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Abstract

The development of high-throughput sequencing (HTS) technologies has greatly improved our capacity to identify fungi and
unveil their ecological roles across a variety of ecosystems. Here we provide an overview about current best practices in
metabarcoding analysis of fungal communities, from experimental design through molecular and computational analyses. By
re-analysing published datasets, we find that operational taxonomic units (OTUs) outperform amplified sequence variants
(ASVs) in recovering fungal diversity, which is particularly evident for long markers. Additionally, analysis of the full-length
ITS region allows more accurate taxonomic placement of fungi and other eukaryotes compared with the ITS2 subregion. We
conclude that metabarcoding analyses of fungi are especially promising for co-analyses with the functional metagenomic or
transcriptomic data, integrating fungi in the entire microbiome, recovery of novel fungal lineages and ancient organisms as well
as barcoding of old specimens including type material.

Introduction

Fungi have traditionally been identified based on macro- and micromorphological features of fruiting body
specimens or pure cultures. The introduction of molecular techniques established in the late 1980s repre-
sented a significant leap forward in fungal identification. Especially PCR amplification combined with Sanger
sequencing of the nuclear 18S (SSU) and 28S (LSU) ribosomal rRNA genes and the nuclear ribosomal internal
transcribed spacer (ITS) region from fungal tissue (e.g., lichen thalli, lesions in tissue, cultures from environ-
mental samples and ectomycorrhizal root tips) quickly became popular and offered unprecedented taxonomic
resolution. Common uses included species- and genus-level identification, analysis of cryptic species, and
phylogenetic assessment of larger fungal clades as well as the kingdom Fungi at large (Gherbawy & Voitk,
2010). Later on, the identification of multiple fungi from more diverse substrates, including soil, plant roots,
and water became possible by including a cloning step of amplicons prior to sequencing. However, these
studies usually operated with tens to low hundreds of reads, rarely numbering in the thousands required
to appropriately estimate fungal diversity in soils (Taylor et al., 2014). Accordingly, sequences and opera-
tional taxonomic units (OTUs) were usually handled manually or using specific programs, with no need for
bioinformatics tools.
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The development of high-throughput sequencing (HTS) methods such as 454 pyrosequencing (454 Inc.,
obsolete), Illumina sequencing (Illumina Inc., www.illumina.com) and Ion Torrent (Thermo Fisher Scientific
Inc., www.thermofisher.com) transformed fungal identification capacity in the 2000s (Jumpponen & Jones,
2009). These so-called next- or second-generation HTS methods increased the number of reads by 2-6 orders
of magnitude and the number of simultaneously processable samples by 1-2 orders of magnitude. These
metabarcoding methods (cf. Taberlet et al., 2012) enabled estimating fungal diversity exhaustively from
environmental DNA (eDNA) on an individual sample scale as well as facilitating global scale comparisons
(Tedersoo et al., 2014; Sun et al., 2021). Yet, these second-generation platforms as well as the more recent
DNA nanoball sequencing (DNBseq; MGI-Tech Inc., www.mgitech.com) were only able to address short
(<550 bases) fragments of the genetic markers, resulting in the loss of taxonomic resolution and phylogenetic
information as well as difficulties in identifying technical artefacts compared with longer Sanger reads.

In the 2010s, long-read, third-generation HTS platforms such as PacBio single-molecule real-time (SMRT)
sequencing (Pacific BioSciences Inc., www.pacbio.com) and nanopore sequencing (Oxford Nanopore Tech-
nologies Inc., https://nanoporetech.com) were introduced (van Dijk et al., 2019). Due to low sequencing
depth (tens of thousands of reads in total, resulting in only hundreds rather than thousands of reads per
sample) and high raw error rates (12-20%), these methods could not initially compete with short-read HTS
platforms. However, both technologies made a great leap forward in 2020 when PacBio Sequel II instruments
became broadly available and new solutions were developed to greatly reduce error rates in Nanopore se-
quencing (Karst et al., 2021; Tedersoo et al., 2021a). These long-read technologies and synthetic long reads
provide high-quality sequence data for up to 5 kb amplicons, which enables bridging variable and conserved
fragments of one or more genes in a single sequencing round as well as resolving alleles and haplotypes
(Callahan et al., 2021; Tedersoo et al., 2021a).

Along with the rapid development of HTS methods, bioinformatics platforms and analytical resources have
evolved to match the computational needs imposed by large datasets. Metabarcoding approaches have been
extensively reviewed in several recent studies with a focus on their conceptual foundation (Taberlet et al.,
2018), pathogenic organisms (Piombo et al., 2021; Tedersoo et al., 2019), applications in mycology (Nilsson et
al., 2018), eukaryotes more broadly (Ruppert et al., 2019 ) as well as overall experimental planning (Zinger et
al., 2019a), trade-offs among technology generations (Kennedy et al., 2018; Loit et al., 2019), and analytical
pitfalls (Halwachs et al., 2017; Critescu & Hebert, 2018). Here we provide a review of available methods and
propose best practices for designing and performing studies using metabarcoding in fungi. We also compare
the performance of several popular methods developed for bacteria to assess their suitability for fungi. The
vast majority of our recommendations are relevant to prokaryotes, protists and metazoans alike.

Planning a metabarcoding study

To test scientific hypotheses, researchers should first consider a proper methodological experimental design –
either observational, experimental or combined – including technical, analytical and financial requirements.
Experimental designs of broad representativeness (e.g., geographical and ecological scope) and independence
of replicates (i.e., no spatiotemporal autocorrelation) are strongly recommended (Gotelli & Ellison, 2013;
Zinger et al., 2019a). Indeed, metabarcoding studies do not differ from traditional ecological studies in which
the number and distribution of study sites must be defined appropriately depending on the initial question
(Dickie et al., 2018). Additionally, metabarcoding studies also require an optimal number of local, biological
replicates, ranging from at least three (for detecting strong differences in composition) to around 10 (for
richness assessment). Intuitively, more replicates will be required when any expected ecological differences
are relatively small or when the studied location exhibits strong spatial or environmental heterogeneity.

The size of individual environmental samples should be large enough to secure enough material for DNA
extraction and potential physicochemical analysis (e.g., pH and C/N ratio). It is also important to consider
the amount of material from the perspectives of pre-treatment and storage. Too much material will be difficult
to mix, dry or freeze - and will prove costly to preserve in a buffer. To ensure statistical independence of
samples within a site, samples should be located at least 5-10 m apart from each other in a homogeneous
environment. This distance corresponds to the spatial autocorrelation range in soil fungi (Bahram et al.,
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2013) and the average size of macrofungal individuals (Douhan et al., 2011). In aquatic habitats, communities
are likely to compositionally autocorrelate for even larger distances (Matsuoka et al., 2019). When assessing
diversity patterns along ecological gradients, transects (e.g., latitudinal, altitudinal and salinity gradients)
should be replicated. Spatial independence should also be ascertained for plots and treatments. In field
and laboratory experiments, this is best achieved by a randomized block design (Legendre & Legendre,
2012), although a stratified block design may be important in environments with known heterogeneity. It is
advisable to collect samples in as short a time period as possible to avoid seasonal and weather effects such as
freeze-thaw cycles and rainfall after a long dry period (for soil and leaves) that may cause rapid turnover of
microbes and degradation of their DNA by molds. All sampling locations (including positions in controlled
experiments) and sampling dates should be recorded precisely to permit controlling for spatiotemporal effects
in the following statistical analyses (Bahram et al., 2015; Tedersoo et al., 2020a).

Sampling and storing

We strongly recommend wearing disposable gloves during sampling to avoid contaminating samples with
skin or forward microbiota. To reduce the risk of cross-contamination between independent samples in the
field, sampling tools should be replaced or sterilized between sampling events with oxidizing agents (e.g.,
bleach; Fischer et al., 2016) or flame but not with alcohols, as the latter do not denature DNA. Samples
should be collected into clean containers such as paper bags (leaf and fruiting body material), plastic bags
(roots, soil and sediments) or screw-cap vessels (soil, water and sediments). It is recommended to sample in
the field during dry weather to avoid contamination by water from rain and wet gloves. To enable removal
of site or sampling material contaminants a posteriori, it is also recommended to include field controls (e.g.,
empty tubes left opened at the site or extraction of sample storage buffer) in the experiment (Zinger et al.,
2019a). Finally, it is important to limit the biological activity within samples post-harvest (i.e., growth of
fast-growing molds), which can be done by maintaining the samples at cold temperature during transport.

To obtain good quality DNA, the best option is to either extract DNA right after sampling whenever
possible or to rapidly freeze the collected materials in liquid nitrogen and maintain them at an ultra-cold
temperature (-80 °C; U’ren et al., 2014). Pooled subsamples should be well mixed before freezing, because it
may subsequently be difficult to homogenize frozen material, which could lead to some subsamples effectively
being excluded from DNA extraction. When freezing, it is important to avoid thawing, which may lead to
sample spoilage and significant changes in the detected communities (Anslan et al., 2021, Clasen et al.,
2020). Long-term storage (2-4 weeks) at 4 °C may alter soil fungal diversity (Delavaux et al., 2020) and
promote proliferation of molds (Clasen et al., 2020). Rapid drying methods such as freeze drying and cabinet
drying are alternatives to freezing to prevent DNA degradation (Castano et al., 2016). Rapid drying can also
be conducted under e.g., the windscreen of a car (at < 40 °C) if a laboratory is inaccessible. Drying with
silica gel is a viable option for samples of a few grams (but see Guerrieri et al., 2021 for larger amounts)
and will also work well for plant material such as thin leaves and fine roots. Conversely, and importantly,
liquid preservatives such as cetyltrimethylammonium bromide (CTAB), ethanol, and specific DNA/RNA
preservation solutions perform poorly for above-gram samples (e.g., Delavaux et al., 2020; Zaiko et al.,
2021). Nevertheless, Longmire buffer (100 mm Tris, 100 mm ethylenediaminetetraacetic acid, 10 mm NaCl,
0.5% sodium dodecyl sulphate, 0.2% sodium azide; 1:1 vol/vol) works well for sediment and water samples,
in which DNA otherwise would degrade very rapidly (Kumar et al., 2020). Dried material and samples
fixed in buffers can be kept in the dark at room temperature. Samples can be stored long-term (decades)
if kept air-tight in the dark and at constant temperature (Wang et al., 2021). It is also essential to store
DNA samples, preferably in frozen or lyophilised form, for potential subsequent quality check, re-analyses
for other research purposes or simply for a re-analysis using more sophisticated HTS methods in temporal
studies (Jarman et al., 2018). Drying or lyophilisation is essential for pooled samples of coarse fragmented
materials (e.g., wood chips and plant litter) which require grinding for adequate mixing.

Molecular analyses

DNA extraction

3
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Prior to DNA extraction, it is important to homogenize the material by using a mortar and pestle, mi-
cropestles or bead beating in microcentrifuge tubes. In this process, keeping samples at a relatively cool
temperature by using ice cubes or liquid nitrogen is also important. The required amount of material should
be weighted to the DNA extraction tube and the rest could be stored for backup or for e.g., stable isotopes
or chemistry analyses. It is usually undesirable to reach the full capacity of the DNA extraction kit, because
several types of samples (e.g., peat soils, dead wood, plant-debris rich sediments and fleshy plant tissue) may
absorb the liquid or co-extract inhibitors. For well-homogenized soil samples, there are only minor differences
in richness when using DNA extracts from 0.25 g, 1 g or 10 g material (Song et al., 2015), but increasing
the volume (replicate extractions or more material using ‘maxi’ kits) provides more reproducible estimates
(Dickie et al., 2018). It is crucial to perform weighing and DNA extraction under a dedicated laminar flow
in a room separated from the PCR lab to avoid cross-contamination and air contamination by amplicons.
Such potential contaminants can also be detected and removed in downstream analyses through analysis of
DNA extraction blank controls.

For DNA extraction, we recommend to follow the protocols elaborated for relevant substrates, either manual
methods or commercial kits. The CTAB and phenol-chloroform protocols (multiple variants exist) are the
most broadly used manual methods for obtaining large quantities of long DNA molecules. While the quantity
of DNA from the aforementioned protocols is usually relatively large, it is often less pure than kit-based kits
and so may require further dilution ahead of PCR to minimize the effect of inhibitors present in the sample
(see below). Because of functional limitations in DNA extraction robots, the DNA purity and yield obtained
with these protocols tend to be greater with analogous non-robot kits. As a rule of thumb, commercial
non-robot and robot-based kits are roughly 2 and 5 times more time-efficient, but 2-10 times more costly
compared with manual protocols.

Depending on the sample type and extraction method, the DNA may contain impurities that hamper PCR
amplification. These can be overcome by pretreatment of samples during DNA extraction (e.g., Al3+ or
Ca2+ flocculation of humic substances), purification using specific kits (e.g., polyvinylpolypyrrolidone spin
columns against humic and fulvic acids in soil; universal Zymo Research OneStep PCR Inhibitor Removal Kit
or Macherey-Nagel NucleoSpin Inhibitor Removal Kit against polyphenolics, humic and fulvic acids, tannins,
and melanin) or equipment (e.g., SCODA electrophoresis), or precipitation with ethanol. Importantly, under
most conditions, dilution of the DNA extracts may be sufficient to eliminate PCR inhibition (Wang et
al., 2017). DNA concentrations can be increased by precipitation with ethanol, salts (e.g., sodium acetate)
and carriers (e.g., Pellet Paint Co-Precipitant, glycogen, or linear polyacrylamide). If the DNA extract
contains a large proportion of short fragments (e.g., degraded DNA due to poorly preserved samples or
extracellular DNA), which hamper amplification and may promote chimera formation, these can be removed
by elution using specific kits such as AMPure (Beckman Coulter Inc., www.beckman.com) and ProNex
(Promega Corp.,www.promega.com). Extracellular DNA may account for 80% of total DNA, but it has little
effect on estimates of diversity, as it comes from the dead cells of indigenous biota (Lennon et al., 2018).
However, it is crucial to remove extracellular DNA for time series and co-occurrence analyses on a microscale
(Lennon et al., 2018), which can be performed by sample treatment with ethidium or propidium monoazide
(Wagner et al., 2008). Substrates destined for mesh-bag experiments (plant litter, wood) can be relieved
from unnecessary microbial DNA with gamma-irradiation (Brabcova et al., 2016) or dry heating at >120 °С
before exposure.

Control samples

Control samples – negative controls for sampling, DNA extraction and PCR, and positive controls (including
mock communities) improve scientific reproducibility by offering means by which to estimate the accuracy
of the analyses (reviewed in Zinger et al., 2019a). Negative and positive controls all inform about external
and cross-contamination as well as potential index-switching (Carlsen et al., 2012, Esling et al., 2015).
Amplification and sequencing of mock community analysis provide additional insights into the qualitative
(i.e., estimation of PCR/sequencing error rates) and quantitative capacity (i.e., biased amplification) to
retrieve the original diversity. Positive controls and mock communities may consist of artificial synthesised
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molecules or DNA extracts of actual species known not to occur in the experimental system (Ihrmark et
al., 2012; Song et al., 2015). A sophisticated mock community should comprise >10 species with variable
G+C content, amplicon length and quantity based on actual marker copy numbers. Additionally, due to
index switching issues, consideration of the specific species composition of the mock community is desirable.
Specifically, if the mock community contains the same taxa present in the samples being analyzed, it becomes
impossible to determine whether any switched reads in the samples come from the mock community or not.
One solution to this problem is to use a non-biological mock community, containing multiple “species” that
are synthetically constructed to have properties equivalent to biological species but never that are present
in nature (Palmer et al., 2018). Mock community analyses commonly fail to recover all species and usually
reveal more OTUs than the input because of variable DNA quality, PCR bias, trace contamination and index-
switching (Ihrmark et al., 2012; Bakker, 2018). Therefore, failing to recover the initial mock community does
not necessarily indicate that the analyses have failed, but it sheds light on potential biases and serves as a
reference to correct the data through bioinformatics processing.

Genetic markers

Obtaining high-quality amplicons is one of the most important steps in metabarcoding analyses. This can be
ensured by selecting a suitable genetic marker, polymerase, relevant primers and appropriate thermocycling
conditions. Each PCR run requires a negative control to rapidly detect contamination.

The ITS region of the rRNA cistron is the most broadly used marker for fungi in both DNA barcoding and
metabarcoding analyses due to its multiple copy numbers, optimal species-level resolution in most groups and
the possibility to design both fungal-specific and universal primers (Schoch et al., 2012; Nilsson et al., 2018).
The ITS region is unsuited to target certain fungi such as Microsporidia (intracellular animal parasites) that
may lack this fragment and certain Tulasnellaceae (orchid root symbionts) that have mutations in primer sites
(Tedersoo et al., 2015, Rammitsu et al., 2021). Furthermore, ITS sequences lack variability in some species
in certain species-rich genera comprising pathogens and saprotrophs such as Trichoderma andFusarium ,
and their analysis requires using additional taxonomic markers, typically protein-coding genes (O’Donnell et
al., 2015; Cai & Druzhinina, 2021). The arbuscular mycorrhizal Glomeromycota have multinucleate hyphae
with highly variable ITS copies, which has rendered the rRNA 28S and 18S gene fragments of broad use as
well (Kolarikova et al., 2021). Because of sequencing read length limits imposed by second-generation HTS
platforms, researchers have mostly focused on either the ITS1 or ITS2 subregion, which taken separately
have lower taxonomic resolution and do not offer as suitable primer sites as the full region (Tedersoo et al.,
2015; Tedersoo et al., 2021a).

For metabarcoding, ecologists use mostly primers designed decades ago for Sanger sequencing analyses
(Figure 1). These original primers are not optimal for the many fungal groups that have one or more
primer-template mismatches. They can be improved by adding degenerate positions to minimise primer bias
(Tedersoo & Lindahl, 2016) and promote quantitative performance (Pinol et al., 2019). However, multiple
degeneracies may require altering the 1:1 ratio of primers and may require extra PCR cycles, because not
all variants match to templates. The broadly used fungus-specific forward primer ITS1F is particularly
problematic because of several critical mismatches in certain groups of molds and putative animal pathogens
(Tedersoo & Lindahl, 2016). Researchers should also consider the common presence of an intron at the end of
18S rRNA gene, which prevents sequencing of the taxa containing this intron (Figure 1). It may be important
to pair primers with similar melting temperatures to secure optimal performance.

There are different amplicon library preparation strategies that require consideration during the primer
design step (Figure 2). The metabarcoding primers may be equipped with both sample-specific index and
platform-specific adapters for sequencing. The alternative strategy is to use shorter primers with only sample-
specific indexes, which are ca 30-40% cheaper and easier to amplify, but require specific library preparation
depending on the sequencing platform. Approaches requiring several PCR steps are also available (Figure
2; Bohmann et al., 2021), but these are more prone to contamination and chimera formation. Although
vulnerable to contamination, the use of combinations of Illumina flow cell indices in the second PCR step
enables ultra-high multiplexing of samples without index-switching bias (Holm et al., 2020).
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The sample-specific indexes are typically 6-14 bases in length and differ from each other by at least 4
nucleotides (including indels) for error correction (Buschmann & Bystrykh, 2013). Their GC content should
be in the range of 25-75% and homopolymers >2 nucleotides should be avoided. An example of >300 indexes
is listed in Taberlet et al. (2018). To reduce amplification biases, there should be a 2-3-base linker between
the index and PCR primer, which should not align to any of the targeted sequences. The quality of Illumina
sequencing benefits from heterogeneity spacers added to the indexes (Figure 2; Fadrosh et al., 2014). To
secure more equal library preparation, indexes should start with the same nucleotide. The same indexes
(but not linkers) can be used with multiple primers, but each primer-index combination should be tested for
hairpin structure formation in silico using, e.g. EcoPCR (Ficetola et al., 2010). Indexing both primers with
unique tags is more expensive, but allows users to greatly reduce index-switching artefacts (Schnell et al.,
2015), and is therefore strongly recommended.

Polymerases

With respect to DNA polymerases, it is important to select one with proofreading capacity in spite of
their much greater cost. Proofreading polymerases have much-reduced error rates and therefore result in
fewer spurious OTUs (Oliver et al., 2015, Bakker, 2018). The 3’ to 5’ exonuclease activity of proofreading
polymerases performs primer editing in the last 4-6 nucleotide positions, reducing primer bias (Gohl et
al., 2021). However, this activity varies by polymerase and the mismatching nucleotide and probably
concentration of inhibitors (Gohl et al., 2021), and the effect on multiple near-terminal mismatches remains
unexplored. Hence, proofreading polymerases may also strongly reduce the specificity of taxon-specific
primers. Furthermore, the exonuclease activity of proof-reading polymerases creates multiple short fragments,
especially at low ddNTP concentration and prolongs elongation times, which may result in more chimeras
already at early stages of the PCR process (Ahn et al., 2012). For longer amplicons, it is crucial to select high-
fidelity polymerases to secure amplification completion and hence reduce production of chimeric artefacts
(Heeger et al., 2018). Thus, a wise selection of primers and polymerases allows researchers to obtain the
same amount of high-quality data with lower sequencing depth.

Thermal cycling conditions

Regarding PCR cycling conditions, reducing annealing temperature may promote amplification of targeted
taxa that have one or more primer-template mismatches, but it may also enhance non-specific priming,
resulting in amplification of random genomic fragments or untargeted taxa. The number of PCR cycles
should be kept at below 30 – optimally resulting in a weak band on a gel (Lindahl et al., 2013; D’Amore
et al., 2016). Rather than losing samples with no visible amplicons, it is advised to add a few extra cycles
to problematic samples, but users should keep in mind that these low-input or inhibitor-rich samples have
elevated risk of contamination or biased diversity patterns (Eisenhofer et al., 2019). Adding BSA may be
useful for improving amplification success, but this process may distort the retrieved community (Zaiko et
al., 2021).

Biological samples may differ in several orders of magnitude in their DNA content, quality, and abundance of
inhibitors. For PCR, the DNA content is rarely equalised, because typically 80-99% of eDNA is non-fungal,
and the fungal fraction may vary significantly across samples (Tedersoo et al., 2015; Bahram et al., 2018).
There is no consensus on whether or how the DNA quantity should be standardised, although diluted samples
may yield a higher proportion of contaminants (Lindahl et al., 2013) as well as relatively lower diversity and
greater variability (Castle et al., 2018, but see Song et al., 2015 and Wang et al., 2017). Therefore, at least
two PCR replicates are needed to account for the stochasticity. Such technical replicates can be pooled for
further analysis steps (Lindahl et al., 2013; Alberdi et al., 2018), but this pooling step will prevent evaluation
of the PCR replication and exclusion of dysfunctional PCRs (Taberlet et al., 2018).

Alternatives to traditional eDNA amplicon-based methods

To focus on the active community, RNA instead of DNA can be used as a target for sequencing (Singer et
al., 2017, but see Blazewicz et al., 2013 for limitations). One option is to amplify reverse transcribed cDNA,
which can be performed for ITS sequences in spite of the short life of precursor RNA (Rajala et al., 2011).
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Interestingly, cDNA-based HTS reveals multiple taxa not recovered using DNA and vice versa (Rajala et
al., 2011). Another option is direct RNA sequencing, which is currently provided only by ONT (Oxford
Nanopore Technology; Garalde et al., 2018). Both methods produce more errors than state-of-the-art DNA-
based methods. As both PacBio and ONT sequencing make it possible to record modified nucleotides such
as various methylations, it may be possible to record various artificial nucleotide analogues (e.g., 3-bromo-
deoxyuridine) incorporated into DNA in real time (Hanson, Allison, Bradford, Wallenstein, & Treseder, 2008;
Georgieva et al., 2020). Stable isotope probing is widely used for bacteria because of their rapid metabolism
of 13C-enriched substrates (Berry & Loy, 2018), but they have been little used in mycology, likely due to the
high costs of enriched C (but see Hannula et al., 2017; Lopez-Mondejar et al., 2020). Nevertheless, RNA-
based SIP applications may offer more promise in fungi than for bacteria (Singer et al., 2017; Ghori et al.,
2019).

Metagenomics and metatranscriptomics can alternatively be used for large-scale identification of organisms.
These methods are free from PCR biases but may be affected by library preparation biases and add an order
of magnitude to the costs (Quince et al., 2017; Singer et al., 2017). While these methods work reasonably well
on bacteria and viruses with small and densely packed genomes and for which a rich set of reference genomes
are available, analyses of fungi and other eukaryotes are heavily biased because of highly different genome
sizes, number of rRNA gene copies and the striking lack of reference genomes for many important groups
(Geisen et al., 2015; Tedersoo et al., 2015). This may change very soon within the ongoing Earth Biogenome
project (www.earthbiogenome.org) and use of taxonomically more informative long reads. It may also be
possible to use targeted capture for rRNA genes or other taxonomically and functional genes to sequence
these using long-read protocols (Witek et al., 2016), but the analytical costs are approximately five-fold the
costs of regular metabarcoding.

As an alternative to taxon-specific primers, it is possible to use blocking protein-nucleic acid complexes
(PNAs) or locked nucleic acid (LNA) oligonucleotides in conjunction with universal PCR primers (Vestheim
et al., 2011). PNAs are widely used in metabarcoding analyses of plant-associated bacteria to block
amplification and disable subsequent sequencing of plastid and mitochondrial DNA (Lundberg et al., 2013).
Probably partly because of primer sites at the end of 18S rRNA gene that allow discrimination against plant
amplicons, blocking elements have found limited use in metabarcoding of fungi (but see Ikenaga et al., 2016),
although plant-specific motifs exist in all of the 18S, 5.8S, and 28S rRNA genes. Banos et al. (2018) developed
protist-targeting PNAs for fungal communities in aquatic environments. The use of blocking elements requires
optimisation of concentration and annealing temperature for each primer pair and polymerase used (Vestheim
et al., 2011) and furthermore necessitates double-checking any shifts in the perceived diversity of fungi or
other target organisms.

DNA library preparation

Among-sample variability of amplicon quantity is high at a low number of PCR cycles. Therefore, the amount
of amplicons should be standardised for improved comparability of sequencing depths. This can be achieved
by DNA capture on a solid phase with limited binding capacity (SequalPrep, Thermo Fisher Technologies),
DNA content measurement and normalisation, or simple estimates of the band strength on agarose gel by
eye.

The equimolarly pooled samples are subjected to library preparation using HTS platform-specific kits. Aside
from multiple kits for Illumina, those free from amplification steps and biases of G+C content and fragment
length are recommended (Bowers et al., 2015; Sato et al., 2019). Amplicons produced by different primers,
even when of similar length, should not be mixed into the same library because of great differences in yield
(Tedersoo et al., 2015). In-house library preparation may be up to 5-fold cheaper compared to commercial
services.

Sequencing platforms

For metabarcoding, both the second-generation and third-generation platforms can be considered (reviewed
in Tedersoo et al., 2021a). Currently, the second-generation platforms allow sequencing up to ca. 550 base
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pair markers, but their throughput exceeds that of third-generation platforms by 1-2 orders of magnitude
and their costs per base are at least an order of magnitude lower. Given their relative accuracy, Illumina
(HiSeq and NovaSeq instruments in 2 x 250 paired-end mode and MiSeq) and MGI-Tech (DNBSEQ-G400RS
in 2 x 200 paired-end mode) are best suited for analyses of short barcodes such as ITS1, ITS2 or one or two
variable regions combined within 18S and 28S rRNA genes.

The average raw read length of PacBio and ONT instruments exceeds 20 kb. The libraries of PacBio consist
of circularised amplicons, which are sequenced multiple times (circular consensus sequencing; CCS) and error
rates decrease from 10-15% to <0.1% at >10-fold consensus. This allows high-quality sequencing of up to 3.5
kb fragments that cover multiple markers at high quality. Such long reads offer much improved taxonomic
resolution and allow rigorous phylogenetic analyses based on reasonably long alignments of conserved regions
(Tedersoo et al., 2020b). Furthermore, random PCR and sequencing errors are typically ironed out during
the clustering process (Tedersoo et al., 2018), and much of the relatively more degraded extracellular DNA
is excluded.

Currently, ONT sequencing does not offer sufficient read quality for metabarcoding. Although unique
molecular identifiers (UMIs) can be used in the generation of consensus sequences (Figure 2e; Karst et al.,
2021), obtaining at least 20-fold consensus will reduce throughput and increase the overall cost tremendously.
UMIs can also be used for producing synthetic long reads using any of the short-read platforms, which results
in principally error-free long reads (Callahan et al., 2021). However, a new commercial LoopSeq service
provided by Loop Genomics, Inc. (www.loopgenomics.com) is relatively costly (43-100 USD/sample). Taken
together, the choice of HTS strategy depends on expected data quality, number of samples included, desired
sequencing depth and amplicon length as well as available financial resources (Tedersoo et al., 2021a).

Bioinformatics data analysis

Quality-filtering

The raw output of sequencing instruments is converted to the FASTQ format, which is compatible with
all major quality-filtering tools. As most bioinformatics platforms have been developed for bacterial 16S
data, these differ greatly in their capacity of handling fungal ITS sequences that typically cannot be reliably
aligned much beyond the genus level (Anslan et al., 2018). Based on citations, the most broadly used platforms
include QIIME2, mothur, PIPITS, SEED2, SCATA and PipeCraft. Features as well as pros and cons of the
most popular and recently developed platforms are presented in Table 1.

For Illumina and MGI-Tech instruments that produce paired-end reads, it is recommended to assemble the
paired-end reads, unless the amplicon is longer than the paired reads combined (e.g., Bissett et al., 2016).
Generally it is advisable to disregard unpaired reads because of the risk of low read quality in their distal
end.

When it comes to quality-filtering, a major step is simultaneous demultiplexing, trimming primer and index
sequences and removal of low-quality and non-target reads. Any ambiguous nucleotides and mismatches
to indexes or primers are indicative of potentially low read quality and these reads could be excluded.
Dual-indexed reads with mismatching pairs or a missing index from one primer are indicative of index
switching and incomplete sequence data, respectively. The expected length of full-length ITS ranges from 250
(someSaccharomycetales ) to around 1,500 bases (e.g., someCantharellales and various unicellular groups),
butMicrosporidea may have only a few bases of rudimentary ITS sequences. The ITS1 and ITS2 subregions
taken separately vary from 50 to around 1000 bases. There is also great length variation in 18S and 28S
rRNA genes, which is mostly ascribed to introns.

Some 16S-based workflows recommend removal of homopolymers >6 bases (e.g., default in QIIME2), but
the ITS region of many fungal and other eukaryotic taxa commonly harbour homopolymers exceeding 10
bases. Hence, homopolymer length should not be used as an indicator in quality-filtering for ITS sequences
and other non-coding regions.

For ITS metabarcoding, it is important to remove flanking 18S and 28S rRNA genes, because these conserved
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. ends display no species-level resolution and random errors in these regions complicate clustering (Lindahl
et al., 2013). Furthermore, chimeric breakpoints may be common in these regions but are nearly impossible
to recognize from such short fragments (e.g., 10-70 bases). ITS extraction can be performed using programs
cutadapt (Martin et al., 2011), ITSx (Bengtsson-Palme et al., 2013) or ITSxpress (Rivers et al., 2018).
Cutadapt is relatively more universal, as it recognizes custom oligonucleotides and cuts from a user-defined
distance. ITSx and ITSxpress cut out ITS1, ITS2 and full-length ITS region based on kingdom-wide Hidden
Markov Models (HMMs).

Chimeric molecules are mainly generated in the excessive cycles of PCR and are therefore nearly always
less abundant than their parent molecules (Sze & Schloss, 2019). They are usually represented by singletons
and doubletons restricted to a single sample. There are multiple algorithms for chimera detection, of which
UCHIME (Edgar et al., 2011) is by far the most universal and widely used. It is recommended to perform
chimera filtering both in de novo and reference-based modes, which compare OTUs against each other (in
ranked abundance within a sample) and against a reference database (e.g., UNITE), respectively. According
to our experience, a vast majority of reference-based chimeras are true chimeras, whereas ca. half of thede
novo chimeras may be false positives, as suggested for mock communities (Aas et al., 2017). Not all chimeras
are detected by the programs, so it may be advisable to remove all singletons or OTUs with <5 or <10
reads in the case of deep sequencing. Chimeric molecules usually have only a partial match to the reference
sequence (coverage 55-98%) at high sequence similarity (>90%), which allows additional algorithm-based
removal or rare, potentially artifactual OTUs.

Index-switches (also known as tag-switches, index-jumping and index cross-talk) is the most deleterious
phenomenon in HTS data, because it results in technical cross-contamination among samples and may blur
especially patterns in host specificity, taxon networks and biogeographical pattern (Carlsen et al., 2012).
Index switches occur during PCR, T4 blunt ending and cross-pairing of amplicons from different libraries,
and they are known from all sequencing platforms (Schnell et al., 2005; Carøe & Bohmann, 2020). Careful
indexing of samples ameliorates this issue, but roughly 0.01-0.1% of obvious switches will remain. Index-
switches can be assessed with an ad hoc score using the UNCROSS algorithm (Edgar, 2017), the unspread
python script (Larsson et al., 2018), by tracking non-biological spike-ins (Palmer et al., 2018), or by a positive
control sample. Based on the distribution of spike-ins or positive control in biological samples in vice versa,
index-switch rates can be quantified. Sequence abundances above the index-switching threshold are converted
to zero. Index-switches and other contamination should be checked for each sequencing library separately. It
is also useful to estimate occurrence of taxa in pseudosamples represented by unused indexes (see Taberlet
et al., 2018) to assess the proportion of index-switch artefacts.

Clustering

Clustering is used for aggregating reads into OTUs based on user-defined sequence similarity thresholds,
usually ranging from 95-100% sequence similarity. There are multiple clustering algorithms, many of which are
based on a global alignment or expect equal read length, and are thus unsuited for ITS data. Most algorithms
enforce strict sequence similarity and coverage thresholds, but some allow relaxed similarity (e.g., swarm; Ma-
he et al., 2021) and do not consider end-gaps (indels in the end; e.g., SCATA, https://scata.mykopat.slu.se).
Some algorithms allow truncation of homopolymers (e.g., the algorithms implemented in SCATA and Pipe-
Craft), which may be warranted for the PacBio, ONT and Ion Torrent platforms where indels in homopoly-
mers are the most common sequencing errors.

Three types of clustering are commonly seen in metabarcoding efforts: open-reference, closed-reference and de
novo clustering. Inde novo clustering, the sequence data are clustered within the project. For closed-reference
clustering and open-reference clustering, a reference database is used, but only in the latter method, unique
sequences are retained. Open-reference greedy clustering is recommended as it provides the most stable
OTUs by accounting for the taxonomic structure in the reference data (He et al., 2015; Cline et al., 2017).

Following studies in bacterial ecology and Sanger sequencing-based mycorrhizal ecology, a sequence similarity
threshold of 97% is most commonly used, especially for short reads. Other studies have found that 98% or
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. 98.5% sequence similarity is a better compromise between sequencing errors and biological differences among
closely related species and intraspecific variation (Tedersoo et al., 2014; Kyaschenko et al., 2017). Yet, many
closely related species of ascomycete saprotrophs and pathogens differ by no or only a few bases in full-
length ITS (e.g., O’Donnell et al., 2015). Based on 18S rRNA gene sequences, ascomycete and basidiomycete
species belonging to different orders may display identical or near-identical sequences, which render SSU
unsuited for fungal DNA metabarcoding. However, unicellular fungal lineages and Glomeromycota display
greater variation, although species-level distinction in the latter group is not straightforward as most virtual
taxa and OTUs are >50 million years old (Bruns & Taylor, 2016; Perez-Lamarque et al., 2020), which
roughly corresponds to the age of genera in most other fungal groups. To improve taxonomic resolution and
reproducibility of identified taxa, amplicon sequence variant (ASV) approaches have been developed (Box
2).

Taxonomic assignments

A representative sequence is chosen from each OTU for taxonomic annotation. Most programs select one
of the longest sequences, the consensus sequence or the most common sequence type for comparison to the
reference corpus. In most cases, the latter is biologically the most meaningful. The longest sequence may
contain artifactual insertions, untrimmed fragments of flanking genes or represent an unrecognized chimera.
Consensus sequences are prone to lending voice to rare and perhaps compromised sequence data.

There are different approaches for taxonomic assignments, all of which require a well-curated reference
database. The most common approach is custom BLASTn searches (Camacho et al., 2009), where all repre-
sentative sequences are compared pairwise to sequences in the reference database. Users can specify blast
parameters from slow and stringent to rapid and discontinuous. We recommend using word size <10 to
be able to obtain long query-to-template alignments and hence the most precise estimates of e-value and
sequence similarity. Alternative to BLASTn, programs performing k-mer search such as Näıve Bayesian clas-
sifier (Wang et al., 2007; Porras-Alfaro et al., 2014) and SINTAX (Edgar, 2016) are up to 100-fold faster,
but the resulting similarity estimates are not as straightforward to interpret. These algorithms work well in
situations where reference data are abundant and accurately identified to species level, which is a somewhat
atypical situation seen to the fungal kingdom at large (Lücking et al., 2021). Phylogenetic placement algo-
rithms such as EPA-ng (Barbera et al., 2018) map rRNA gene-based OTUs to pre-established phylogenies,
but these methods are not suited for the ITS region due to its hypervariability in both length and composi-
tion. Some pipelines (e.g., amptk) return taxonomic assessments based on results from multiple algorithms.
While often slightly more conservative, this approach gives greater confidence in the assigned taxonomy
when there is clear congruence across different algorithms.

If the samples include many undescribed/unbarcoded species, we recommend relying on blast search against
the UNITE database, focusing on the best hit but also accounting for 4-9 next best hits. Based on multiple
global datasets, we have developed recommended taxon-specific e-value and sequence similarity thresholds
for 18S-V9, ITS2 and full-ITS reads at the level of genera to phyla (Tedersoo et al., 2014; 2021b; updated
in Table S1). Manual BLAST-based double-checking of taxonomic affiliations of at least the, say, 50 largest
OTUs/ASVs are a part of those recommendations.

With respect to reference databases, UNITE is the largest by containing curated data obtained from Inter-
national Nucleotide Sequence Databases consortium (INSDc) as well as data submitted directly to UNITE
(Nilsson et al., 2018). Furthermore, UNITE provides species hypotheses (SHs) for ITS-based OTUs of fun-
gi and other eukaryotes to enable unambiguous DOI-based cross-communication of taxa among studies
and across time (Kõljalg et al., 2016, 2020). Another curated dataset is the so-called Warcup training set,
which covers a smaller set of well-identified fungi of mostly plant-associated Ascomycota and Basidiomy-
cota(Deshpande et al., 2016). We recommend identification of fungal and other eukaryote ITS sequences
based on the UNITE reference data set, because it is the largest curated database and it includes multiple
non-fungal reads to facilitate separation of fungi from other eukaryotes (Anslan et al., 2018). We recommend
the SILVA database for 18S and 28S rRNA gene reads (Quast et al., 2013). For Glomeromycota 18S and
28S rRNA gene reads, MaarjAM (Öpik et al., 2010) and the AM-LSU pipeline (Delavaux et al., 2021) can

10



P
os

te
d

on
A

u
th

or
ea

15
O

ct
20

21
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
63

43
03

90
.0

42
26

54
4/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. be used, respectively.

Functional assignments

Functional assignments can be supplied directly to best-hitting reference sequences and species, genera
and orders based on their identification. The FUNGuild database is largely focused on the genus level
(occasionally on the species level) and provides functional assignment of lifestyle and life mode based on
probabilistic estimates (Nguyen et al., 2016). The FungalTraits database is focused on genus and order-level
functional estimates covering additional traits such as fruiting body and hymenium type and capacities
of performing certain biotic functions (Põlme et al., 2020). FungalTraits also allows complementary trait
estimates (geographic distribution, isolation source and mycorrhizal type) based on sequence accessions and
SHs. FunFun includes a large number of genomic and enzymatic functional traits, but its taxonomic coverage
is limited (Zanne et al., 2020).

From a functional perspective, we argue that it makes the most sense to analyse diversity at the level of all
fungi and major functional guilds such as ectomycorrhizal, arbuscular mycorrhizal or putatively plant patho-
genic fungi. Phyla, classes and orders are of limited value, because functionality of fungi is mainly conserved
at the level of genus and family (Zanne et al., 2020). Yet these ranks, particularly orders that are generally
well-delimited, are informative for understanding the taxonomic structure. One notable challenge with func-
tional assignments becomes apparent when individual taxa are matched to multiple ecological lifestyles (e.g.,
both saprotroph and endophyte). Lumping these taxa into a “multi-guild” category for ecological analyses
is not an effective solution; instead it is recommended that users carefully analyze the associated primary
literature for those taxa and try to determine which functional type is most likely represented based on the
study system or research question being addressed.

Curation of the OTU matrix

The LULU software can be used for assessing co-occurrences of closely related taxa in the OTU-by-sample
matrix (Froslev et al., 2017). This program allows the removal of OTUs that potentially represent minority
haplotypes of common OTUs and remaining PCR and sequencing errors.

The OTU-by-sample matrix alone or tagged with sample metadata and taxonomic and functional annotation
requires some manual curation in a spreadsheet program. Although many functions can be performed by
Python and Bash scripting, the process of checking taxonomic annotations based on multiple best hits
needs to be performed by manual browsing, because the first hit may be incompletely annotated. Often,
representative sequences require BLASTn-based re-analysis against INSDc for taxonomic determination or
chimera control (Nilsson et al., 2012) or more complete functional annotation (Fernandez et al., 2017).
Manual BLASTn examination of the 25-50 largest (most frequent or abundant) OTUs is a good way to
both identify compromised sequence data and to refine the taxonomic annotation of OTUs. Implementing
taxon-specific thresholds for genera to phyla is easier done in a manual mode.

Checking the distribution of sequences in control samples and spill-over of positive control in experimental
samples is mostly manual work, but relevant functions are implemented in the metabaR R package and its as-
sociated tool vignette (Zinger et al., 2021). These steps are required to estimate the rate of index-switching
and require appropriate measures. OTUs found in negative control samples should be assessed carefully,
because these may be derived from molecular reagents, laboratory space or neighbouring samples (Eisen-
hofer et al., 2019; Loit et al., 2019). There are several programs for removing/subtracting contamination-
affected OTUs from data cells (e.g., McKnight et al., 2019 and Zinger et al., 2021). However, among-sample
cross-contamination not affecting control samples (or if there are no controls) may be very difficult to
find. Ranking OTUs by abundance and inspecting Spearman correlation matrices may be useful to detect
cross-contamination. To ensure recognition of contaminants, sample-specific spike-in molecules inserted to
extractable samples can be used and traced to reads (Lagerborg et al., 2021).

Rarefaction is a commonly used option to standardise an OTU matrix to equal sequencing depth based on
random subsampling of reads. Samples are typically rarefied to the lowest sequencing depth (after removing
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. failed or notably low abundance samples), but there is no consensus whether the sequencing depth should
reflect all reads, fungal reads or reads of each functional group taken separately. It should be borne in
mind that sequencing depth per sample is not necessarily related to DNA content of the original sample or
biological abundance of certain taxa. The main issue with rarefaction is the substantial loss of data that
often corresponds to 90% of the sequencing depth that may carry important information about diversity
(McMurdie & Holmes, 2014). Figure 3 illustrates that rarefaction provides relatively lower statistical power
in the multivariate analyses as well. Another possibility is rarefaction to median sequencing depth (de Carcer
et al., 2011) and accounting for sparse samples in statistical models, or through modelling only (Weiss et al.,
2017). An alternative to rarefying is scaling with ranked subsampling, which retains around 20% more OTUs
(Beule & Karlovsky, 2020). Some technical methodological comparisons and non-covariate models may still
require rarefying.

Statistical data analyses

Alpha diversity metrics

Microbial diversity has been traditionally studied with OTU richness as well as Shannon and Simpson
diversity indices and the effective species numbers (Hill numbers) derived from these (Chao et al., 2014;
Alberdi & Gilbert, 2019). Diversity indices down-weigh the effect of rare OTUs and therefore only weakly
correlate with sequencing depth. OTU richness has a cumulating function with sequencing depth that is
particularly prominent in diverse, pooled samples. Unless rarefaction is performed, it is important to include
square-root or log-transformed sequencing depth, whichever is more informative, as a covariate. Although
commonly used, we do not recommend OTU richness extrapolations, because these rely on the abundance
of the rarest OTUs, which are commonly artefactual (Bunge et al., 2014; Balint et al., 2016).

Adding phylogenetic information to taxonomic composition eliminates the uncertainty regarding OTU cal-
culations (Washburne et al., 2018) and could also reduce the effect of remaining PCR/sequencing errors in
the data (Taberlet et al 2018). However, phylogenetic composition of fungal communities has rarely been
assessed (Horn et al., 2014), because the ITS region is not amenable to robust multiple alignments and
phylogenetic reconstruction much beyond the genus level. There are alternative methods available such as
grafting phylogenies (Fouquier et al., 2016) and using taxonomic ranks (Tedersoo et al., 2018, Chalmandrier
et al., 2019), which may offer some additional insights. Testing phylogenetic conservatism, overdispersion
and turnover across phylogenetic scales (Tucker et al., 2016) may also be informative in analyses of plant-
fungal interactions (Chalmandrier et al., 2019), fungal community assembly processes (Roy et al., 2019) and
phylogeographic patterns (Turon et al., 2020). These statistics can be calculated in phylocom (Webb et al.,
2008), the R packages picante (Kembel et al., 2010) and S.phylomaker (Qian & Jin, 2016) as well as other
open-access scripts (Stegen et al., 2015; Ning et al., 2019; Chalmandrier et al., 2019).

Functional data, derived from genomics, metagenomics, metatranscriptomics or functional annotation of
OTUs complements information about the taxonomic composition (Laliberte & Legendre, 2010; Egidi et al.,
2019; Escalas et al., 2019) because of widespread redundancy and mostly family-level phylogenetic autocor-
relation in fungal functional profiles (Zanne et al., 2020). In functional diversity measures, it is important to
consider within-function diversity rather than richness or relative abundance in a certain function (Escalas
et al., 2019).

Statistical methods

HTS analyses produce semiquantitative abundance data for OTUs, and many rare taxa remain beyond the
detection level. Fungal species differ greatly in the number of cells per unit biomass, the number of nuclei
per cell and the number of ITS copies per nucleus (Lofgren et al., 2019). The use of quantitative methods
assumes that all samples are influenced by these biases in a similar manner.

Because the sequencing data are compositional and reflect relative rather than absolute abundances (Gloor
et al., 2017; Lin & Peddada, 2020b), it may be necessary to transform the entire OTU table accordingly for
testing factors affecting community shifts (this excludes null model based approaches, e.g. as in Stegen et al.,
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. 2015, which often rely on a sampling process of reads/individuals). Such transformations can be performed
by using additive or modified centered log-ratio transformation (Quinn et al., 2019; Yoon et al., 2019; Ha
et al., 2020), although it should be kept in mind that these transformations have limits when the data are
sparse (Lovell et al., 2020). Alternatively, programs for compositional data analyses (e.g., ANCOM-BC; Lin
& Peddada, 2020a) and the Aitchison distance metric can be used (Quinn et al., 2019). With appropriate
transformations, different methods reveal roughly comparable results (Figure 3).

In large datasets, our experience is that log-transformation of fungal OTU richness yields better-explained
statistical models. Classical transformations of metadata such as logarithmic (concentrations), square-root
(counts) and log-ratio transformations (proportions) are necessary to shift the distribution of residuals to-
wards normal distribution and reduce heteroscedasticity – principal assumptions of most parametric tests
(Legendre & Legendre, 2012). Log-ratio transformation also increases the independence of measurements of
various ratios summing up 100%.

Phylogenetic relationships among associated plants, metazoans, or other organisms can be accounted for
by testing phylogenetic signals or explicitly quantifying the phylogeny effect by using eigenvectors (e.g.,
adespatial package of R; Dray et al., 2018). Compared with using pure phylogenetic distances, the use of
eigenvectors has proved to extract larger proportions of plant effects on fungal communities (Tedersoo et
al., 2013; Yang et al., 2019). Similar eigenvector approaches have also been used to quantify and account
for spatial and temporal and plant phylogeny effects on fungal diversity (Zimmerman & Vitousek, 2012;
Tedersoo et al., 2020a).

For statistical analyses, most of the useful methods that have been elaborated in plant and microbial ecology
are applicable for fungi, too (for review, see Buttigieg & Ramette, 2014; Balint et al., 2016; Hugerth &
Andersson, 2017). In particular, the R packages vegan (Oksanen et al., 2019), phyloseq (McMurdie & Holmes,
2013) and microeco (Liu et al., 2021) are useful for routine analyses besides commercial statistical platforms.

When it comes to large amounts of metadata with potential multicollinearity, it is feasible to pre-select the
most important variables by machine learning algorithms (Qu et al., 2019) such as random forest implemented
in the randomforest (Liaw and Wiener, 2002) and VSURF (Genuer et al., 2019) R packages with subsequent
model selection based on forward selection or the AICc information criterion (e.g., nlme R package; Pinheiro
et al., 2011; mumin R package). The party package allows estimating interactions among two and more
variables using machine learning (Strobl et al., 2009), which can be used to assess conditional and synergistic
effects among variables (Rillig et al., 2019). For variables expected to exhibit unimodal (e.g., pH over a broad
gradient) or cumulative (e.g., host richness and rainfall) relationships, inclusion of second-order polynomials
or fitting generalized additive models (GAMs; mgcv package of R; Pedersen et al., 2019) may be more
appropriate.

For taxon-level analyses such as distribution modelling of OTUs, random forest and univariate models are
appropriate, but nonparametric tests should be used because of multiple zero-values. In addition, indicator
species analyses can be used as implemented in the indicspecies R package (Caceres & Legendre, 2009).
Specialist and generalist features of OTUs can be tested in two community types using CLAM, which
outperforms other indicator statistics (Chazdon et al., 2011). Another option is to decompose multivariate
ANOVA models into OTU contributions, but this works properly only for unifactorial analyses (Ricotta et
al., 2021).

For multivariate analyses, permutational multivariate ANOVA (permanova) is currently the state of the art in
that it outperforms common ordination methods because of its explicit hypothesis testing (Anderson, 2001).
The program PERMANOVA+ included in the Primer6/Primer7 packages (Anderson et al., 2008) offers more
functionalities than the adonis routine of the vegan package. With respect to ordination methods, nonmetric
multidimensional scaling (NMDS), principal coordinates analysis (PCoA) and redundancy analysis (RDA)
are among the most popular choices for two-dimensional visualisation of multivariate patterns (Paliy &
Shankar, 2016). In particular, the ordiellipse function in the vegan package supports analysis and display
of within-group variance. General dissimilarity modelling (GDM) facilitates the testing of non-linear effects
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. of multiple variables, which helps the user to identify and understand critical biological thresholds (gdm R
package; Manion et al., 2018). Similar multivariate analyses can also be performed for phylogenetic and func-
tional data. All multivariate analyses are sensitive to selection of transformation and distance (dissimilarity)
measures (Kuczynski et al., 2010; Buttigieg & Ramette, 2014)). Hellinger transformation (square-root func-
tion) and Bray-Curtis dissimilarity are among the best choices for quantitative data (Legendre & Gallagher,
2001). We do not recommend transforming the data to presences and absences to avoid upweighting rare
taxa that may be artefacts.

Network analysis has become increasingly popular in microbial ecology (Faust & Raes, 2012; Mikryukov et
al., 2021). Unipartite networks (co-occurrence analyses) are often used to infer positive (mutualism and faci-
litation) and negative (avoidance and competition) interactions among co-occurring taxa (Weiss et al., 2016).
Bipartite networks estimate partner specificity and how these specific and non-specific taxa are distributed
(R package bipartite; Dormann et al., 2009). Both approaches also provide information on the modularity,
nestedness and connectivity of the studied ecological network. However, both types of networks have been
commonly overinterpreted: unipartite networks may yield incorrect implications based on compositional da-
ta (Rao et al., 2021), fail to recover negative associations and exhibit a topology that is sensitive to both
network inference techniques and the number of samples considered (Weiss et al., 2016, Matchado et al.,
2021); occasional presences are commonly misinterpreted as intimate associations in bipartite networks, par-
ticularly for the plant and root-associated fungal relationships. From a more theoretical perspective, it has
also been shown that spatial co-occurrences poorly reflect ecological interactions (Blanchet et al., 2020). For
addressing biologically meaningful facilitation and avoidance strategies among species, the samples should
be unpooled and of relevant size to ensure direct contact among organisms. Submillimeter scale is the most
relevant for assessing fungal interactions with other fungi and bacteria in an abiotic environment. There are
many network construction algorithms (Weiss et al., 2016, Matchado et al., 2021) for estimating relationship
strength with correlation measures, indices of dissimilarity between species pairs, proportionality, or mea-
sures of conditional dependence omitting indirect connections or constructing consensus networks based on
different measures (e.g., CoNet; Faust et al., 2016). Some methods take into account data compositionality
and sparsity, for example SparCC (Friedman & Alm, 2011), SPIEC-EASI (Kurtz et al., 2015) and SPRING
(Yoon et al., 2019)). To reduce the number of false positive associations, it is recommended to reduce matrix
size (rare taxa) to reach a fill level of ca. 50% (Weiss et al., 2016). The main issue with comparing networks
is related to their lack of true replication (Bahram et al., 2014) and dependence of results on the linkage
metric, filtering threshold and network construction algorithm (Weiss et al., 2016; Connor et al., 2017).
Nonetheless, consistent associations and integral topological parameters usually remain unaffected (Toju et
al., 2015; Röttjers & Faust, 2018).

Structural equation modelling (SEM), in particular path analysis, tests the directionality as well as direct
and indirect effects among variables (Fan et al., 2016; Collier, 2020). These are important to consider when
the explanatory variables affect each other (e.g., vegetation and soil) or there are several related response
variables (e.g., richness of different functional guilds; Yang et al., 2021). Nonetheless, the causal relation-
ship identified by SEMs models strongly relies on the hypothetical causalities tested, which should hence
be properly justified by other empirical observations or theoretical foundations. In addition, SEM models
have several commonly ignored assumptions: multivariate normality, linear associations, no missing data,
no multicollinearity and large sample size – at least 20 samples per variable in the model (Collier, 2020).
Taxonomic composition can also be included in SEMs as principal components (Antoninka et al., 2009). The
program AMOS (www.ibm.com) and the R package piecewiseSEM (Lefcheck, 2016) offer most functionalities
needed for such analyses.

It needs to be remembered that in any ecological tests, the most biologically informative information to the
readers are the effect size (either Z-score or adjusted R2) as well as direction and shape of the relationship.
Estimates of variance and sample size are also required for conducting meta-analyses. Values of statistical
tests and P -values are context-dependent albeit necessary to report for assessing the validity of the analysis.
The rise of type I error rate in multiple testing needs to be accounted for by using flexible correction methods
such as Benjamini-Hochberg correction (Noble, 2009).
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. Absolute and relative abundance

Absolute abundance of bacteria and fungi (as biomass) is an important ecological measure, which indicates
ecosystem nutrient cycles. In addition, biomass estimates are important for correctly addressing differences
in composition (see below). As fungal biomass cannot be directly measured, there are several proxies for its
estimation, notably phospholipid fatty acid (PLFA) profiles, ergosterol abundance, qPCR, and metagenome
composition associated with total DNA measurements (Baldrian et al., 2013; Bahram et al., 2018; Yang et
al., 2020). However, unicellular fungi are poorly represented in these biomass estimates because of different
analogous compounds (Weete et al., 2010), primer biases and the general paucity of reference genome data
(Tedersoo et al., 2015). Of the available options, qPCR is the simplest and least laborious method, and
it is expected to correlate the strongest with HTS data since comparisons are related to the same DNA
extracts. All these methods assume that DNA, sterols and PLFAs are extracted from various samples at
equal efficiency, but this cannot be guaranteed for different soils, plant species or tissues.

An alternative is to use a spike-in method, which relies on adding artificial molecules or cells of one or
preferably more species that are not expected to occur in biological samples, before DNA extraction (Palmer
et al., 2018; Rao et al., 2021). For absolute quantification, it is required that the number of rRNA gene
copies of the spike-in taxa is known. Index switches may disproportionally elevate the estimates of spike-in
abundance in samples with a high DNA content.

Visualisation of results

There are a large number of methods and software tools available for visualising the statistical results,
box plots and scatter plots being the most commonly used. Violin plots are a specific type of box plots
that indicate distribution of measurements and deviation from normality. Rarefaction curves (smoothed
species accumulation curves) are useful for graphical comparisons of species evenness and richness but also
evaluating sufficiency of sampling and sequencing depth within and among samples (Colwell et al., 2004).
Heat maps are useful for visualising large correlation matrices or the results of multiple multifactorial analyses
(e.g., ClustVis web tool; Metsalu & Vilo, 2015), although the typical lack of within-treatment variation can
make their ecological interpretation challenging. Venn diagrams are useful for showing unique and shared
variation among factors or OTUs across factor levels or combinations (e.g., venny; Oliveros, 2007), and rank-
abundance plots can provide useful information on what specific taxa underlie certain ecological patterns.
Similarly, overlying environmental vectors on ordination plots can help to identify the abiotic and biotic
variables that are associated with specific taxon or sample abundances.

The overall taxonomic composition is best visualised in stacked plots, which makes it easier to display multiple
treatments. However, as error bars are lacking (there is no space), such plots and heat maps are examples of
implicit pseudoreplication. Krona charts (Ondov et al., 2011) and heat trees (metacoder package of R; Foster
et al., 2017) provide an efficient way of demonstrating the distribution of dominant taxa by taxonomic ranks
(e.g., Nilsson et al., 2017). Because of high space requirements, the overall view or comparison of up to two
levels of a treatment can be effectively indicated for Krona charts, but interactive versions can be provided
as supplementary items. Heat trees can handle two samples or a single gradient.

While phylogenetic trees are generally too large for visualising taxonomic affiliation of OTUs in the main
article, these are well suited to supplementary items. Although family-level and higher-level phylogenetic
relationships cannot always be assessed based on ITS data, these are suitable for demonstrating rough
phylogenetic placement. Phylogenetic trees make more sense for 18S and 28S rRNA gene data and are
furthermore helpful in detecting artifactual OTUs based on ultra-long branches or branches with zero length
next to a long-branch taxon (Tedersoo et al., 2020b). Large circular phylogenies squeezed into ca. 17 cm
page width offers limited opportunities for interpretation if taxon names are unreadable and branch support
values are lacking. Using iTOL (interactive tree of life; https://itol.embl.de/), more than 50,000 taxa in
phylogenetic trees can be equipped with large amounts of metadata for display in supplementary materials
(Letunic & Bork, 2021).

Data management
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. Funding requests should be written to cover not only the field and laboratory parts, but also data proces-
sing, metadata annotation, and public deposition and dissemination. Fungal metabarcoding data should be
submitted to any public archive such as short read archive (SRA), European nucleotide archive (ENA) or
UNITE. UNITE calculates 100%-similarity OTUs for full-length ITS sequences for each biological sample
that are used for further reference and incorporated in SHs. Direct submission of representative sequences
to INSDc is discouraged, because these poorly annotated and commonly low-quality data hamper further
analyses. We also ask researchers to upload their community matrices, metadata and demultiplexing infor-
mation (if relevant) in public repositories or supplementary materials, which enables other users to perform
meta-analyses and databasing (Põlme et al., 2020; Vetrovsky et al., 2020). Figshare (https://figshare.com/)
and Dryad (https://datadryad.org/) are among the most popular choices. Similarly, scripts used for analyses
should be released to secure reproducibility and potential reuse in other applications. For the sake of clarity
and machine-readability, it is best to use standardised MIMARKS and MIxS terminology (Yilmaz et al.,
2011).

In the materials and methods section of scientific papers, it is important to document all aspects of the
analysis Lindahl et al., 2013). This is likely to shorten the review process and help reviewers and readers to
evaluate the validity and novelty of the procedures.

Future perspectives and conclusions

Metabarcoding analyses have recently opened new frontiers in many fields of mycology including assessment
of functionality, integration into the entire microbiome analyses, detection of novel fungal taxa and ancient
organisms and providing sequence data for taxonomically valuable specimens. Metabarcoding analyses using
SIP of labelled substrates (Hannula et al., 2017) or coupled with metatranscriptomics (Zifcakova et al., 2016)
and proteomics have revealed functionally active fungal organisms and their activity in situ. Parallel studies
of fungi, bacteria and protists have revealed antagonistic interactions (Bork et al., 2015; Bahram et al.,
2018), the structure of the micro- and mycobiome web (Tipton et al., 2018) and mechanisms of community
assembly (Zinger et al., 2019b). HTS-derived data have revealed several groups of previously undescribed (or
unsequenced) order- and class-level fungal lineages (Tedersoo et al., 2020b; Zhang et al., 2021). These reads
offer material for constructing taxon-specific primers and probes for visualizing the cells (Chambouvet et al.,
2019) and help discovery and characterisation of fungal dark matter. Increasing read length and precision
of HTS methods enhance taxonomic precision and highlight a venue for population-level studies based on
eDNA (Byrne et al., 2017; Turon et al., 2020). This may be of particular relevance to fungal taxa that
are difficult to culture and form no fruit-bodies (Lücking et al., 2021). Metabarcoding of short fragments
furthermore sheds light into ancient DNA including potentially ancient fungi (Balint et al., 2018; Talas et
al., 2021), but methods distinguishing organisms representing ancient, recently dead and active organisms
should be refined (e.g., metabarcoding along a marker length series, RNA vs. DNA approaches and analyses
of chemically modified DNA fraction). Similarly, metabarcoding approaches are useful in generating DNA
barcodes from century-old fruit-body specimens including valuable type material where extra care is needed
to identify and dismiss air-borne contaminants (Forin et al., 2018).

Metabarcoding of fungi is a rapidly advancing research topic, which has benefited from initial methods and
development in clinical microbiology and environmental microbiology - disciplines that are an order of ma-
gnitude larger. Thus, fungal ecologists have been able to learn from technological breakthroughs and pitfalls
and develop unique solutions for analysis of the ITS marker, the present mainstay of fungal taxonomy and
ecology. Through short-read metabarcoding, fungal diversity has been analysed in nearly all habitats on
Earth, including extreme environments (Nilsson et al., 2018). We hope that with the assistance of growing
reference databases, studies involving fungal taxonomic, phylogenetic and functional composition will flou-
rish, because many principal aspects in evolutionary and functional (e.g., trait-based) ecology remain poorly
known so far. These studies should be supplemented by rigorous experiments to validate the findings and
infer causality. It somehow seems unacceptable that studies on one of the most important groups of nutrient
cyclers - the fungi - be based on anything but the best and most up-to-date methodological recommendations,
and we sincerely hope that this review has contributed to that effect.
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Table 1. Properties of bioinformatics pipelines used for fungal metabarcoding. Interface: command line
(CL).
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. Software Interface1 Type Target group ITS extraction Unique features Reference
QIIME2 graphical, CL offline, multiple included dependencies prokaryote, short-read ITSxpress interactive data visualisation; Deblur filtering Bolyen et al., 2019
mothur CL offline prokaryote, short-read - OptiClust clustering Schloss, 2020
Claident CL offline universal, short-read ITSx noise removal options Tanabe & Toju, 2013
PIPITS CL offline fungi, ITS1, ITS2 ITSx - Gweon et al., 2015
SEED2 graphical offline universal, short-read ITSx compatible read visualisation Vetrovsky et al., 2018
PEMA CL offline, multiple included dependencies universal, short-read - parameter file for automated pipeline Zafeiropoulos et al., 2020
PipeCraft graphical offline, multiple included dependencies universal, short/long-read ITSx multiple HTS platform- and data-specific options Anslan et al., 2017
DADA2 CL (R-Studio) offline universal, short/long-read - ASV calculation Callahan et al., 2016
LOTUS2 CL offline universal, short/long-read ITSx low RAM usage, false positives removal, Hildebrand et al., 2014
Galaxy graphical online prokaryote, short-read - links to other Galaxy functions Jalili et al., 2020
FROGS graphical online prokaryote, short-read ITSx Galaxy functions Escudie et al., 2018
AMPtk CL offline universal, short-read - hybrid method for taxonomy assignment; spike-in control Palmer et al., 2018
OBITools CL offline universal, short-read - - Boyer et al., 2016
SCATA graphical online fungi, short/long-read ITSx unique clustering options https://scata.mykopat.slu.se/
gDAT graphical offline universal, short-read - - Vasar et al., 2021
Cascabel CL offline universal, short-read - graphical report- Abdala Asbun et al., 2020
MICCA CL offline universal, short-read - OTUCLUST clustering algorithm Albanese et al., 2015
SWARM CL offline universal, short-read - local single-linkage clustering Mahe et al., 2021
CloVR-ITS CL offline/online fungi, short-read - Virtual machine-based with the possibility to run on Amazon EC2 Cloud White et al., 2013
DAnIEL graphical online fungi, short-read ITSx (via PIPITS) raw data download from SRA Loos et al., 2021

1CL, command line

Figure 1. Primer map of the rRNA operon internal transcribed spacer (ITS) region. Primers developed for
metabarcoding studies are in bold; fungi-specific primers are underlined. Primers used for global mycobiome
projects are indicated in red (all fungi), purple (Glomeromycota ) and blue (Earth Microbiome project).
<I>, common intron sites. Updated from Nilsson et al. (2018).

Figure 2. Common and perspective library preparation strategies for Illumina sequencing: (a) adding
indexes and adapters using amplification with fusion primers; (b) adding indexes with amplification and
adapters by ligation; (c) amplification and then adding indexes and adapters in second PCR step; (d)
indexing samples with combinations of Illumina indices (Holm et al., 2020); and (e) incorporating unique
molecular identifiers (UMIs) in the first amplification step (modification of Karst et al., 2021). Libraries of
other HTS platforms require more specific protocols.

Figure 3. Non-metric multidimensional scaling (NMDS) graphs illustrating relative performance of vari-
ous methods and dissimilarity (B-C, Bray-Curtis or Aitchison) measures in recovering trends in microbial
eukaryote composition using untransformed and Hellinger-transformed data matrices in plant roots (filled
circles) and leaves (open circles) in terrestrial (orange) and aquatic (blue) habitats: (a, b) non-rarefied data;
(c, d) rarefied data; (e, f) scaling with ranked subsampling (SRS) normalised data; (g, h) centered log-ratio
(CLR) transformed data. Numbers on symbols indicate plant species (separate numbering for terrestrial
and aquatic plants); ellipses depict 95% CI for tissue and habitat combinations. Explained variation (%)
as revealed from Permanova+ analysis is indicated (t x h, tissue and habitat interaction; seqs, sequencing
depth). Plant species effects are not analysed here for simplicity. Data from A. Azadnia, V. Mikryukov, L.
Tedersoo (unpublished).

Box1. Trade-offs in Sample Pooling

To improve representativeness of the samples at minimum extra cost, pooling statistically non-independent
subsamples is a widely used option. The number and spatial distance of subsamples may be of great im-
portance to provide a representative view of the microbial diversity in heterogeneous habitats; less inclusive
subsampling designs are likely to result in underestimating diversity (Figure Box1). The number of subsam-
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. ples to be pooled depends on the research question and the size of the area, with 7-25 being optimal in most
cases (Schwarzenbach et al., 2007). Both physical and analytical pooling improve richness and composition
assessments of soil fungi (Schwarzenbach et al., 2007, Song et al., 2015) and reduce estimate variance (Dickie
et al., 2018). However, pooling of physical samples may result in the loss of patchily occurring rare taxa
(e.g., in extremely dilute fish eDNA samples with a detection threshold of 0.05% of total relative abundance
at deep sequencing; Sato et al., 2017). These results may be relevant for fungal groups of relatively low DNA
content and/or rRNA copy numbers, e.g.Glomeromycota and unicellular taxa. It is likely that the pooling
effect depends on habitat heterogeneity, including pH, organic matter content, salinity and plant species
present - all of which are factors known to affect fungal composition in different environments (Amend et
al., 2019; Grossart et al., 2019; Nilsson et al., 2019; U’Ren et al., 2019). Therefore, pooling samples with
potentially different microbial composition (e.g., leaves of different plant species) is not recommended. Theo-
retically, pooling does not work optimally in situations where the samples contain different amounts of DNA
and where the low-DNA samples feature unique, rare species. Given the greater overall richness, pooled sam-
ples also require deeper sequencing to detect rare taxa. Furthermore, pooling is unsuited for co-occurrence
analyses assessing biotic interactions (Bahram et al., 2014). Pooling individual samples at the site level (at
the phase of DNA extraction, PCR, library preparation or sequence data) may be the most useful when
these samples cannot be used as independent replicates (local- or landscape-scale spatial autocorrelation),
e.g. for regional- to global-scale analyses.

Figure Box1. Potential underestimation of biodiversity and high variance at low number of (sub)samples:
(a) OTU richness, (b) Shannon index of diversity and (c) Effective number of species (here as the exponential
of the Shannon index). Rarefied datasets from six sites (Zhou et al., 2016) were randomized 100 times to
generate subsets of various sample sizes representing composite, analytically pooled samples. These samples
were further rarefied at the same level for calculating diversity values. Note that the differences would be
greater without both rarefaction steps. Symbols represent means of analytically pooled samples, and error
bars indicate 95% CI. The differences between a single sample and 21 randomly selected samples average
18.7% (+-3.6%), 4.4% (+-0.9%) and 35.7% (+-7.9%) for (a), (b) and (c), respectively.

Box 2. Amplified sequence variant (ASV) methods

ASV approaches represent a specific type of greedy de novoclustering and several alternative methods - no-
tably DADA2 (Callahan et al., 2016), UNOISE (Edgar, 2016) and deblur (Amir et al., 2017) - have recently
become popular in microbiology including fungal ecology (Glassman et al., 2018). In DADA2, ASVs corre-
spond to 100%-similarity OTUs, where sample-wise rare variants are assigned to dominant haplotypes based
on an error model with stringent settings (Callahan et al., 2016). Deblur is relatively less conservative (Amir
et al., 2017) and relatively inefficient in removing rare haplotypes (Li et al., 2021). The ASV approaches are
certainly useful for separating as many taxa as possible based on conserved genes, but their utility for ITS
and protein-encoding genes is unclear. They may outperform traditional approaches in distinguishing the
aforementioned saprotrophic and pathogenic Ascomycota with haploid genomes. However, it severely biases
diversity estimates of metazoans based on the Cytochrome Oxidase 1 (CO1) gene (Brandt et al., 2021) and
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. it is expected to perform poorly for fungal groups with dikaryotic (Basidiomycota ), diploid (most unicel-
lular groups), and polyploid (Glomeromycota ) genomes that commonly exhibit two or multiple different
rRNA gene and ITS copies per genome or even within haploid nuclei (Lindner et al., 2013; Egan et al.,
2018). Estensmo et al. (2021) demonstrated that in polypores, the ASVs significantly overestimated species
richness. Using a re-analysis of a dataset from Furneaux et al. (2021), we show that the ASV approach re-
duces phylogenetic richness by disproportionately eliminating rare members of the unicellular fungal groups,
Glomeromycota and non-fungal eukaryotes (Figure Box2). In terms of beta diversity, the results are similar
between ASV and OTU-based approaches (Glassman et al., 2018). If one is interested in using the denois-
ing algorithm of DADA2, a subsequent post-clustering of ASVs (implemented in pipelines such as LotuS2
and amptk) may be a solution (Furneaux et al., 2021; Estensmo et al., 2021), but this approach does not
ameliorate the loss of true unique species.

Figure Box2. Comparison of OTU-based (OTU-s , singletons removed) and ASV-based approaches for
inferring taxonomic richness using the ITS2 subregion, full ITS region, and ITS + 28S based on the dataset
of Furneaux et al. (2021), which was taxonomically re-analysed following Tedersoo et al. (in press). (a)
average number of reads retained; (b) richness of OTUs/ASVs; (c) richness of fungal orders; and (d) kingdom
and phylum-level distribution of OTUs/ASVs across the entire dataset. In (d), letters indicate statistically
significant differences among groups based on Scheffe PostHoc tests following sample-wise testing of log-
ratio transformed proportions using two-way ANOVAs including the two factors marker length and matrix
type - OTU, OTUs without singletons (OTU-s) and ASV. We conclude that 1) the ASV approach and
OTU-based approach with singletons removed recover lower proportions of non-Dikarya and non-fungal taxa
compared with the OTU-based approach including singletons; 2) analyses based on the ITS2 region alone
revealed a higher proportion of OTUs/ASVs that could not be identified to a fungal phylum or eukaryote
kingdom compared with longer marker fragments due to less taxonomic information; 3) longer markers had
fewer sequences passing the quality control and revealed relatively more singletons, suggesting accumulation
of artefacts across the entire 1500-base amplicon; and 4) the ASV approach performs suboptimally for
metabarcoding of fungi and particularly poorly for the full ITS region and longer markers.
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ITS1ngs
ITS1

SR6R
ITS5

18SF

fITS9
1380F

1389F

ITS9MUNngs

S7a
SR11R

Forward primers

Reverse primers

NS7
N

ITS1catta

ITS1F-KYO1
ITS1Fngs
ITSOF
ITS1F

gITS7ngs
fITS7
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ITS4ngsUni
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ITS4B LB-W
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5.8S ITS1<I> <I> <I>V9V8 28S ITS2
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ITS2ngs
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fITS7r
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FLR3

FLR4
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(a) (b) (c) (d) (e)

UMI

custom primer

PCR primer

heterogeneity spacer

sequencing primer
flowcell index
flowcell linker
ligation complex

sample index

inert spacer
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