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Abstract

Changes in telomere dynamics could underlie life-history trade-offs among growth, size and longevity, but our ability to quantify
such mechanistic processes in natural, unmanipulated populations is limited. We investigated how 4 years of artificial selection
for either larger or smaller body size affected early-life telomere length in two insular populations of wild house sparrows. A
negative correlation between telomere length and structural size was evident under both selection regimes. The study also
revealed that male sparrows had longer telomeres than females, after controlling for size, and there was a significant negative
effect of harsh weather conditions on telomere length. The long-term fitness consequences of these changes in early-life telomere
length induced by the artificial size selection were explored over a period of 11 years. These analyses indicated disruptive
selection on telomere length because both short and long early-life telomere length tended to be associated with the lowest
mortality rates and highest life expectancy. There was also weak evidence for a negative association between telomere length
and annual reproductive success, but only in the population where body size was increased experimentally. Our results suggest
that natural selection for optimal body size in wild animals will affect early-life telomere length during growth, which is known
to be linked to longevity in birds, but also that the importance of telomeres for long-term somatic maintenance and fitness is
complex in a wild bird species.

INTRODUCTION

Telomeres, the nucleoprotein complexes involving tandem repeats of a non-coding DNA sequence, prevent
the ends of linear chromosomes from inappropriately activating the DNA repair machinery (Blackburn,
1991). In the absence of restoration, telomeres shorten with each cell division due to incomplete replication
of DNA at the chromosome ends, and their eventual dysfunction limits cell replicative potential (Hayflick,
1965). Telomeres may be further eroded by other processes including oxidative damage (von Zglinicki,
2002; Reichert & Stier, 2017). Telomere length (TL) changes might therefore reflect the cumulative costs
associated with acquiring and maintaining a particular body size, since this is linked to cell replication levels
(Monaghan & Ozanne, 2018), as outlined in Fig. 1. The functional relationships between size, growth
and telomere dynamics might thus play an important role in shaping the optimal body size in wild species
under natural selection (Ringsby et al. 2015; Erten & Kokko, 2020). Body size is a fundamental species
characteristic, which is intertwined with many aspects of species ecology and evolution (Haldane, 1928;
Peters, 1983; Woodward et al., 2005; Sibly & Brown, 2007), and is under directional selection in many
species (Kingsolver & Pfennig, 2004). Both across and within species, body size has been shown to correlate
with important fitness-related traits including survival, lifespan, fecundity and metabolic rate (Bumpus,
1899; Gaillard et al., 1989; White et al., 2019). Life-history theory predicts that organisms need to allocate
their limited available energy among different components of fitness, which leads to trade-offs and selection
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for optimal solutions (Stearns, 1989). Trade-offs between life-history traits may also occur due to antagonistic
interactions; for instance, if allocation of energy into developmental growth has negative consequences due
to long-term effects of telomere shortening (Fig. 1, Monaghan et al., 2009; Young, 2018). For instance,
Heidinger et al. (2012) demonstrated a negative relationship between early-life TL and lifespan in captive
zebra finches (Taeniopygia guttata ). Negative correlations between fitness-related traits may conform to the
hypothesized life-history trade-offs (Futuyma, 2010), but they are difficult to observe in the wild, for instance
due to variation among individuals in resource acquisition (van Noordwijk and de Jong 1986) and random
environmental variation (Pujol et al., 2018). Nonetheless, physiological or genetic constraints generating
life-history trade-offs may be detected by comparing different phenotypes or genotypes (Reznick, 1985), or
through experimental manipulations involving for example natural selection in a controlled environment or
artificial selection in the traditional breeder’s approach (Connor, 2003; Postma et al., 2007; Pick et al., 2020).
Correlated responses to artificial selection then suggest additive genetic covariance between a trait and the
selected trait (Connor, 2003).

Several studies have investigated potential for telomere dynamics to underpin individual variation in life-
history strategies (Monaghan, 2010; 2014; Selman et al., 2012; Vedder et al., 2017). In the wild, many
of these studies, including long-lived bird species, mammals and reptiles, suggest that most telomere loss
occur during early life (Hall et al., 2004; Spurgin et al., 2018) and that TL may be negatively correlated
with various developmental stress factors at this stage (Fig. 1), including brood competition (Boonekamp
et al., 2014; Nettle et al., 2016), poor nutrition and catch-up growth (Jennings et al., 1999; Geiger et al.,
2012). Such factors may result in the release of stress hormones, which have been shown experimentally to
increase early-life telomere loss in the wild (Herborn et al., 2014), and oxidative stress (Reichert & Stier,
2017) that may directly increase the shortening of telomeres. In addition, body size has been shown to
negatively correlate with TL within different tetrapod species (Scott et al., 2006; Pauliny et al., 2006; Debes
et al., 2016; Caprioli et al., 2013; Ringsby et al., 2015; Spurgin et al., 2018), which is thought to be due to
the additional number of cell divisions required for acquiring larger size, and the increased oxidative stress
associated with maintaining larger size (Monaghan & Ozanne, 2018). The emerging field of telomere ecology
aims to identify factors that influence variation in individual TL and their potential fitness consequences in
free-living animals (Spurgin et al., 2018). Whether there is a causal relationship between telomere dynamics
and individual variation in fitness in populations in the wild and if TL is an indicator of individual quality
are not yet fully understood (Simons, 2015; Angelier et al., 2019). Experimental approaches in both the field
and the laboratory play an important role in increasing our understanding of TL and life-history evolution.

In a large scale experimental study conducted in the wild, an artificial directional selection regime on body
size, as indicated by tarsus length, was imposed annually and in opposite directions during four consecutive
years in two island populations of wild house sparrows (Passer domesticus ) in northern Norway (Fig. 2).
Each winter, adult sparrows with tarsus lengths smaller or larger than given thresholds were removed from
each population to produce a significant bidirectional change in mean tarsus length across the adult breeding
populations (Kvalnes et al., 2017). Relatively high heritabilities for tarsus length have been found in these
house sparrow populations (h 2=0.3-0.4, Kvalnes et al., 2017), thus we expected, based on the Breeder’s
equation (Lande, 1979), the artificial selection to result in significant responses in offspring tarsus lengths
and growth rates. Here, we initially show how the artificial selection on parental tarsus length affected the
size of their offspring measured during the nestling stage. Tarsus length is commonly used as a proxy for
structural body size in house sparrows (Rising & Somers, 1989; Araya-Ajoy et al. 2019). In a previous
study based on a subsample of chicks from the population undergoing artificial selection for larger body
size, Ringsby et al. (2015) showed that the selection regime had indeed extended the range of chick body
size at its upper end, and that this was associated with a reduction in TL in red blood cells. In this
study, we examined whether the reciprocal effect, leading to longer TL, occurred in the population in which
body size was reduced, and also examined the results in chicks whose parents were not subjected to the
selection regime. We constructed genetic pedigrees to identify nestlings with parents that were subjected to
artificial selection. We then investigated how individual TL in nestling cohorts changed under the different
size selection regimes: We expected that increasing body size through artificial selection led to shorter
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. TLs through increased number of cell divisions (Falconer et al., 1978) and oxidative stress associated with
increased energy expenditure (Geiger et al., 2012; Pauliny et al. 2015; Smith et al., 2016; Monaghan &
Ozanne, 2018). Similarly, we expected that smaller body size and thus decreased nestling growth led to a
slower rate of TL reduction (Vedder et al., 2018). Since TL was measured in early-life (fledgling stage) we also
examined environmental factors previously shown to influence telomere loss during this period (Chatelain et
al., 2020), specifically brood competition (Boonekamp et al., 2014) and weather conditions (Graham et al.,
2019).

The artificial selection was expected to shift the populations away from their optimal body size and increase
the phenotypic variance across the populations (Kvalnes et al., 2017). Here, we investigated whether changes
in TL following the artificial size selection might mechanistically underpin fitness effects due to the deviation
from the optimal body size. Thus, the survival and reproduction of all individuals on both islands were
monitored during and after the selection events. Hypothesizing that shorter TL relative to body size would
be associated with lower survival and reduced lifespan (Heidinger et al., 2012), because short telomeres
reflect adverse early-life conditions (Wilbourn et al., 2018; Eastwood et al, 2019), we tested the effect of TL
on short-term (first-year) survival under the two selection regimes, and on long-term survival (lifespan) after
the artificial selection events. Similarly, we tested if longer early-life TL predicted higher future reproductive
success (e.g. Pauliny et al., 2006; Olsson et al., 2011; Heidinger et al., 2012; Bauch et al. 2013) and if any
of the potential trade-offs (Fig. 1) were affected by the artificial selection.

MATERIALS AND METHODS

Study system and sampling

The study was performed on the islands of Vega (163 km2, 65°40’N, 11°55’E) and Leka (57 km2, 65°06’N,
11°38’E) off the coast of northern Norway (Fig. S1.1) in the years 2002-2012. The house sparrow is a small
sedentary passerine (Anderson, 2006), thus the geographical separation of the islands (52 km) ensured no
dispersal between populations (Kvalnes et al., 2017). The average generation time in similar populations
is about 2 years (Jensen et al., 2008), and average lifespan is about 2 years (Jensen et al., 2004), but the
maximum recorded lifespan is 13 years in the wild (Klimkiewicz & Futcher, 1987). Both study islands are
dominated by cultivated land (silage production), heathland, mountains, and sparse forest. The sparrows
live closely associated with humans mainly on dairy farms on these islands, where they nest in holes and
cavities and have access to food (grain) and shelter all year. During the breeding season (mid-May to mid-
August) from 2002-2006 all accessible and active nests (they can lay up to 3 broods per season with on
average 4.6±0.06 eggs) were visited at least every 9th day. Laying and hatching date were recorded for each
brood (207 broods from 158 nests) and chicks were marked as fledglings (ca. 11 days old, ranging from 5-17
days) with a numbered metal ring and plastic color rings for identification. Mist-netting during the breeding
season, in autumn (September-November), and in late winter (February-March) ensured that around 90% of
the winter population at both islands were marked at all times during the study (see Kvalnes et al., 2017).
For all fledglings and adults, tarsometatarsus (tarsus) length was measured using calipers to the nearest
0.01 mm. Because tarsus length increases with nestling age, we estimated standardized tarsus length as the
residuals of a linear regression of tarsus length on age separately for each sex and population. Age-corrected
nestling tarsus length is a good predictor of adult tarsus length (Fig. S1.2, r =0.74, for n =220 birds that
were recaptured as adults). To minimize disturbance, fledglings were measured only once in the nest, thus,
individual growth rates were not directly monitored. However, within species in which growth is seasonally
constrained, larger individuals generally grow faster (Metcalfe & Monaghan, 2003). A small blood sample (25
μL) was collected from all nestlings around 11 days (5-17 days) old by puncturing the brachial vein. Blood
was stored in 1 ml absolute ethanol at room temperature in the field and subsequently in the laboratory at
-20°C until DNA extraction.

Artificial selection on tarsus length

In February and early March each year from 2002 to 2012 (11 years, Fig. 2) ca. 90% of the house sparrows
on Leka (n =89-222 per year) and Vega (n =102-352 per year) were caught using mist-netting in or around
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. farms and then held in separate aviaries for up to 12 days withad libitum water and food (sunflower seeds,
cattle grain and bread) to obtain morphological measurements. During 2002-2005, adult sparrows with tarsi
shorter (Leka, referred to as the highpopulation) or longer (Vega, referred to as the low population) than
the island population mean ±0.3 SD, within each sex, were translocated to distant localities (Ranke et al.,
2020) and thus removed from the breeding populations (see Kvalnes et al., 2017 for details of the selection
procedure). Thus, both populations were subject to the same artificial selection pressure, but in opposite
directions. On average, 56.4% (highpopulation) and 62.9% (lowpopulation) of the captured individuals were
removed each year, whereas the selected birds were released back at their capture location. Thus, because ca.
10% of the individuals present at the time of selection were not captured, the artificially selected individuals
constituted ca. 78% of the breeding populations (Kvalnes et al., 2017). In the first year (2002) of the selection
experiment, there was no significant difference in average fledgling tarsus lengths between the highand low
populations (n =167,βλοω =0.22, lower and upper 95% confidence interval (CI)=[-0.25, 0.70] accounting for
age at sampling and sex). In the years following the end of the selection experiment (from 2006) all birds
were released back at the original capture location (Rønning et al., 2016).

Weather data

For each nestling, local weather data retrieved from The Norwegian Meteorological Institute (2018) were
averaged over 30 days prior to sampling (at around 11 days old) in order to reflect average environmental
conditions before and during the nestling growth phase (see Appendix S1). Due to intercorrelation among
weather data variables (Fig. S1.3), we used principal component analysis (Fig. S1.4 and Table S1.1) to explore
relationships between local weather variables and the regional daily North Atlantic Oscillation (NAO) index
(retrieved from the National Oceanic and Atmospheric Administration, 2019) averaged over the same 30-day
period (NAO 30). In Appendix S1, we show that the NAO 30 index is positively correlated with temperature,
humidity and atmospheric pressure and negatively correlated with wind speed and amount of precipitation in
our study area and therefore might be used as a simple index of overall harshness of weather conditions during
the nestling stage; negative and positive NAO 30 indexes may indicate “harsh” and “benign” conditions,
respectively (e.g. Stenseth et al., 2003).

Molecular analyses

DNA extraction of the collected blood samples is described in Appendix S1. Relative erythrocyte TLs
were measured in all nestlings (n =566, average age 10.9±1.5 days) from 2002-2006 (5 cohorts from two
populations, Fig. 2) using the real-time quantitative polymerase chain reaction (qPCR) amplification method
as described by Cawthon et al. (2002) and with modifications by Criscuolo et al. (2009). The qPCR method
measures the ratio of the telomere repeat copy number amount of telomere sequence to a control single
copy gene number (a non-variable “housekeeping” gene; GAPDH) relative to a reference sample. This ratio
is referred to as the relative telomere length (TL). DNA samples were diluted with dH2O to yield 1.67
ng/μL (corresponding to 10 ng of DNA per well in the PCR assay) and subsequently stored at -78°C.
All samples were randomized and run in triplicates on 96-well plates, each plate including a 2-fold serial
dilution (40-2.5 ng/well) of a “standard sample” of DNA from a single individual used to produce standard
curves for each plate, a non-target control sample, and the reference sample (all in triplicates). Following
Ringsby et al. (2015), PCR assays were prepared using the Absolute blue qPCR SYBR green Low Rox
master mix (ThermoFisher scientific) and run using a Stratagene Mx3005p system and analyzed using the
MxPro qPCR software (Agilent). Primers and thermal profiles are specified in Appendix S1. Relative TLs
were calculated taking plate amplification efficiencies (all within 100±10%, mean telomere assay efficiency
was 102.2±3.8%, and 101.9±3.4% for GAPDH assays across 2x21 plates) into account using the Pfaffl (2001)
method. All telomere analyses were performed at the University of Glasgow and included 507 individuals
measured by MLP (this study) and 60 individuals (a subset of both male and female nestlings from both
populations from 2002 and 2005) measured by WB under identical laboratory conditions and using the same
reference sample (Ringsby et al., 2015). The average of the reference sample cycle thresholds (Ct) across all
plates were 9.42±0.13 SD (CVinterplate=1.39%, CVintraplate=0.72%) for telomere assays and 20.58±0.09 SD
(CVinterplate=0.46%, CVintraplate=0.40%) for GAPDH assays.
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. Molecular sexing and pedigree reconstruction are described in Appendix S1. Each nestling was classified
into one of three selection categories (sample sizes are shown in Table 1): Selected (1): Both parents had
been subject to the selection regime, i.e. captured during a winter selection event and allowed to stay in
the population. Intermediate (0.5): one parent had been subject to artificial selection. Unselected (0): No
parents had been artificially selected (i.e. accidentally not captured during any winter selection event) and
these individuals are therefore the unselected controls. Unknown genetic parents were assumed not to have
been artificially selected (i.e. not captured or immigrated after the selection event and thus not included in
the pedigree).

Statistical analyses

Temporal changes in telomere and tarsus lengths during artificial selection

In order to analyze how nestling tarsus length and TL were affected by the artificial selection for longer (high
) and shorter tarsi (low ) during the study from 2002-2006, we used linear mixed effects models (R package
lme4 , Bates et al. 2015) including year (i.e. birth cohort 1 to 5) as a continuous predictor variable, as well as
the quadratic effect of year (year2). Tarsus length and TL are expected to change during development within
individual nestlings (Hall et al., 2004; Boonekamp et al., 2014) and there might be sexual differences in
morphology (Cordero et al., 2000) and telomere dynamics (Barrett & Richardson, 2011). Thus, nestling age
(number of days since hatching) and sex were included as explanatory variables in all models. Selection status
category (0, 0.5, or 1) was included in addition to an interaction term between selection status and year. All
models assumed a Gaussian error distribution and included a random intercept for brood identity to account
for the non-independence of nestlings from the same brood. We structured these analyses into four sections,
where we analyzed each selection regime (high or low population) separately for each response variable (tarsus
length and TL). In order to identify the predictors most supported by the empirical data we constructed
and compared alternative candidate models (Burnham & Anderson, 2002) fitted with maximum likelihood
within each section using Akaike’s information criterion (Akaike, 1973) corrected for small sample sizes
(AICc, Hurvich & Tsai, 1989). All models were validated visually by diagnostic plots and model parameters
are given from models refitted with restricted maximum likelihood (REML). To reduce the problem of
multicollinearity in multiple regression analyses, we only included predictor variables with intercorrelation
Pearson’sr <0.5 for all relevant pairs of explanatory variables. All statistical analyses were performed in R
version 3.5.2 (R Core Team, 2018).

Effects of body size and weather on telomere length

We investigated factors affecting fledgling TL (response variable) by constructing 30 biologically plausible
linear mixed effects models with combinations of the explanatory variables sex, age, standardized tarsus
length, brood size (number of chicks in the nest at the time of sampling), and the NAO 30 index. In addition,
an interaction term between island population identity (i.e. high or lowselection regime) and tarsus length
was included in some models to test for an effect of the artificial selection regimes on the relationship between
TL and tarsus length. Brood identity and year (cohort) effects were accounted for by inclusion as random
intercepts in all models. Again, candidate models were compared using AICc.

Effects of telomere length on survival

The effect of nestling TL on short- and long-term survival was analyzed using two different approaches: First,
we analyzed the effect of TL on first-year survival (i.e. before removal of artificially selected individuals) using
generalized mixed effects linear models (lme4 package) with a binomial error distribution and a logit link
function (logistic regression) using the bobyqa optimizer from the ‘minca’ package throughout to improve
model convergence (Bates et al., 2014). Birds that were never observed after the season in which they were
born (effectively after end of January when field work recommenced the year after they were born) were
considered to be dead. Thus, mortality and emigration have the same effect on the local population. The
house sparrows show strong site fidelity and generally do not display adult dispersal (Anderson, 2006; Pärn
et al., 2009), such that any emigrants do not return to the natal population. We used AICc to compare 26
candidate models including TL, tarsus length, non-linear effects of TL and tarsus length (TL2 and tarsus
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. length2), the NAO 30 index, and an interaction term between tarsus length and population identity, and
between TL and population identity, respectively, as explanatory variables. Population identity and sex were
included as fixed factors, and brood identity and year were included as random intercepts in all models.

Second, to test the effect of fledgling TL on survival throughout the life of individuals we used multivariate
Cox proportional hazards regression to estimate hazard ratios (HR) relative to the baseline sample mean
mortality within each strata of all predictor variables. HR is defined as the relative risk of death occurring
at a given interval of time compared to the total population (Cox, 1972). Thus, a HR>1 indicates an
increased mortality given an increase in the trait. 26 candidate models were constructed using thesurvival
package (Therneau, 2015) including TL, tarsus length, non-linear effects of TL and tarsus length, the NAO -
30 index, and interaction terms between population identity and tarsus length or TL, respectively. Sex and
population identity were included as fixed factors in all models, which were then compared using AICc.
Individuals that were removed during the artificial selection were right-censored and the last observation
of an individual was used as an estimate of the (minimum) lifespan measured in number of days since
hatching. This procedure appropriately accounts for the right-censoring caused by the artificial removal of
individuals, but underestimates absolute survival probabilities, as recapture rates were not accounted for
in this approach. However, since both populations were carefully monitored each year, we can assume that
>90% of the individuals that were present in the study populations were recorded from year to year (Kvalnes
et al., 2017), and that the total observation interval correlates with lifespan. No other birds were censored as
observations continued until 2012; two years after the last record of any sampled individual (in 2010). The
proportional hazards assumption was tested using the correlation between scaled Schoenfeld residuals and
time. We accounted for possible non-independence of broods by including brood identity as random factor
(cluster).

Effects of telomere length on reproductive success

Finally, the effect of fledgling TL on the total number of recruits produced per individual (LRS, lifetime
reproductive success) was analyzed. We included only individuals that survived until breeding and that
were not removed during the artificial selection (and thus allowed to reproduce). In the high population,
10 out of 22 recruiting individuals produced at least one recruit and 39 out of 80 individuals did so in the
low population. While reproduction per semay accelerate telomere loss (Sudyka, 2019), we test here the
predictive value of early-life TL and/or tarsus length on subsequent reproductive output (Eastwood et al.,
2019). Since LRS and lifespan (measured in years from first to last observation) were highly correlated (high
population; Pearson’s r =0.83,p <0.0001, low population; Pearson’sr =0.70, p <0.0001), we tested whether
TL or tarsus length predict LRS while controlling for lifespan (which is equivalent to the individual average
annual reproductive success, ARS). We fitted a set of generalized linear mixed models with a Poisson error
distribution separately for each population to facilitate model convergence, using the package glmmTMB
(Brooks et al. 2017). Sex was included as fixed factor and brood identity and year were included as random
intercepts in all models. We compared the same 9 candidate models for each population using AICc and
models were validated using the DHARMa package (Hartig, 2019).

RESULTS

Temporal changes in tarsus and telomere lengths during artificial selection

In the high population, the tarsus of fledglings with both parents artificially selected was on average longer
than the tarsus of fledglings produced by unselected individuals (i.e. with parents not subjected to artificial
selection; model ranked 1, selected vs. unselected: βσελεςτεδ =0.52, CI=[0.04, 1.02], Fig. 3b, Tables S2.1
and S2.2), and tended to be shorter than tarsus of fledglings produced by unselected individuals in the
lowpopulation (model ranked 2, [?]AICc=0.6, selected vs. unselected:βσελεςτεδ =-0.38, CI=[-0.80, 0.03], Fig.
4b, Table S2.1). Intermediate individuals with one artificially selected parent showed a similar weak tendency
when compared to the unselected (high : βιντερμεδιατε =0.25, CI=[-0.21, 0.72]; low : βιντερμεδιατε =-0.31, CI=[-
0.69, 0.08], Figs. 3b and 4b, Tables S2.1 and S2.2). Across the study period (2002-2006), fledgling tarsus
length increased linearly in the high population (n =158, model ranked 1:βψεαρ =0.70, CI=[0.01, 1.38], Figs.
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. 3a, S2.1 and S2.2, Tables S2.1 and S2.2) and decreased linearly in the lowpopulation (n =408, model ranked
1:βψεαρ =-0.63, CI=[-1.23, -0.04], Figs. 4a, S2.1 and S2.2, Tables S2.1 and S2.2). In both populations, there
was weak evidence (i.e. marginally significant) for a curvilinear change over the years, indicating that after
the initial divergence the change in tarsus length ceased (high , model ranked 1:βψεαρˆ2 =-0.09, CI=[-0.20,
0.03];low , model ranked 1: βψεαρˆ2 =0.10, CI=[-0.00, 0.20], Figs. 3a and 4a, Table S2.2).

TL of fledglings with both parents artificially selected was not different from those of unselected individu-
als in the highpopulation (model ranked 3, [?]AICc=0.7, selected vs. unselected:βσελεςτεδ =0.02, CI=[-0.18,
0.22], Fig. 3d, Tables S2.1) nor in the low population (model ranked 3, [?]AICc=3.0, selected vs. unse-
lected:βσελεςτεδ =0.03, CI=[-0.07, 0.13], Fig. 4d, Table S2.1). However, intermediate individuals with one
artificially selected parent showed weak evidence for a tendency towards shorter telomeres when compared
to the unselected in the high population (βιντερμεδιατε =-0.13, CI=[-0.32, 0.07], Fig. 3d), and towards longer
telomeres compared to unselected individuals in the low population (βιντερμεδιατε =0.05, CI=[-0.05, 0.15],
Fig. 4d). Across the study period, fledgling TL decreased linearly in the high population (model ranked
2, [?]AICc=0.0: βψεαρ =-0.26, CI=[-0.50, -0.01], Figs. 3c and S2.1, Tables S2.1 and S2.2), but there was
no change in thelow population (model ranked 2, [?]AICc=1.9:βψεαρ =0.01, CI=[-0.02, 0.03], Figs. 4c and
S2.1, Table S2.1). In the high population there was weak evidence for a curvilinear change over the years,
indicating that after the initial increase the change in TL ceased (model ranked 2:βψεαρˆ2 =0.04, CI=[-0.00,
0.08], Fig. 3c, Table S2.2), but there was no evidence for any curvilinear change in thelow population (model
ranked 4, [?]AICc=0.7:βψεαρˆ2 =0.01, CI=[-0.01, 0.03], Fig. 4c). The model ranked 1 in the low population
included only sex and age (Table S2.1 and S2.2). Overall, our results show some evidence for an inverse
association between changes in tarsus length and TL across cohorts in populations where body size is shifted
away from its optimum.

Effects of body size and weather on telomere length

Combining data from both populations (n =566), TL was found to be negatively related to tarsus length
(model ranked 1:βταρσυς =-0.03, CI=[-0.05, -0.00], Tables 2 and 3, Fig. 5a) and positively related to the
NAO 30 index (βΝΑΟ 30 =0.10, CI=[0.01, 0.19], Fig. 5b). This means that telomeres are shorter in larger
individuals and when overall weather conditions are harsh (Appendix S1). In addition, TLs were shorter
in females than males (βφεμαλε =-0.08, CI=[-0.14, -0.02]), and TLs were shorter in the low population
compared to the highpopulation (βλοω =-0.17, CI=[-0.24, -0.10]). The second-best model ([?]AICc=0.2)
showed weak evidence that the negative relationship between TL and tarsus length tended to be steeper in
thehigh population compared to the low population (βλοω*ταρσυς =0.05, CI=[-0.02, 0.11]), suggesting that
artificial selection for longer tarsus had a stronger effect on TL compared to selecting for shorter tarsus.
There was little evidence for any effect of nestling age on TL (model ranked 3, [?]AICc=1.4, βαγε =0.01,
CI=[-0.01, 0.03], Table 2).

Effects of telomere length on survival

Average first-year survival from fledging to recruitment was 29% and maximum recorded lifespan was 5.7
years with a mean of 152±11 days (n =566). There was a positive effect of tarsus length on first-year survival
(i.e. recruitment probability) that was present in four out of five models with [?]AICc<2 (model ranked 1:
odds ratio (OR )tarsus =1.27, CI=[1.04, 1.57], Table 4). In addition, there was weak evidence for a curvilinear
effect of tarsus length on first-year survival present in the best model (ORtarsusˆ2 =1.08, CI=[0.99, 1.67]),
indicating higher recruitment probability for individuals both smaller and larger than the average. The
third-best model ([?]AICc=1.5) suggested that the positive effect of tarsus length on first-year survival was
stronger in the high population compared to thelow population (ORlow*tarsus =0.71, CI=[0.41, 1.18]), but
the effect was uncertain. In addition, there was an uncertain negative effect of TL present in one model
(model ranked 5, [?]AICc=1.9, ORTL =0.89, CI=[0.51, 1.53], Table 4).

The Cox proportional hazards regression analyses of long-term survival revealed a negative effect of tarsus
length on the risk of death (hazard ratio (HR )tarsus =0.91, CI=[0.84, 0.99], Tables S2.3 and S2.4, Fig. 6a).
In addition, two out of four models with [?]AICc<2 showed weak evidence for a curvilinear effect of TL on
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. mortality (HRTLˆ2 =0.73, CI=[0.51, 1.04]), indicating a bimodal pattern, where fledglings with both short
and long TL have lower long-term mortality rates (Fig. 6b, Table S2.4). The curvilinear effect of tarsus
length present in two out of four models with [?]AICc<2, was uncertain and weak, i.e. close to 1 (HRtarsusˆ2

=0.98, CI=[ 0.95, 1.01]).

Effects of telomere length on reproductive success

In the high population, there was weak evidence for a negative effect of TL on LRS while controlling for
lifespan (model ranked 2, [?]AICc=0.1, βΤΛ =-1.24, CI=[-2.52, 0.04], Tables 5 and S2.5) suggesting that
individuals with short telomeres in early-life produced more recruits annually. In the lowpopulation, the
best model was the simplest model including only the effects of sex and lifespan (Tables 5 and S2.5).

DISCUSSION

Much of the theoretical and empirical research on the mechanisms that shape variation in body size is based
on life-history theory which suggests that individuals allocate their acquired resources between growth,
reproduction, and self-maintenance (Stearns, 1989; Zera & Harshman, 2001; Roff & Fairbairn, 2007). In this
experimental study we examined the consequences of artificial selection for larger and smaller parental body
size and how this influences variation in offspring TL at early age, as well as the associations between TL and
recruitment, longevity and reproductive success in two wild house sparrow populations. First, a negative
correlation between nestling TL and tarsus length was evident under the artificial selection for both larger
and smaller tarsi (Table 3). This link between TL and structural body size suggests that telomere dynamics
might mediate a trade-off between investment in early-life growth and long-term somatic maintenance in the
wild (Metcalfe & Monaghan 2003; Ringsby et al., 2015; Monaghan & Ozanne, 2018). Artificial selection for
larger individuals in thehigh population caused TL to decrease significantly as tarsus length increased during
the four years of selection (Fig. 3). Additionally, there was weak evidence that TL tended to increase as
tarsus length decreased in the low population (Fig. 4). It is possible that the artificial selection for smaller
body size in adults only caused a small change in offspring size because the proportion of additive genetic
variance may be lower for small compared to large individuals (Charmantier et al., 2004). Thus, selecting
for smaller body size for multiple years, as in our experiment, may accumulate individuals that are smaller
than their predicted size due to for instance malnutrition or disease caused by e.g. environmental or parental
effects (Angelier et al., 2015).

TL has been suggested as a biomarker monitoring health and stress exposure of organisms (Monaghan, 2014;
Pepper et al., 2018; Chatelain et al., 2020), individual phenotypic quality (Bauch et al., 2013; Boonekamp et
al., 2013; Le Vaillant et al., 2015), and as an integrated physiological marker of cumulative life-history costs
(Monaghan & Haussmann, 2006). The prevailing negative correlation between TL and body size documented
in this study, indicates that TL is influenced by structural growth in free-living birds, which confirms the
observation by Ringsby et al. (2015). The artificial selection pressure on body size was accompanied by
a reduction in TL that was probably not counteracted within the nestling period by increased investment
into telomere maintenance (i.e. canalization). Early-life changes in TL have been hypothesized to influence
long-term somatic state (Eisenberg, 2011; Boonekamp et al., 2013; Vedder et al., 2017; Criscuolo et al.,
2018a). The enzyme telomerase can elongate telomeres (Blackburn, 1991), but its activity is assumed to be
a physiologically costly process (Hatakeyama et al., 2016; Criscuolo et al., 2018b) or with potential increased
cancer risk effects (Seluanov et al., 2018). Accordingly, somatic telomerase activity is generally assumed to
be repressed in birds (Gomes et al., 2010), though more investigation of this is needed since some somatic
telomerase activity has been detected (Haussmann et al., 2007). In common with other non-mammalian
vertebrates, birds have nucleated erythrocytes; thus, TLs derived from whole blood samples are mainly
measured in erythrocytes, which are normally produced in the bone marrow. Compared to other tetrapods,
avian erythrocytes have a relatively short lifespan of 1 month with ˜3% being replaced each day (Glomski
& Pica, 2016). Early-life erythrocyte TLs in house sparrows have been estimated to 15-20 kbp (Ringsby et
al., 2015), which is thought to reflect TLs in hematopoietic stem cells (Vaziri et al., 1994). If 50-100 bp of
telomeric DNA are lost with each cell division (Lansdorp, 1995), these early cells would have the potential of
150-400 divisions, many more than is needed for growth and maturation of the adult house sparrow (Sidorov
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. et al., 2009). However, increased oxidative stress associated with acquiring and maintaining a larger body
size (Alonso-Alvarez et al., 2007) could accelerate the shortening of telomeres significantly (Reichert & Stier,
2017) providing an explanation for the observed negative association between size and TL (see Fig. 1 and
Fig. 5a).

The evolutionary significance of the observed changes in TL induced by the artificial size selection will depend
on the heritability of TL, which has been shown to vary considerably among species and populations: Among
bird species, TL heritability have been shown to range from 0 to 1 (reviewed in Dugdale & Richardson, 2018),
but may be relatively low in house sparrows given the effects of growth and weather observed in this study.
We have refrained from estimating heritabilities of TL in the present study, which would be biased by the
non-random removal of individuals during the artificial selection events (Steinsland et al., 2014), but future
studies may show whether the relationship between size and TL is underpinned by genetic correlations
(Monaghan & Ozanne, 2018).

Like most altricial passerines, the growth and survival of house sparrow nestlings depend on early-life condi-
tions such as habitat quality and insect food being supplied by the parents (Anderson, 2006). Larger sparrows
have higher juvenile and adult survival (Ringsby et al., 1998; Jensen et al., 2008), and harsh weather during
the nestling period increases juvenile mortality (Ringsby et al., 2002). The associations between TL and both
body size and the weather proxy (NAO 30) in nestlings (Table 3) suggest that TL is determined by complex
and potentially counter-acting effects of growth, nutrition and external factors (Angelier et al., 2015; Nettle
et al., 2016). For instance, malnutrition may lead to arrested growth, but also increased oxidative stress and
telomere attrition (Nettle et al., 2017). Also, indirect effects of weather conditions may cause foraging stress
or maternal stress effects during breeding that negatively affect TL (Haussmann et al., 2012; Mizutani et al.
2013), and direct effects of weather may cause shortening of telomeres, such as thermal stress observed in
e.g. brown trout, Salmo trutta (Debes et al., 2016), dark-eyed juncos,Junco hyemalis (Graham et al., 2019)
and greater-eared bats,Myotis myotis (Foley et al., 2020). Thus, generally habitat quality is important, with
shorter telomeres in low-quality habitats (Angelier et al., 2013; Watson et al., 2015; Wilbourn et al., 2017).
Spurgin et al. (2018) found a positive effect of seasonal insect prey abundance on TL in Seychelles warblers
(Acrocephalus sechellensis ) when accounting for a negative correlation with tarsus length. In the same pop-
ulation, the amount of reactive oxygen metabolites in the territorial adult warblers, was shown to be higher
in low quality territories than in territories of higher quality (van de Crommenacker et al., 2011), indicating
that oxidative stress exposure is involved in telomere shortening (von Zglinicki, 2002). The regional NAO 30
index must be interpreted with respect to local conditions along the northern Norwegian coast but might
be a better single proxy for the overall weather conditions by reducing complexity and avoiding problems of
model variable selection (Stenseth et al. 2003; Hallett et al. 2004). Thus, a low NAO 30 index, which in
our study area corresponds to a combination of low temperatures, strong winds and rainfall during a 30-day
interval before TL sampling, was found to significantly reduce TL in nestlings, when correcting for body size
(Fig. 5b). This is consistent with studies reporting shorter telomeres because of poor nutrition, competition,
or thermoregulation (reviewed in Chatelain et al., 2020).

Natural selection against shorter telomeres may be driven by their negative effect on immune function and
longevity (Wilbourn et al. 2018) or reduced cell replicative potential (Blackburn, 1991), while selection
against longer telomeres is thought to be due to the high energetic costs associated with increased somatic
maintenance (Eisenberg, 2011; Vedder et al., 2017) or increased cancer susceptibility (Aviv et al., 2017; Pepke
& Eisenberg, 2020). Several ecological and epidemiological studies have reported a negative association
between TL and subsequent mortality risk; mainly in birds (reviewed in Wilbourn et al., 2018) and humans
(reviewed in Boonekamp et al. 2013; Wang et al., 2018). This association can be attributed to either the
biomarker characteristic of TL reflecting cumulative environmental stressors (Monaghan, 2014; Nettle et al.,
2017; Pepper et al., 2018; Angelier et al., 2018) or the direct effect of having short telomeres leading to
cellular senescence and certain diseases (Blackburn et al., 2015; Young, 2018). However, this correlation is
not universal across tetrapods, with some studies finding no correlation in birds (Boonekamp et al., 2014),
mammals (Fairlie et al., 2016), and reptiles (Olsson et al. 2011), or that shorter telomeres correlate with
higher survival in birds (Wood & Young, 2019), snakes (Ujvari & Madsen, 2009), and fish (McLennan et al.,
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. 2017). Ringsby et al. (2015) suggested that the changes in TL induced by the artificial size selection could
underpin a trade-off between body size and lifespan if TL is related to lifespan (Heidinger et al., 2012). In
this study, we found little support for an effect of TL on short-term survival (i.e. survival of juveniles until
recruitment) after accounting for the positive association between tarsus length and survival (Table 4). Body
size is likely to be an important component of juvenile mortality if the mortality is mainly due to extrinsic
factors (Wood & Young, 2019; Eastwood et al., 2020), as expected in juvenile house sparrows (Ringsby
et al., 1998). The artificial selection increased the range of body sizes across the populations, which may
more clearly reveal effects of TL on fitness. The evidence for individuals with either short or long telomeres
to have reduced mortality risk through life, controlling for the negative effect of tarsus length, was weak
(Fig. 6b). While some correlative studies may have overlooked such weak disruptive selection on TL, such
patterns can be confounded by (unmeasured) telomerase expression in somatic cells with high proliferation
rates (Klapper et al., 1998; Ujvari & Madsen, 2009; Cerchiara et al., 2017). However, if TL is inversely
related to telomere loss later in life (Verhulst et al., 2013; Bauch et al., 2014), measuring TL at a later
age may generate the expected positive correlation between survival probability and TL (Wood & Young,
2019). Alternatively, in individuals with short telomeres, TL may be traded off against some unmeasured
component of individual quality (Wilson & Nussey, 2010). Yet, when controlling for lifespan, short telomeres
were associated with higher recruit production in thehigh population (Table 5). Telomere shortening rates
in house sparrows are unknown, but we found little evidence for directional changes in TL across 5-17 days
old nestlings (Table 2). The observation in humans that short telomeres are associated with age-dependent
degenerative diseases and long telomeres with higher cancer incidence rates (Aviv et al., 2017), suggests the
opposite of our findings (i.e. that both short and long TL is associated with higher mortality). However,
there is probably little or no constraints on TL imposed by cancer or age-dependent diseases in free-living,
short-lived sparrows (Møller et al., 2017). Combined, the adaptive significance of telomere length dynamics
may be complex in wild populations with high juvenile mortality and no individuals surviving into very old
age (the oldest house sparrow in this study survived until its 6thyear).

There was a weak negative effect of TL on reproductive success within individuals that survived until
breeding in the population in which selection for larger size was imposed (high population, Table 5). This
might suggest that there are additional negative impacts on TL associated with acquiring an artificially
increased body size that deviates from the optimal body size under the prevailing conditions. Such impacts
may act through increased competition when siblings are larger (Nettle et al., 2016) and increased oxidative
stress during growth (Geiger et al., 2012). This indicates that in the highpopulation, high fitness birds were
bigger and therefore had shorter telomeres.

Telomeres were longer in male than in female house sparrows, also when correcting for size (Table 3). We
also note that males tended to have higher LRS (Table 5), but only in the high population, where just
6 males managed to reproduce at least one recruit. There were no sex-differences in survival in our study
(Table S2.4), which has been suggested to underlie sex-specific telomere dynamics in humans, mice, and sand
lizards (reviewed in Barrett & Richardson 2011). In similar Norwegian house sparrow populations, Holand
et al. (2016) did not find any general sex-biased mortality or senescence patterns among adults. However,
Cleasby et al. (2010) found females to have lower juvenile mortality than males in an English house sparrow
population. In birds and mammals, adult mortality appears to be biased towards the heterogametic sex
(Liker & Székely, 2005), which may be caused by the potentially unmasked expression of deleterious sex-
linked alleles (Trivers, 1985; Hrdličková et al., 2012). In birds, females are the heterogametic sex, but sexual
differences in telomere dynamics have only rarely been observed among bird species (but see Foote et al. 2011;
Bauch et al., 2020). However, unmeasured sex-specific differences in growth dynamics (in house sparrows,
Cleasby et al., 2011) or differential telomere loss under parasite infection (in blue tits,Cyanistes caeruleus ,
Sudyka et al., 2019) could also generate the observed TL sex differences.

Our study demonstrates the differential impacts of artificial body size selection on early-life TL during
the important growth phase. TL was influenced by growth and weather and varied between sexes and
populations. Body size was an important determinant of survival, but both short and long telomeres tended
to predict lower mortality across the populations after the range of body sizes had been artificially increased.
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. In individuals larger than their optimal size in the wild, TL was reduced, which may have been associated
with an increased reproductive output. When selecting for smaller adult body size, we observed a smaller
response in fledgling size and TL, and no relationship between TL and reproductive success. Thus, this study
shows that the relationship between body size and fitness is complex, with larger body size giving rise to
shorter TL. The fitness consequences of this interaction are not simple, and our experimental results suggest
that evolution will optimize TL alongside phenotypic parameters.
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Fig. 1: Hypotheses of expected positive (solid lines) and negative (dotted lines) effects shaping variation in
early-life telomere length during the nestling stage, and later-life fitness consequences.

19



P
os

te
d

on
A

u
th

or
ea

28
F

eb
20

21
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
61

44
74

76
.6

75
62

31
2/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Fig. 2: Timeline of the artificial size selection experiment on free-living house sparrows conducted in
parallel on two islands in Norway starting in year 2002 (1st year). Adult birds were captured each winter
for 4 years and selected for either longer or shorter tarsus length (each selection event showed with a solid
black arrow). Telomere lengths (TL) were measured on nestling cohorts produced in the subsequent summer
breeding season (showed as dotted grey arrows). Birds that were not removed during the artificially selection
stayed in their populations, and survival and recruit production were monitored until all sampled birds were
assumed to had died.

Table 1: Number of sampled offspring (n =566) in each artificial selection category (1: both parents
artificially selected; 0.5: one parent subject to artificial selection; 0: no parents artificially selected, i.e.
unselected) from year 2002-2006 in two island populations selected for larger (high ) and smaller (low )
tarsus length, respectively. Unknown genetic parents were assumed not to have been artificially selected.

Population: High (Leka) High (Leka) High (Leka) High (Leka) High (Leka) High (Leka) Low (Vega) Low (Vega) Low (Vega) Low (Vega) Low (Vega) Low (Vega)

Selection category: 2002 2003 2004 2005 2006 Sum: 2002 2003 2004 2005 2006 Sum:
Selected (1) 5 18 16 21 14 75 45 48 25 40 14 172
Intermediate (0.5) 26 5 3 12 13 59 54 33 16 19 41 163
Unselected (0) 16 3 3 2 1 25 21 8 18 5 21 73
Sum: 47 26 22 35 28 158 120 89 59 64 76 408
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. Fig. 3: High population; effect plots of trends in nestling tarsus (a) and telomere lengths (c) during artificial
selection for larger tarsus length in parents. The artificial selection ended after cohort 4 was born. The effect
of selection category (0 : no parents selected (unselected), 0.5 : one parent selected, and1 : both parents
selected) on tarsus (b) and telomere length (d) is shown.

Fig. 4: Low population; effect plots of trends in nestling tarsus (a) and telomere lengths (c) during artificial
selection for smaller tarsus length in parents. The artificial selection ended after cohort 4 was born. The
effect of selection category (0 : no parents selected (unselected), 0.5 : one parent selected, and1 : both
parents selected) on tarsus (b) and telomere length (d) is shown.

Table 2: Linear mixed effects models with [?]AICc<5 of variation in early-life telomere length in house
sparrow nestlings (n =566) in two island populations. All models included random intercepts for brood
identity and year. The models are ranked by AICc, and number of degrees of freedom (df) and model
weights (w) are shown.

Model Model [?]AICc df w

1 TL = sex + population + tarsus + NAO 30 0.0 8 0.203
2 TL = sex + population + tarsus + NAO 30 + population*tarsus 0.2 9 0.180
3 TL = sex + population + age + tarsus + NAO 30 1.4 9 0.099
4 TL = sex + population + age + tarsus + NAO 30 + population*tarsus 1.7 10 0.088
5 TL = sex + population + tarsus + NAO 30 + brood size 2.1 9 0.072
6 TL = sex + population + tarsus + NAO 30 + population*tarsus + brood size 2.3 10 0.064
7 TL = sex + population + NAO 30 2.3 7 0.064
8 TL = sex + population + tarsus 2.9 7 0.048
9 TL = sex + population + tarsus + population*tarsus 3.2 8 0.041
10 TL = sex + population + age + tarsus + NAO 30 + brood size 3.5 10 0.035
11 TL = sex + population + age + tarsus + NAO 30 + brood size + population*tarsus 3.7 11 0.031
12 TL = sex + population + age + NAO 30 3.8 8 0.031
13 TL = sex + population + age + tarsus 4.3 8 0.024
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. Model Model [?]AICc df w

14 TL = sex + population + age + tarsus + population*tarsus 4.7 9 0.020

Table 3: Estimates (β ) with standard errors (SE) and lower and upper 95% confidence intervals (CI) from
a linear mixed effects model of variation in telomere length (TL, n =566). Random intercepts for brood
identity and year were included in the model.

Response variable: TL β SE Lower CI Upper CI

intercept 1.19 0.04 1.12 1.25
tarsus -0.03 0.01 -0.05 -0.00
sex (female) -0.08 0.03 -0.14 -0.02
population (low) -0.17 0.04 -0.24 -0.10
NAO 30 0.10 0.05 0.01 0.19
σ
2
βροοδ ΙΔ 0.00±0.05 SD 0.00±0.05 SD 0.00 0.12

σ
2
ψεαρ 0.00±0.02 SD 0.00±0.02 SD 0.00 0.08

Marginal R2 / Conditional R2: 0.070 / 0.092 Marginal R2 / Conditional R2: 0.070 / 0.092 Marginal R2 / Conditional R2: 0.070 / 0.092 Marginal R2 / Conditional R2: 0.070 / 0.092 Marginal R2 / Conditional R2: 0.070 / 0.092

Fig. 5: The relationship between nestling telomere length (TL) and (a) age-corrected tarsus length and (b)
the NAO 30 index (the average NAO index across 30 days prior to TL measurement) with regression lines
based on the highest ranked model according to the AICc (Tables 2 and 3). Although there is considerable
variation in TLs among individuals of similar size, tarsus length and the NAO 30 index significantly correlate
with TL. Males (black) have longer telomeres than females (grey) and individuals in thehigh population
(circles, full line) have longer telomeres than those in the low population (triangles, dotted line).

Table 4: Binomial generalized linear mixed models with [?]AICc<5 of variation in first-year survival in
house sparrows in two island populations. All models included random intercepts for brood identity and
year. The models are ranked by AICc, and number of degrees of freedom (df) and model weights (w) are
shown.

Model [?]AICc df w

1 Survival = sex + population + tarsus + tarsus2 0.0 7 0.179
2 Survival = sex + population + tarsus 1.2 6 0.010
3 Survival = sex + population + tarsus + population*tarsus 1.5 7 0.083
4 Survival = sex + population 1.7 5 0.075
5 Survival = sex + population + tarsus + tarsus2 + TL 1.9 8 0.070
6 Survival = sex + population + tarsus + tarsus2 + NAO 30 2.0 8 0.065
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. Model [?]AICc df w

7 Survival = sex + population + tarsus + tarsus2 + TL + TL2 2.5 9 0.052
8 Survival = sex + population + tarsus + TL 3.0 7 0.040
9 Survival = sex + population + tarsus + NAO 30 3.2 7 0.036
10 Survival = sex + population + tarsus + population*tarsus + TL 3.4 8 0.032
11 Survival = sex + population + TL 3.5 6 0.032
12 Survival = sex + population + tarsus + population*tarsus + NAO 30 3.6 8 0.030
13 Survival = sex + population + NAO 30 3.7 6 0.028
14 Survival = sex + population + tarsus + TL + TL2 3.7 8 0.028
15 Survival = sex + population + tarsus + tarsus2 + TL + NAO 30 3.9 9 0.025
16 Survival = sex + population + TL + TL2 4.2 7 0.022
17 Survival = sex + population + tarsus + tarsus2 + TL + TL2 + NAO 30 4.5 10 0.019

Fig. 6: Cox proportional hazards regression models showing predicted values of hazard ratios (i.e. mortality
risk) with 95% confidence intervals as a function of a) tarsus length, and b) telomere length for each sex.
Differences between sexes were not significant. Larger individuals had lower long-term mortality, and model
selection indicated a tendency for both short and long telomeres to be associated with lower mortality.

Table 5: Estimates with 95% confidence intervals (CI) and standard errors (SE) from the highest ranked
generalized linear models (see Table S2.5) fitted using a Poisson distribution of variation in lifetime repro-
ductive success (LRS) corrected for lifespan for each population (high /low ). Random intercepts for brood
identity and year were included as random factors in all models. Only individuals that were not removed
during the artificial selection and that survived until breeding were included in these analyses.

High (n=22): LRS β SE Lower CI Upper CI

intercept 0.03 0.72 -1.39 1.45
lifespan 0.72 0.15 0.43 1.00
sex (female) -1.11 0.58 -2.25 0.03
TL -1.24 0.65 -2.52 0.04
σ
2
βροοδ ΙΔ 0.00±0.00 0.00±0.00 0.00 0.00

σ
2
ψεαρ 0.00±0.00 0.00±0.00 0.00 0.00

Low (n=80): LRS
intercept -2.01 0.43 -2.86 -1.16
lifespan 0.93 0.14 0.66 1.20
sex (female) -0.03 0.35 -0.71 0.65
σ
2
βροοδ ΙΔ 0.56±0.75 0.56±0.75 0.45 1.26

σ
2
ψεαρ 0.05±0.23 0.05±0.23 0.01 4.12
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. SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article.

Appendix S1: Notes on methods.

Appendix S2: Notes on results.
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