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The March/April issue of CiSE’s inaugural year (1999) carried an essay by eminent computer science professor
John R. Rice (who at the time was area editor for Software, together with Matlab inventor Cleve Moler)
titled A Perspective on Computational Science in the 21st Century (Rice, 1999). In it, he looked at the
development directions for the future of computational science and engineering, and threaded across these
was what he called “problem-solving environments.” This routine-sounding term hides an ambitious vision,
for the time. Rice imagined a software system for tackling problems within a science domain without all
the agonizing toil of programming by hand every solution method. He and Ronald Boisvert had a previous
article (1996) explaining the idea in more detail (Rice & Boisvert, 1996). A problem-solving environment
would include a collection of mathematical and domain-specific software libraries, offer (semi-)automatic
selection of solution method for a given problem, help check the problem formulation, display or assess the
correctness of solutions, allow extensibility to add new methods, and even manage the overall computational
process. They envisaged an environment that could be “all things to all people,” meaning: it is effective
when solving simple or complex problems, it supports rapid prototyping and detailed analysis, and it can
be used both in introductory teaching and in productive research at the edges of knowledge. An ideal
problem-solving environment would even make decisions for the user by means of an integrated knowledge
base. What fabulous ambition!

Prof. Rice led a research group at Purdue University that worked to develop early problem-solving en-
vironments. The Ellpack system for solving elliptic boundary value problems, developed in the early
1980s, included dozens of software modules implementing solution methods and a descriptive language
to formulate problems (today, we might call it a domain-specific language, DSL). For example, the
line: equation. uxx + uyy + 3 * ux - 4 * u = exp(x+y) * sin(pi * x) would be used in an Ell-
pack program for defining the differential equation to be solved. Similarly expressive statements would
define the boundary conditions, and the grid parameters to discretize the domain (a full example at
https://www.cs.purdue.edu/ellpack/example.html). Later versions of the system offered parallel solvers
and a graphical user interface (screenshots of the Ellpack system from Prof. John R. Rice’s website at
Purdue can be found in the Internet Archive https://web.archive.org/web/19990506040312/https:

//www.cs.purdue.edu/research/cse/index.html).

While Ellpack was licensed by Purdue University for a modest yearly fee, this project did not branch
off commercially or otherwise. Perhaps a few hundred copies were distributed, mostly for use in university
settings, and the project wound down by the early 2000s. By contrast, three commercial software packages for
high-productivity scientific and engineering computation—Maple, Mathematica, and Matlab—had by then
become very popular (Chonacky & Winch, 2005). These systems continue to be widely used in education,
industry, and government settings. Their purchase price and proprietary implementations, however, led many
champions of open-source software to conceive alternatives, oftentimes closely imitating their functionality.

In March/April 2011, twelve years after Prof. Rice’s Perspective essay, CiSE ran a special issue on Python
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. for Scientific Computing, showcasing a maturing stack of tools and a highly productive environment for
researchers. The issue included one of the most-widely cited articles in the history of the magazine, discussing
the high-level multidimensional array structure at the core of NumPy (van der Walt et al., 2011). By this
time, the scientific community had expanded Python for its purposes, and the four keystone libraries had
been put in place in the first half of the decade:

1. SciPy was consolidated as a standard collection of modules for common mathematical and statistical
functions.

2. The first version of IPython, an enhanced interactive shell for Python, was created by Fernando
Pérez.

3. Matplotlib, the rich 2D visualization and now standard Python plotting library, was released by John
Hunter.

4. Travis Oliphant created NumPy from a rewrite of the early Python array library Numeric, adding
functionality from the competing array package called numarray.

CiSE had previously featured the developing Python support for scientific workflows in an issue organized by
Paul F. Dubois, who was the project lead for Numeric from 1997 to 2002. Paul was an editor for Computer
in Physics (which got merged into CiSE) since 1993, and joined CiSE with its founding. He wrote and edited
for the Scientific Programming department until 2006, and continued with the column “Café Dubois” until
2008. The issue he led included the Hunter piece on Matplotlib (Hunter, 2007), the Pérez and Granger article
about IPython (Perez & Granger, 2007), and Travis Oliphant’s general overview of the Python language and
its extensions with NumPy and SciPy (Oliphant, 2007). Other articles in the issue highlight applications
in various science contexts: space observation, systems biology, robotics, nanophotonics, and more. An
author team from the Simula Research Laboratory in Norway discussed new Python tooling for solving
partial differential equations with finite element methods in what was the early development of the Fenics
project (http://www.fenics.org/) (Mardal et al., 2007). This work heralded the compelling combination
of symbolic mathematics and code generation, which Ellpack anticipated.

By the time of the 2011 special issue, the scientific Python ecosystem had gained SymPy, the sym-
bolic mathematics and computer algebra system, and Cython (Behnel et al., 2011), a solution to com-
pile portions of a Python program to obtain faster execution. An important contribution for lowering
the bar to adoption of scientific Python was the Enthought Python Distribution, which was free for aca-
demic users. It relieved users from the laborious installation of every library individually. The SciKits
(https://www.scipy.org/scikits.html), or SciPy Toolkits, began appearing on the scene: scikit-learn
(https://scikit-learn.org/), for predictive data analysis and machine learning (Pedregosa et al., 2011),
and scikit-image (https://scikit-image.org), for image processing (van der Walt et al., 2014), have since
become essential in many scientific contexts. And a new, powerful and flexible Python library for analysis
and manipulation of data in the form of labeled tables and time series, pandas, sparked a wave of adoption
for statistical modeling (McKinney, 2011). The state of the ecosystem at that time was expertly reviewed
by Fernando Pérez, Brian Granger, and John Hunter (Perez et al., 2011). But the last ten years have seen
an explosion of innovation, beyond the wildest dreams of these leaders.

In the March/April 2021 issue, CiSE is proud to feature several articles showcasing Jupyter in computational
science. The showpiece is an invited article by Jupyter co-founders Brian Granger and Fernando Pérez
(Granger & Perez, 2021). They shift the focus of our conversation about problem-solving environments
to the human angle: the researcher interactively exploring a scientific question or analyzing data, and the
community of people collaborating and advancing their field. Jupyter derives from the IPython Notebook,
a browser-based application to compose documents that add computable content to all the other kinds of
content that a browser can display: formatted text, images, video, equations, etc. It is a concept inspired by
the Mathematica notebook interface, introduced in 1988, and translated to the Python world by the Sage
Notebook, starting in 2006. The powerful idea of the Sage Notebook that lives on in Jupyter is connecting
a web application serving as a graphical user interface—where the user’s text inputs and the computational
outputs are shown—to a back-end that runs the Python interpreter. While the server is running, the state
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. is available to continue interactively computing. On shutting it down, the notebook document can be saved
thereby preserving the inputs and outputs, together with any text and multi-media content added by the user.
Jupyter took these ideas into the modern web era by employing open formats, protocols and applications
that work equally on a laptop and on remote cloud or HPC systems. The communication protocol between
the web application and the back-end is language-agnostic, which quickly led to Notebook support for other
languages, like Julia and R (and the new name Jupyter). Dozens of so-called Jupyter kernels now allow
computing in many different languages (including interactive use of Fortran and C++), though Python
continues to be the most popular by far. Serving Jupyter to multiple-users in a corporation or university
became possible with JupyterHub (https://jupyter.org/hub), which removes the need for users to
install any software on their local machine while delivering a uniform environment to them. This provides
an ideal solution for academic settings, where large-scale computing and data science education initiatives
have always been hampered by individual students’ software and hardware needs. Jupyter was rapidly
adopted by tech giants like Google, Amazon and Netflix; by financial behemoths like Bloomberg; by NASA
and the LIGO collaboration, which released Jupyter notebooks with the analysis that proved the existence of
gravitational waves (https://www.gw-openscience.org/events/GW150914/); and by computing and data
science educators everywhere. On being awarded the ACM Software System Award in 2017, the citation
reads that the tools of Project Jupyter “have become a de facto standard for data analysis in research,
education, journalism, and industry” (https://awards.acm.org/award_winners/perez_9039634). Like
Granger and Pérez note in the previous issue of CiSE, Jupyter now has many millions of users worldwide
and many thousands of organizations use Jupyter in their day-to-day operations. They explain the project’s
success by virtue of being a tool of thought, a new medium for communication (via computational narratives),
and a community of practice.

The traction of Python in the context of scientific computing used to be ascribed to its effectiveness as
a “glue language” (easy interoperability with other languages like C/C++ and Fortran), its full set of
scientific libraries (NumPy, SciPy, SymPy, Matplotlib), and its notoriously shallow learning curve. But
its downside was proclaimed to be performance: being an interpreted, dynamically typed language meant
execution would be much slower than low-level implementations in compiled languages. In the past decade,
solutions to this performance penalty have been multiplying. At first, researchers would identify performance
bottlenecks in their Python applications, re-write the relevant portions of code in C/C++, and use swig

to wrap this code and interface it with the main program in Python (Beazley, 2003). Later, they gained
Cython for numerical loops that cannot be expressed in NumPy operations. Cython compiles Python code
extended with type declarations, generating code that can take advantage of the optimizations provided by
the C compiler and achieve high-performance on those hotspots that dominate runtime. Parallel distributed
computing with Python programs using message passing became available with the mpi4py package, which
supports communication of Python data types and definition of communicator objects according to the MPI
specification. A related package, petsc4py, provides access to the algorithms and data structures of the
PETSc library (https://www.mcs.anl.gov/petsc/). It allows assembling distributed vectors and sparse
matrices, solving linear systems of equations with Krylov iterative methods, and solving nonlinear equations
with Newton methods—all of which are core needs in many scientific applications such as those using finite
element methods (Dalcin et al., 2011). Access to many-core hardware from Python programs was made
possible with run-time code generation via PyCUDA and PyOpenCL (Klöckner et al., 2012). These tools
pioneered the pursuit of high-performance computing with Python, at the cost of increasingly specialized
programmer effort. In the last few years, however, a new wave of innovation in scientific Python has sprung
from the widespread use of Python in industry settings. Fortunately, much of this innovation has occurred
under the open-source model of development and licensing pervading the Python ecosystem.

New tools to defeat the performance penalty include Numba (https://numba.pydata.org), which accelerates
Python code by just-in-time compilation of functions to optimized machine code. The programmer only
needs to add decorators, e.g., @numba.jit(nopython=True), ahead of the function definition and Numba
will compile the function at runtime, and it will subsequently run without involving the Python interpreter.
Numba can also compile a subset of Python code to CUDA kernels for execution on Nvidia GPUs (this
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. could possibly be the easiest way to exploit GPUs for high-throughput computations). And the new parallel
computing library for Python, Dask (https://dask.org), offers distributed data structures that stand in
for NumPy arrays and pandas dataframes, scalable machine learning integrating with scikit-learn, and
high-level tools for scheduling and distributing tasks in a cluster. This allows transitioning to parallel and
distributed clusters with very little code rewrite. Numba and Dask—like NumPy, Matplotlib, SciPy, SymPy,
pandas and Jupyter—are fiscally sponsored projects of NumFOCUS (https://numfocus.org), a 501(c)(3)
public charity in the United States (I served on its Board of Directors from 2014 to 2020). This means that
they are community governed projects developing software under a standard public license, and they both
raise funds for their development and receive services (e.g., financial administration, legal support) via a
non-profit. The core developers, maintainers, and users of these projects come together at conferences where
they give technical talks and offer tutorials, participate in online conversations using discussion boards and
code-repository issue trackers, and build value together tenaciously.

Technology companies often participate actively and benevolently in this activity. NumFOCUS receives
corporate sponsorships that benefit the projects, certainly, but another impactful way companies contribute
is by allowing or assigning their paid employees to work on the open-source projects of this large ecosystem.
Numba and Dask were started at Anaconda, Inc., an Austin-based software and consulting company that
also created the hugely popular Anaconda Python distribution. The explosion of machine learning and AI
saw the tech giants developing and releasing open-source Python libraries for these applications: Google’s
TensorFlow (https://www.tensorflow.org) and Facebook’s PyTorch (https://pytorch.org) being the most
notable. Both libraries provide a Python interface while executing core operations in compiled languages
and also CUDA for access to Nvidia GPUs. Google also developed a Jupyter-based cloud notebook, Colab
(http://colab.research.google.com/), providing a hosted solution to run TensorFlow with access to
GPUs and Google’s own TPUs (Tensor Processing Units). The Japanese company Preferred Networks led
the development of CuPy, a NumPy-like open-source library of matrix functions for Nvidia GPUs. And
Nvidia embraced the PyData ecosystem creating its RAPIDS AI team (https://rapids.ai) to develop open-
source libraries like cuDF, with a pandas-like API for manipulating dataframes on GPUs, and the machine
learning library cuML, with a growing set of algorithms from scikit-learn. The data science community
can now build high-performance workflows in Python and Jupyter, taking advantage of the latest hardware
on cloud resources.

Python and Jupyter are also playing an increasingly important role in high-performance computing. Rollin
Thomas and Shreyas Cholia, in the previous issue of CiSE, explained how the National Energy Research
Scientific Computing Center (NERSC) began their voyage to Jupyter five years ago. They tell us that
today about 25% of user interactions with the Cori supercomputer are via JupyterHub, and several scientific
workflows have been made more user-friendly while at the same time enjoying parallel speed-ups with Dask.
And they conclude: “Jupyter is quickly becoming the entry point to HPC for a growing class of users.”
(Thomas et al., 2021). In the next issue, CiSE will feature several scientific applications that embody the
powerful idea of combining high researcher productivity via Python and high performance through code
generation, just-in-time compilation, or exploiting advanced Python libraries. John Rice’s perspective of a
scientific problem-solving environment for the 21st century may finally be realized, as long as we continue
to engage and support the thriving communities of practice of the Python/Jupyter ecosystem. Don’t miss
our next issue!
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