Small understorey trees have greater capacity than canopy trees to adjust hydraulic traits following prolonged drought in a tropical forest

André Giles¹, Lucy Rowland², Paulo Bittencourt³, David Bartholomew⁴, Sarah Coughlin⁵, Patrícia de Britto Costa³, Tomas Domingues⁶, Raquel Miatto⁷, Fernanda Barros³, Leandro Ferreira⁸, Peter Groenendijk³, Alex Oliveira⁸, Antonio da Costa⁹, Patrick Meir¹⁰, Maurizio Mencuccini¹¹, and Rafael Oliveira³

¹University of Campinas Institute of Biology
²University of Exeter
³University of Campinas
⁴University of Exeter College of Life and Environmental Studies
⁵University of Sao Paulo
⁶University of São Paulo
⁷Universidade de São Paulo
⁸Museu Paraense Emílio Goeldi
⁹Universidade Federal do Pará
¹⁰The Australian National University
¹¹University of Edinburgh

October 9, 2020

Abstract

The future of tropical forests is dependent on the capacity of young trees to adjust to drought. We evaluated multiple hydraulic traits indicative of the drought tolerance of small trees across nine common genera at the world's longest-running tropical throughfall exclusion experiment and compared their responses with surviving large canopy trees. Small understorey trees increased specific hydraulic conductivity by 56.3% and leaf:sapwood area ratio by 45.6% in response to the drought treatment. However, understorey trees in both a control and the throughfall exclusion treatment had significantly lower minimum stomatal conductance and maximum hydraulic leaf-specific conductivity relative to the large trees, as well as significantly greater hydraulic safety margin (HSM) and PLC and embolism resitance, occupying a distinctly different hydraulic niche. The greater HSM of small understorey trees relative to large canopy trees likely enables them to adjust other aspects of their hydraulic systems to take advantage of increases in light availability in the understorey, driven by drought-induced mortality of canopy trees. Our results suggest that small understorey trees can adjust their hydraulic systems in response to changes in water and light availability and this has major implications for the regeneration potential of tropical forests following droughts.

Hosted file

Main_document.pdf available at https://authorea.com/users/365834/articles/485817-smallunderstorey-trees-have-greater-capacity-than-canopy-trees-to-adjust-hydraulic-traitsfollowing-prolonged-drought-in-a-tropical-forest