and coverage time. For example,
a deployment of 500 robots which jump seven times (n; = 7) and have an ideal jump length
of 2.33 m (E,,; = 4 J) covers 91% the area of interest in 540 seconds (shown bottom left
in Figure 7). Meanwhile a deployment of robots which jump 23 times (n; = 23) but with a
smaller ideal jump length of 1.24 m (E,,; = 7 J) is also able to cover over 90% of the area in a
similar time of 574 seconds (shown top right in Figure 7). Across all of these simulations the
average deployment time was 556 seconds. The size of the robot will scale with the number

of jumping mechanisms n; and the size of these mechanisms. Since larger mechanisms are

Etot
nj

able store more strain energy, the size of the robot is also proportional to It is therefore
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noteworthy that low values (n; < 5 and E,,;< 4.0 J) are able to cover the area well, leading to

the possibility of using very small robots for the area coverage task.

Introducing collisions between robots, as shown in Figure 8, demonstrates that inter-robot inter-
ference, while damaging at high values of E,,; and n;, still leaves a large design space (shown
in red) where the robot is able to cover more than 75% of the area. The main cause of this de-
terioration is due to robots landing on top of each other, causing clusters of immobilized robots
to form. If these clusters also occur in close proximity to the deployment zone robots are pre-
vented from reaching the outer regions of the area, lowering total coverage. For short jump
lengths, these clusters are more likely to form as robots are less able to jump over one another.
Robots with lower values of n; perform better when considering collisions. We hypothesize
this is due to the lower number of jumps leading to less situations (mainly landings) where the
robot can enter into a collision. A mild improvement to the system’s coverage performance
was found by waiting 60 seconds between each robot being deployed. However, this led to a
longer average deployment time of 8.49 hours.
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Figure 8: Heatmap of the final grid based area coverage for different deployments of robots that
have different £, and n;. In these simulations collisions between robots render both robots

immobilized.

Insight from these simulations shows that there exists a large number of combinations of jump

11



numbers and jump lengths that allow 500 robots to cover more than 80% of the 10 m by 10
m area, with a resolution of 1 m. The amount of time taken varies between 556 seconds and
8.49 hours depending on the time between robot releases. This time would also depend on the

period between robot jumps which was fixed at one second in these simulations.
Stochastic Robot Design

a)s

Figure 9: Top down view of the different types of prototype produced. Each prototype (a-d)
is capable of a different number of jumps (n;) depending on how many cantilever beams are

featured in the design. Each prototype was laser cut from a sheet of Acetal Co-polymer.

As a first step towards making large deployments of stochastic jumpers a reality, we present
a series of prototypes capable of between 2 and 5 jumps. Each prototype design consists of
cantilever beams arranged around a central circular area (Figure 9). The number of cantilever
beams determines the number of jumps the robot will perform. When these beams are bent,
they are capable of storing the required energy for a jump. This removes the need to use
separate spring components, simplifying robot assembly (Figure 10). Before being placed in
the environment the robots are pre-loaded with strain energy. This is achieved by inserting the
tips of the beams into slots inside the central area (see Figure 10 and Figure ??), which are then
secured in place using 3D printed water soluble latches (PolyVinyl Alcohol, PVA). The water

soluble latches facilitate sequential jumps to be triggered by moisture in the environment (e.g.

12



rain). The simplicity of the design opens up the possibility that it could be rapidly assembled
by a robotic or human production line. Manual assembly of the current design for example
takes less than a minute (as shown in Figure ??). The use of laser-cut scaffolds for the robot
makes it easy to store the material, allowing for the production of large numbers of robots
in a compact form. Currently the beams are constructed from Acetal Co-polymer which is
not a biodegradable plastic. However, this sheet material could be replaced with a different
compostable polymer (Naser et al., 2021) and enable the robot to be fully degradable. CAD
designs can be found at (Bitbucket, 2021).

Figure 10: The robot is primed for jumping by bending the beams and securing them with PVA
latches.

Rich media available at ht tps://www.youtube.com/watch?v=2RLOSvjg33M

Jumping Mechanism

The cantilever beams allow the robot to jump by releasing their stored strain energy and collid-
ing with the ground. This converts some of the stored energy into kinetic energy of the robot
body (see Figure 11).

13


https://www.youtube.com/watch?v=2RLQSvjq33M

Figure 11: The jumping mechanism propels the robot into the air through the latch dissolving
when in contact with water, releasing the compressed beam. As the beam unfurls it collides

with the ground, propelling the robot into the air.

As shown by the earlier simulations, designing the robot with a certain ideal jump length is
important to ensure good system performance. The jumping energy in the robot prototypes is
controlled through the dimensions of the beam. The strain energy (W) in an axially loaded
beam can be approximated using Equation (3), derived from work in (Scir¢ Mammano et al.,
2017).

E, bt37® 4FE,.btdrn?

W= 31 3d — 121

3)

Where E,. is the Young’s modulus of the beam material, d is the tip displacement, [ is the
beam length, b is the beam width and ¢ is the beam thickness. The beam material was chosen
to be Acetal Co-polymer (£, = 2800 MPa) due its low density and high yield strength. In the
prototype the distance between the beam ends when they are primed for jumping is essentially
zero, making the displacement in the direction of loading equal to the beam length (d = 1)

leading to Equation (3) becoming:

_ B bt 72

W 91

4)

The thickness ¢ and length [ of the beam were chosen based on the available material sizes, the
dimensions of the laser cutting bed, and to minimize the stress in the material to avoid plastic
deformation. The final values used were t = 1.5 mm and [ = 165 mm. This leaves the beam
width b as a free parameter which determines the energy stored in the beam. This was chosen
to be b = 22 mm, resulting in an energy per jump of 1.38 J according to Equation (4). This
single mechanism (shown in Figure 12) is repeated around a central circular area to give the

desired total number of jumps. Figure 9 shows the resulting designs for total jump numbers of
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2 to 5 jumps.

Figure 12: Detailed top view of the cantilever beam that forms part of the jumping mechanism
used in the prototypes. The solid red lines indicate where the design would be repeated, with

the angle depending on the number of beams in the prototype.

Enviromentally Triggered Latches

Figure 13: The working principle behind the PVA latches a) A 500 g load is placed on a 1 mm
thick PVA part. The applied load represents the applied force from the bent beam. In b-d) 50
ml of water was applied to the part every 20 minutes leading to the PVA dissolving and the part

failing after 85 minutes.

When the robot comes into contact with water (e.g. from rain) the latches dissolve (see Fig-
ure 13), eventually releasing the loaded beam and triggering the jump. The different thicknesses
of latches cause the beams to release sequentially, allowing for consecutive jumps. The latches
were 3D printed using a WANHAO i3 Mini and PVA filament.

To characterize the time it would take for each latch to yield under load a series of latch spec-
imens of varying thickness were put in an experimental rig as shown in Figure 14. The rig

mimicked the loading conditions on the latch when loaded by the bent beam by using a replica
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of the beam end and slot on the robot’s body. The applied load (6.38 N) was chosen based
on measurements made using a digital force meter (Fk-50 Sauter) and a beam from one of the
robot prototypes. The latches were then submerged underwater and the time taken until the

latch failed was measured.

Figure 14: The experimental rig used to characterize the yielding times of the latches (left)
with a close up view of the latch holding area (top right). Slotted masses (a) are used to load
latches via a pulley system (b). Latches are placed in the latch holding area (c) and submerged
in a water container (d). The time till yield is measured using timing circuitry (e) and a light
gate (f). A dummy robot body (g) and beam end (h) replicate the loading conditions the latch
experiences when used in the prototype. Latches are loaded into the rig in a similar manner to

how they are loaded on the robot (bottom right).

The results of these experiments (shown in Figure 15) demonstrate that varying the thickness of
the latches can be used to precisely control their yield time, hence ensuring jumps are released
sequentially. In reality, the latches experience additional loading forces beyond just those from
the bent beam including forces involved in robot assembly and during landing. Hence, to
ensure sequential release, the thicknesses of the latches in the prototypes were increased in 1

mm incriments with the thinnest being 1 mm thick.
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Figure 15: Time it took for different latch specimens to fail when placed in the latch testing
rig. The experiment was repeated 6 times for each latch and the mean time to yield with one

standard deviation is shown.

Sensory Coating

The sensory coating of the robot allows it to communicate the presence of stimuli in the en-
vironment through the use of color change. To demonstrate this concept the prototype robot
was coated in thermochromic paint. Figure 16 demonstrates how the robot changes color in the
presence of heat; this color change approximately happens at 31°C.

2) b)

Figure 16: The coating of the robot prototype reacts to the temperature of its surroundings. The

robot at room temperature (a) and after heating (b).

These readings could then be recorded with an aerial photograph. Figure 17 demonstrates how

an overhead image of deployed jumpers over an area can be used to locate a heat source by

17



observing the robots’ colors. In the future, larger areas could be imaged by combining many
photos together that have been captured using a drone (Remondino et al., 2011). The sen-
sory coating could also offer sensory information to other agents on the ground. Additionally,
various stimuli could be detected using colorimetric (Burgess et al., 2013) or paper based sen-
sors (Nery and Kubota, 2013). These could be laminated on top of the sheet material used to
construct the robot.

Figure 17: A collection of robots manually distributed over an indoor area containing a heated
metal plate (outlined in red) which was placed under the white backdrop. The heat emitted by

the plate changes the color of the nearby robot from dark green to light green.

Jumping Performance

The jumping performance of four different prototypes, each capable of a different number of
jumps, was evaluated by carrying out a series of jumping trials within a flat experimental arena.
Two cameras were used to track the robot’s movement and also measure jumping characteristics
such as jump height and distance (see Figure 18). The side camera (FLIR Blackfly S BFS-
U3-16S2M) had a framerate of 200 frames per second to capture the robot’s motion during a
jump. Meanwhile a separate top down camera (Mermaid MM-USB8MP02G-MFV) was used
to accurately measure the robots position before and after jumps. Image capture and processing
was done using Python with the Spinview SDK (FLIR) and OpenCV library (ope).

18



Top camera

Side camera

Figure 18: The experimental setup used to measure the prototype’s performance inside an
arena. The setup consists of two cameras that are used to track the robots movement and a
computer used to store the captured images. A grid taped to the arena floor is used to calibrate
the system so measurements can be made by converting between pixels and millimeters. The

co-ordinate system (2, , Y, , 2,) used for measurements is also shown.

At the start of each experiment the robot prototype under test was assembled and placed in the
center of the arena. To avoid the effect of any material fatigue freshly manufactured robots
were used during each trial and three trials were performed for each of the designs shown
in Figure 9. Once the robot was in place, the recording software was activated and 50 ml
of water was then added to the robot. Water was added to the robot periodically throughout
the experiment to mimic how water would reach the robot outdoors (eg. rain). During the
experiment, the latches within the robot would yield once exposed to the water causing the
robot to perform a sequence of jumps. Top down images were captured every minute to track
the robot’s movement. Meanwhile, side images were continually captured into a circular buffer
that had a capacity to store 2.5 seconds of footage. When motion was detected in the side view
image an additional 2 seconds of images were captured and then the entire buffer would be
written to disk. This method was used due to the long timescale of the experiments and the
limited speeds at which images could be written to a hard drive. Typical footage of the robot

jumping is shown in Figure ??.

19



Rich media available at https://www.youtube.com/watch?v=FTCM2WkV7x4

Experiment Calibration and Measurement

Once the robot had performed all its jumps the images from both cameras were processed
and labeled to obtain the measurements of interest. Processing images from both cameras
consisted of discarding irrelevant images that did not show robot motion and then removing
distortion from the remaining images using each camera’s distortion coefficients. These were
established by capturing a series of images of a chessboard before the experiment. The top-
down images underwent an additional processing step where they were were re-projected onto

the co-ordinate space shown in Figure 19 in order to align the grid axes and image axes.

Xt 3000 px

M 20 /2000

820 mm
2000 px

Original Top Image Processed Top Image

Figure 19: The images from the top camera had distortions removed and then were re-projected
onto a square image of 3000 x 3000 px to take measurements of the robots position within the

arena. Pixel positions are then converted into the arena co-ordinate system.

Pixel positions in the resulting images (z;, y;) were then converted to real world posi-
tions (z,, y,) using the following equations, which are derived from the known size of the

processed image and the grid on the arena floor.

x; — 500 px
o= T DT oo 5
. 2000 paz mm ©®)
Yy — 500 px
= (1= BP9
Y ( 2000 pzr ) 820 mm ©

The labeling process involved selecting the pixel position of the center of the robot within
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https://www.youtube.com/watch?v=FTCM2WkV7x4

top-down or side images. These positions were then used to calculate jump height and dis-

tance measurements.

Top Image Side Image

Figure 20: Jump height was measured by establishing the midpoint (M) between the robot’s
start position (P1) and end position (P2) from the top down images. This midpoint was then
re-projected into the side image (M’) using the homography H. The robot’s peak position in
the side image (P3) was then manually labeled and the difference in y pixels between the two
points was converted to mm. M’ is not directly below P3 in the side image as the robot bounced

upon landing before coming to rest at P2.

For each jump, the robot’s central position in the top down image was manually labeled both
before and after the jump (P1 and P2 in Figure 20). These pixel positions were then converted

into the arena co-ordinate system to find the robot’s planar trajectory and jump length.

Measuring jump height required finding the distance between the position of the robot at the
peak of its jump and the ground underneath the robot at this time. These positions were obtained
using both the top down and side view images, as shown in Figure 20. The peak position of
the robot was found in the side image and labeled manually in the frame where the robot
was at the peak of its jump. The ground position in the side view was difficult to determine
accurately by eye. Hence the ground position was calculated by assuming the robot followed
a ballistic trajectory and would be at its peak height when it had travelled halfway from its
starting position to its ending position, which had previously been labeled in the top down
images. In reality, the robot often bounced a small distance away from its initial landing spot.
However, this distance was found to be negligible compared the distance of the jump. To
convert the mid-point position in the top-down image into a ground position in the side image
a homography between the two images was used. It was assumed the arena grid was planar.
Hence the homography H between the top down and side images could be found by selecting

corresponding points in the arena grid within both images.
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Once the ground and peak positions had been found the pixel distance in the y axis (Ays)

needed to then converted to height (z,) using a conversion factor (m).

Za = MAY,

Since the robot changes its distance from the camera during the experiment the conversion
factor m depends on the position of the robot in the arena. The side camera was carefully
aligned using a spirit level so that the image plane was parallel to the x,z, plane. This allowed
the conversion from pixels to millimeters to be represented as a linear function of the robot’s y
position in the top image (y;).

m = C1¥y; + C

To find the two calibration constants ¢; and cs, a vertical jig marked with two targets was moved
around the grid while images from both cameras were captured. The targets on the jig were
manually labeled and the physical distance between them was known. This gave m for various
positions in the grid. Then c¢; and ¢, could be found by fitting a linear regression model to the

data with a high accuracy (R* = 0.99), as shown in Figure 21.
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Figure 21: The relationship between the number of y pixels in the side image per mm (m) and

y pixel position of the object in the top image (y;).

The error that this calibration produces against the known height of the top target (416.5 mm)
and bottom target (116.5 mm) as the tool was moved around the grid is shown in Figure 22.
The mean of the error for both targets is close to zero (x = 0.610 mm). Meanwhile, the
measurements made by the system can be said to be within =4 mm based on three standard

deviations (3 x 1.3 ~ 4 mm).
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Figure 22: Error in height measurements of the targets on the calibration tool once the system
had been calibrated. Whiskers indicate the upper and lower quartiles. The mean of the error
for both targets was 0.61 mm while the standard deviation was 1.31 mm for the top target and

1.32 mm for the bottom target.

Experiment Results
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Figure 23: The planar trajectories of the robot prototypes. Crosses indicate where the robot
landed after completing jumps. Filled circles indicate the final positions of the robots. Two of

the n; = 2 robots jumped out of the arena on their first jump and so are not shown.
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The results from the jumping trials are detailed below. Firstly, Figure 23 shows the trajectories
of the robots throughout the arena across all trials. Each robot executed its jumping sequence
successfully and was able to move away from the starting area. All the robots were able to
jump regardless of the orientation they landed in. This included the n; = 2 design which was
prone to falling on its side. In one particular trial this design landed on its side after its first
jump and then was able to move a further 122 mm during its second jump. This design also left
the arena in two trials and had to be placed back into the center of the arena so its second jump
could be measured. The first jump of these trials could not be measured accurately, however
they do show that this design is capable of jumping distances larger than half the size of the
arena (> 560 mm).
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Figure 24: Jump height of the robots against the number of jumps it performed. The two jumps
for the n; = 2 design have been omitted as the robot landed outside the arena so the jump
height could not be measured.
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Figure 25: Jump distance of the robot against the number of jumps it performed. Two jumps
for the n; = 2 design left the arena could not be measured accurately. These jump distances

have been estimated as the minimum distance they must have travelled (560 mm).

The jump distances and jump heights achieved by the prototypes are shown in Figure 24 and
Figure 25 respectively, with the greatest height (567 mm) and distance (> 560 mm) achieved
by the n; = 2 design. The largest measured distance (475 mm) was achieved by the n; = 3
design. Both jumping distance and height decreased as the number of jumps the design could
perform increased. This can be explained by the fact that the energy per jumping mechanism
is constant. However, the mass of the robot increases by around 8.5 g with each jumping

mechanism added.
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Figure 26: Mean jump height across all trials against the index of the jump in the jumping

sequence (with zero being the first jump).
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Figure 27: Mean jump distance across all trials against the index of the jump in the jumping

sequence (with zero being the first jump).

It also appears that when comparing earlier jumps to later jumps, the earlier jumps achieve
greater heights (see Figure 26) and travelled further on average (see Figure 27). This could
be due to a number of factors. Firstly, the shape of the robot’s body changes as beams are
unfurled, altering its mass distribution. Additionally, when observing the footage of the later
jumps there is a noticeable increase in oscillations in the robot body. This could be due to the

fact that the stiffness of the robot structure is lower in these later jumps and so energy from the
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jump goes into deforming the robot body and not into the jumping motion. Furthermore, during
later jumps the robot has a larger surface area in contact with the ground leading to increased

adhesive forces between the robot body and water on the arena floor.

The time taken for the each latch to release the jump is shown in Figure 28. The first latch (with
a thickness of 1 mm) released the beam at around 0.938 hours on average, while the thickest

latch (5 mm) had an average release time of 5.87 hours.
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Figure 28: The mean time it took for each jump to trigger across all designs and trials. Jump
index refers to the index of the jump in the jumping sequence, with zero being the first jump of

each robot. Error bars show one standard deviation.

Outdoor Demonstration

To demonstrate the potential of the system to operate outdoors, we performed a jumping trial of
one of the prototypes in rugged terrain as shown in Figure ??. The prototype is able to execute
its jump sequence successfully and traverse various obstacles. This demonstration is a first step

towards deploying stochastic jumpers outdoors.

Rich media available at ht tps://youtu.be/VZJJFzGvZFk

Discussion

We have taken the concept of stochastic jumpers from simulation through to a first prototype
design. The prototype achieves many features of the simulated jumpers, including jumping
motion, the sequential jump release of a finite number of jumps and random re-orientation.

However, they do differ from the simulated robots in a number of ways. Firstly, the simulated

28


https://youtu.be/VZJJFzGvZFk

robot’s jumping distance was independent of the number of jumps and the jump index. How-
ever, in the prototype designs this is not the case. Furthermore, the jumping distances achieved
by the prototypes were smaller than the simulated robots that were able to cover a 10 m by 10
m area. The length of time it takes the robot prototype to complete each jump is also longer
than in the simulation. However, this could be acceptable in scenarios where the speed of the
deployment is not important. Deployment times could also be reduced by releasing the robots
in parallel. Releasing robots from multiple points in parallel would also allow the system to
cover larger areas as shown in Figure 29. This preliminary work shows how over 80% of a
100 m by 100 m area can be covered using as few as 25 deployment points. Future work will

examine how best to choose these deployment points.
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Figure 29: Snapshots of preliminary simulations that use multiple release points to increase the
area covered by the system. Jumpers that are able to cover the 10 m by 10 m area (n; = 7
and E;,; = 4 ) are introduced in equal numbers from multiple deployment points (shown by
blue crosses). The 100 m by 100 m area is then covered by 50,000 robots using 25 deployment
points (left) and 100 deployment points (right). As with previous simulations, the area is divided
up into 1 m by 1 m squares, with covered squares shown in yellow alongside the percentage of

total squares covered. These simulations do not consider collisions.

To improve on the limitations of the current prototypes there are a number of avenues for future
work. The jumping performances could be improved by investigating various beam cross-
sections to improve the efficiency of strain energy stored per gram. A hammer like element
attached to the end of the beam may also help in energy transfer by ensuring beam contact with

the ground. The latch structure and material could also be investigated further. Including key-
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stone elements into the latch structure could decrease the period between jumps dramatically.
These latches would remain strong while the key-stone element is in place, but their strength
would rapidly decrease once the keystone element dissolved. Alternatively, the material of
the latches could be triggered by the presence or absence of a compound of interest in the
environment. Responsive hydrogels (Liu et al., 2021; Koetting et al., 2015) could be used to
make latches respond to various stimuli such as pH and temperature. This could allow the
robots to sense their environment, and physically move based on whether a triggering material
is present. Additionally, latches are not limited to controlling jumping, but could also release
a payload when triggered. Combining these two behaviors could create a system of robots
which would accumulate in certain areas and then selectively release fertilizer or a remedial
agent into its vicinity over a long time scale. Robots could also release a payload that interacts
with other robots for the purposes of communication. This could lead to swarm-like behaviors
and improve the system’s performance. For example, a payload released by one robot could
cause nearby robots to jump. This could move robots away from each other, distributing robots
more evenly over the area. Another possible application of stochastic robots could involve
the system spreading out over an area to act as localization beacons for more sophisticated

robots in noisy hazardous environments.

Conclusion

This work presents the first steps towards using large numbers of randomly jumping robots to
cover an area of interest. Simulations demonstrate the flexible design space which would allow
many robot configurations, with different numbers of jumps and total stored elastic energy, to
achieve good coverage. For example, 500 robots can achieve over 90% area coverage with
the robot design biased towards either reduced number of jumps (7 total jumps) or reduced
jump length (1.24 m). The demonstrated robot prototypes contains all the core functionalities
of the simulated system, including pre-loaded sequential jumps, environmental triggering and
sensing, ease of production, low cost, and potential for biodegradability. Future work will focus

on scaling up the system towards outdoor demonstrations.
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