Riemann Zeta Invariance Under Composed Integral Transform

Benedict Irwin¹

¹University of Cambridge

January 7, 2021

From a question I asked online [1], I had deduced that the Laplace transform could be absorbed into the inverse Mellin transform as

$$\mathcal{L}\mathcal{M}^{-1}[\phi] = -\mathcal{M}^{-1}[\phi^*] \tag{1}$$

and the Mellin transform could be absorbed into the inverse Laplace transform as

$$\mathcal{M}\mathcal{L}^{-1}[\psi] = \Gamma(q)\mathcal{L}^{-1}[\psi^*] \tag{2}$$

where

$$\phi^* = \Gamma(t)\phi(1-t) \tag{3}$$

and

$$\psi^* = \psi(-e^{-s})e^{-s} \tag{4}$$

the term of $\phi(1-t)$ reminded me of the Riemann function equation for $\zeta(s)$ which is

$$\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)$$
(5)

the question I was then interested in was what other transform when applied to the inverse Mellin transform of a function, would result in this functional equation, or what is the transform such that $\zeta(s)$ is invariant to?

The more fundamental quantity in terms of Mellin transforms is $\Gamma(s)\zeta(s)$ which has the integral (Mellin transform) representation:

$$\Gamma(s)\zeta(s) = \int_0^\infty \frac{x^{s-1}}{e^x - 1} dx = \mathcal{M}\left[\frac{1}{e^x - 1}\right]$$
 (6)

we would like to find an integral transform of a function $f \mathcal{Q}[f]$ such that

$$Q[\mathcal{M}^{-1}[\phi(s)]] = \mathcal{M}^{-1}[2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(s)\phi(1-s)]$$
(7)

such that

$$Q[\mathcal{M}^{-1}[\Gamma(s)\zeta(s)]] = \mathcal{M}^{-1}[\Gamma(s)\zeta(s)]$$
(8)

by virtue of the integral equation 6 we should have something like

$$Q\left[\frac{1}{e^x - 1}\right](s) = \frac{1}{e^s - 1} \tag{9}$$

we expect \mathcal{Q} to somewhat resemble a Laplace transform because of the equation

$$\mathcal{L}\mathcal{M}^{-1}[\phi(s)] = \mathcal{M}^{-1}[\Gamma(s)\phi(1-s)] \tag{10}$$

Seems that we want something such that

$$Q[x^{-s}] = \left(\frac{q}{2\pi}\right)^{s-1} \frac{1}{\pi} \sin\left(\frac{\pi}{2}(1-s)\right) \Gamma(1-s)$$
(11)

the trick seems to be using an inverse Mellin transform on the above to get the relationship

$$Q[x^{-s}] = \int_0^\infty x^{-s} \frac{\sin\left(\frac{q}{2\pi x}\right)}{\pi x} dx = q^{-s} 2^s \pi^{s-1} \Gamma(s) \sin\left(\frac{\pi s}{2}\right)$$
(12)

this is still not quite right as we want to invert the $s \to 1-s$. It does seem (numerically) for a small region of s values (between 0 and 1?) that

$$Q[x^{-s}] = \int_0^\infty x^{-s} \frac{\sin\left(\frac{qx}{2\pi}\right)}{\pi} dx = \left(\frac{q}{2\pi}\right)^{s-1} \frac{1}{\pi} \sin\left(\frac{\pi}{2}(1-s)\right) \Gamma(1-s)$$
(13)

as required. Hence our transform becomes (note the minus sign)

$$Q[f] = -\int_0^\infty f(x) \frac{\sin\left(\frac{qx}{2\pi}\right)}{\pi} dx \tag{14}$$

which should (formally) satisfy

$$Q[\mathcal{M}^{-1}[\Gamma(s)\zeta(s)] = \mathcal{M}^{-1}[\Gamma(s)\zeta(s)]$$
(15)

or then 'fixing' the inverse Mellin transform as given, $\Gamma(s)\zeta(s)$ is some kind of eigen-function of the transform \mathcal{Q} ...

Checking This Follows Through

Thus

$$\mathcal{Q}[\mathcal{M}^{-1}[\phi]] = \mathcal{Q}\left[\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} x^{-s} \phi(s) \, ds\right]$$

$$\mathcal{Q}[\mathcal{M}^{-1}[\phi]] = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \mathcal{Q}\left[x^{-s}\right] \phi(s) \, ds$$

$$\mathcal{Q}[\mathcal{M}^{-1}[\phi]] = \frac{-1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \left(\frac{q}{2\pi}\right)^{s-1} \frac{1}{\pi} \sin\left(\frac{\pi}{2}(1-s)\right) \Gamma(1-s)\phi(s) \, ds$$

by letting $s-1 \to -t$ we get

$$Q[\mathcal{M}^{-1}[\phi]] = \frac{1}{2\pi i} \int_{c'-i\infty}^{c'+i\infty} q^{-t} 2^t \pi^{t-1} \sin\left(\frac{\pi t}{2}\right) \Gamma(t) \phi(1-t) \ dt = \frac{1}{2\pi i} \int_{c'-i\infty}^{c'+i\infty} q^{-t} \phi^*(t) \ dt = \boxed{\mathcal{M}^{-1}[\phi^*]}$$

where $\phi^*(t) = 2^t \pi^{t-1} \sin\left(\frac{\pi t}{2}\right) \Gamma(t) \phi(1-t)$. If we set $\phi(t) = \Gamma(t) \zeta(t)$ according to the Riemann functional equation we have

$$\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi t}{2}\right) \Gamma(1-s)\zeta(1-s)$$
(16)

thus $\phi^*(t) = \phi(t) = \Gamma(t)\zeta(t)$.

Conclusion

It is formally possible to define such an integral transform. This may be possible and have better convergence for other functional relationships.

References

 $[1] \quad - \quad https://math.stackexchange.com/questions/2501698/a-pair-of-composed-integral-transforms-from-mellin-and-laplace-transforms$

Appendix

If we define the forward transform as

$$Q_1[f(x)](k) = \int_0^\infty \frac{f(x)}{e^{kx} - 1} \, dx \tag{17}$$

we find that

$$Q_1[x^{s-1}](k) = k^{-s}\Gamma(s)\zeta(s), \ s > 1, t > 0$$
(18)

or equivalently

$$Q_1[x^{s-1}](k) = k^{-s} 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(s) \Gamma(1-s) \zeta(1-s), \ s > 1, t > 0$$
(19)

Thus

$$\mathcal{Q}_1[\mathcal{M}^{-1}[\phi]] = \mathcal{Q}_1 \left[\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} x^{-s} \phi(s) \, ds \right]$$

$$\mathcal{Q}_1[\mathcal{M}^{-1}[\phi]] = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \mathcal{Q}_1 \left[x^{-s} \right] \phi(s) \, ds$$

$$\mathcal{Q}_1[\mathcal{M}^{-1}[\phi]] = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} q^{s-1} \Gamma(1-s) \zeta(1-s) \phi(s) \, ds$$

by letting $s-1 \to -t$ we get

$$Q_1[\mathcal{M}^{-1}[\phi]] = \frac{-1}{2\pi i} \int_{c'-i\infty}^{c'+i\infty} q^{-t} \Gamma(t) \zeta(t) \phi(1-t) \ dt = \frac{-1}{2\pi i} \int_{c'-i\infty}^{c'+i\infty} q^{-t} \phi^*(t) \ dt = \boxed{-\mathcal{M}^{-1}[\phi^*]}$$

where $\phi^*(t) = \Gamma(t)\zeta(t)\phi(1-t)$. Although this is cool, it's not quite what we want.