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Abstract

A series of recent flood events in Canada affecting areas around lakes and reservoirs have highlighted the need to explicitly
represent such features in large scale flood models. Water level fluctuations in lakes are traditionally modelled using detailed
hydrological models designed — as far as possible — to represent the actual physical processes that take place. This approach,
while appropriate for local-scale studies in data-rich areas, is not applicable for large-scale flood modelling where data availability
for model calibration and validation is often severely limited. This paper explores two methodologies, one statistical and one
physically based, designed to approximately predict the increase in the water level of lakes in Quebec (Canada) using only
limited morphological information about the lakes and the estimated discharge entering the water body during a flood event.
Of the two methods, the statistical approach proved to be the most applicable to a large-scale modelling framework as it

exhibited lower errors whilst being considerably easier to implement in a semi-automated modelling chain.

Introduction

Over recent years interest in large-scale flood modelling has grown due to the increase in computational
capacity and availability of remotely-sensed terrain data sets (Alfieri et al., 2013; Dottori et al., 2016;
Sampson et al. 2015; Wing et al. 2017; Winsemius et al., 2013). Historically, the vertical accuracy of
large-scale terrain data sets has proven to be one of the most significant obstacles to obtaining accurate
flood projections (Schumann 2014). Recent improvements to the wider accessibility of high-quality terrain
data sets at large scales, such as the LiDAR-rich US National Elevation Dataset or the rapidly improving
LiDAR coverage in Quebec with 1-m Digital Elevation Models (DEMs) freely available, have permitted the
development of such models at national scales (Wing et al., 2017; Choné et al., in review). When built
with high quality input data, national scale flood models have been shown to demonstrate levels of skill
approaching those of local scale models (Wing et al., 2017), and even where input data are less detailed they
remain a useful starting point for the scoping of more detailed strategic and local-scale flood risk assessments.
Due to the lack of accessible information on lakes and reservoirs and the complexity and heterogeneity of
the physical processes involved, these models do not usually consider the effect of lakes during flood events
and their skill in such areas remains poorly understood (Sampson et al., 2015).

With nearly 900,000 lakes covering more than 10 hectares, Canada accounts for 62% of the world’s lakes, a
legacy of glaciers’ scouring action and their subsequent melting (Loic et al. 2016). Recent flood events, such
as the spring floods of 2017 and 2019 caused not only rivers but also lakes to overflow in the province of



Quebec. In 2019, these inundations caused major flood stage to be recorded at 6 locations and middle flood
stage at 12 locations, including the Lake of the Two Mountains (Lac des Deux Montagnes) and Lake Louise,
damaging 2,341 homes and forcing around 1,200 residents to evacuate (Floodlist.com 2019). It is therefore
unsurprising that the need for a more thorough understanding of lake water levels at large-scale has emerged
in this context.

The literature currently provides various approaches to tackle the challenge of modelling water level stages
in lakes. Previous studies focused on modelling the hydrological water balance of water basins including lakes
(Setegn et al. 2008) or on identifying trends in the water level variability in a specific lake (Johnk et al. 2004).
Other studies focused on the long-term prediction of changes in the water level using artificial intelligence
methods (Altunkaynak 2006; Buyukyildiz et al. 2014; Khan & Coulibaly 2006; Piaseck et al. 2018) or on
real time monitoring via satellite observations (Crétaux et al. 2011). Detailed hydrological models of lakes
were developed in data-rich areas, considering riverine inflow, precipitation on the lake surface, evaporation
and riverine outflow (Gibson et al. 2006). In other cases, spatially distributed hydrologic models were used
for flood event simulation over basins with a complex system of reservoirs (Montaldo et al. 2004) and flood
routing methods were applied to evaluate the effect of large artificial reservoirs (Gioia et al. 2016; Lee et al.
2001). However, no studies focused on analysing the impact of extreme flows on the increase of water level
in both natural lakes and reservoirs and the consequential flood that could occur on the lakeshore.

This study sought to address this knowledge gap and derive a methodology that could approximately define
the water level increase in lakes and reservoirs due to an extreme event with a specific probability of occur-
rence, and thus delineate the flood prone area in the surroundings. Ideally this method should be applicable
to different types of water bodies, including natural lakes and artificial reservoirs. Since the final purpose
of such a methodology is to be applied in the framework of large-scale flood simulations, the information
required for each lake cannot be extensive and has to be easily available in a semi-automated way at national
scales.

Methodology

Two approaches were considered to assess this problem: a physically based approach and a statistical ap-
proach.

Physical based model

The initial premise of the physically based approach was to develop a model that could simulate the fluctua-
tions in the water level using an inflow peak hydrograph and remotely-sensed morphological characteristics
of the lake as inputs. It is known from compensating reservoir modelling that lakes and reservoirs usually
have an attenuation effect on the inflow hydrograph, causing a reduction of the peak discharge value and a
release of the water volume during a longer period (United States National Resources Conservation Service,
National Engineering Handbook. Section 630, Hydrology. Chapter 17, Flood Routing April 2014). The scale
of the attenuation depends on the characteristics of the lake or reservoir, such as its storage capacity and
the geometry of the spillway (Gioia 2016). To simulate this behaviour, it is possible to proceed with what
is called flood routing, using as inputs the inflow discharge, the volume of water retained in the lake and a
relationship between the variation of the water level and the outflow discharge.

A water balance equation is used to link the increase in the surface water elevation to the difference between
the volume entering the lake and the volume leaving it at each time step.

S2—51 _ Qin1+Qin2 _ Qout1+Qout2 (1)
t 2 2

Where S stands for storage volume, ¢ the timestep used for the calculations, Q;, is the inflow discharge,Qous
is the outflow discharge and the subscripts 1 and 2 represent different times (¢ ). The water level at each



time step is calculated using the following equation.

H2=H1+M @)

Where H; represents the water level increase at t1,Hs the water level at to and A is the lake area. This
equation assumes the lake area as constant: the lake is assumed to have a cylinder-type shape, in which the
area is not a function of the water level.

There are various equations that can be used to compute the outflow discharge. In this study the rectangular
weir equation was used. This choice was driven by the simplicity of the equation, which requires only the
weir width to be derived from remotely sensed data.

Qout,i =M L \% 2gh2 h; (3)

u is a shape coefficient, L represents the weir width (assumed as the width of the downstream river channel),
g is the acceleration of gravity and h; the height over the weir (equal to the water level increase). The
subscript i refers to the time step: the outflow discharge is calculated at each time step as a function of
the varying height over the weir, derived at the previous time step using equation (2). The shape coefficient
was initially assumed as equal to 0.5; this value was identified as the value producing the smallest errors by
some calibration tests. The parabolic weir equation was also tested: it proved to be less effective whilst also
requiring more detailed information about the spillway.

The ideal test case to validate this model with observed data would be a lake with three gauges providing
time series (instant values) of the water level and the upstream and downstream discharge. This way the
inflow hydrograph of an event can be used as input for the model and the computed outputs can be compared
with observed records. The lake should be small enough to be influenced by the inflow hydrograph in terms
of fluctuations in the water level — a very large lake’s water elevation won’t vary during a short single
event — and without a dam or any regulation device that could influence drastically the water level and the
discharge downstream. Unfortunately, we were unable to identify such an ideal test case in either Canada
or the United States, where most medium size lakes are dammed and/or do not have a gauging station
upstream. Despite this, three test cases were used to compare the physically-based model output with water
level observations: lake Maskinongé, lake Brulé in Quebec and Waterbury reservoir in Vermont. For lake
Maskinongé and Waterbury reservoir three gauging stations were available, although both water bodies are
dammed. There is no gauging station downstream Lake Brulé and the main inflow is influenced by a dam
(barrage Ludger). Different peak hydrographs isolated from gauging stations upstream the lakes were used
as inputs for the model, after being appropriately scaled to the watershed area at the lake’s outflow. This
procedure allows to consider the inflow from ungauged tributaries.

Qin = Qin,recorded * F (4)
F = Downstream watershed area (5)
- Upstream watershed area

After validation of the model framework on these case studies (see section 3.1.1), the next step was to test
the model with synthetic hydrographs (necessary as the inflows to most lakes are ungauged) in order to
produce water level frequency curves.

The model results from the synthetic hydrographs had to be validated against observed water level fluc-
tuations in the lakes (section 3.1.3).Observed values were derived from a subset of water level measuring
gauging stations with time records longer than 25 years in Quebec (33 stations) and the physically-based
model was then tested on the gauges that also had synthetic discharge values available (31 stations). The



maximum annual fluctuations were initially derived as a difference between the recorded water levels and
the mean at the corresponding station. However, because water level gauges are not available for most
lakes, the final testing phase used water surface elevation derived from LiDAR as the baseline elevation to
which water level increases were applied (on a subset of 23 stations at which all the necessary information
was available). For those lakes with gauges, analysis shows that the average error between recorded mean
water level and LiDAR was approximately 0.50 m and the median error was about 0.25 m (see Table 1 in
supplementary information). A large portion of this error is driven by a small number of reservoirs that
are likely to be affected by a strong seasonal regulation. Removing these stations from the analysis would
significantly reduce the average difference between LiDAR and mean water level to a mean error of 0.25
m, but would also not be representative of an error affecting a non-negligible portion of lakes. Since the
available LIDAR imagery is constantly increasing and will represent the main source to derive water level
data at larger scale, the decision was to keep using the LiDAR elevation as a reference. The values for each
lake were fitted with an appropriate distribution to extract values at different return periods (20, 100 and
350 years).

The inputs required to run the model for each lake are the inflow discharge, the lake area and the outflow
channel width. The discharge was derived from the distributed hydrological model HYDROTEL (Fortin et
al. 1995; 2001) for three return periods of interest while the channel widths were manually measured in
QGIS for the different lakes in question. The time to concentration of the inflow hydrographs was set to a
fixed value of 200 hours after performing a sensitivity analysis on the model.

Statistical model

In contrast to a physically based methodology, a statistical approach focuses on analysing the water level
fluctuations at the available gauging stations across the region in order to identify the driving factors that
determine the nature of water level increases. This is done by analysing the recorded time series with
a probabilistic distribution and linking the results with observable characteristics of the lakes, in order to
identify a statistical model that can be used at ungauged locations. The analysis focused on finding plausible
linear regressions that could link the water level increases to different variables, such as lake area, upstream
drainage area and peak discharge. To explore all the different possibilities the analysis was assessed in three
steps: single variable regression analysis, multivariable regression analysis, and multivariable regression
analysis with variable transformation. Several interaction terms were considered, in order to identify a
statistically significant relationship.

Results

3.1 Physical based model
3.1.1 Validation of the model with recorded hydrographs

The results obtained by running the model with recorded hydrographs show that even though the water
level variation doesn’t always match the pattern of the recorded fluctuations, the peak water level can be
reproduced with an accuracy varying between 0.05 and 0.25 m (Figure 1). These results were positive,
especially considering that all the test cases were influenced to varying degrees by a dam downstream that
imposed a regulating effect on the lake outflow. These preliminary results suggested that this approach, even
if very simplistic, could produce sensible outputs for specific events and thus led the research toward testing
it with synthetic hydrographs (for ungauged rivers) in order to produce water level frequency curves.

[Figure 1]
3.1.2 Definition of an appropriate time to concentration

During the initial model runs, times to concentration derived from Fathom’s global flood model (Sampson et
al. 2015) were used. The model uses the velocity method (United States National Resources Conservation



Service, National Engineering Handbook. Section 630, Hydrology. Chapter 15, Time of Concentration) to
calculate the time to concentration as a sum of the travel time in shallow concentrated flow and the travel
time in open channel flow. The travel time is derived using the longest flow path from the point of interest
and an average velocity derived using Manning’s coefficient. This produced a substantial underestimation of
the observed water levels. To understand the reason of this behaviour, several experiments were undertaken
to help understand model parameter sensitivity. All the following tests were performed using the discharge
estimated for a return period of one hundred years.

Initially, the model was run for each lake keeping the same weir value (best estimate from GIS and remotely
sensed data) and varying the time to concentration from 1 hour up to 600 hours (24 days), in order to
evaluate model sensitivity to this variable. In some cases, the time to concentration had a big influence
on the modelled water level, while in others it seemed to be relatively insensitive. In all cases the time to
concentration showed an asymptotic trend. The asymptotic behaviour indicates that it is essential not to
underestimate time to concentration, while overestimation will be less harshly penalised in terms of model
performance. This is intuitively correct as water levels in lakes are naturally self-regulating, with outflow
increasing as lake level increases until an equilibrium level is reached. The weir equation represents this,
with discharge being proportional toh 3/2, where h is water height above the weir crest.

The other variable shown to have a strong influence on model behaviour is the weir width. To evaluate
model sensitivity to this variable, the time to concentration value was held constant while weir width was
varied across a wide range of values. Again, some test cases proved to be very sensitive to this variable while
others exhibited minimal sensitivity, with water level increases remaining almost constant regardless of weir
width.

Following the univariate analysis of time to concentration and weir width, the next step was to try and
delineate the behaviour of these lakes and reservoirs using a bivariate analysis. A range of different simula-
tions were therefore run for each lake, varying both the weir width and the time to concentration. Figure
2 represents an example of the results obtained for the Lake Massawippi (Quebec) station, representing the
absolute error between the peak water level increase produced by the model and the maximum recorded
water level increase (difference between annual maximum and annual mean).

[Figure 2]

From these results, it is possible to identify some general patterns across a subset of 31 water level measuring
gauging stations with time records longer than 25 years, known lake area and synthetic discharge in Quebec.
Overestimation typically occurs when the weir is narrow or when the time to concentration drastically
increases, whilst it appears more difficult to provoke underestimation from the model. In most cases it is
also possible to note that time to concentration maintains its asymptotic trend: once the inflow hydrograph
has a long enough duration, the water level fluctuation stabilises and grows very slowly. Bigger lakes generally
appear to be more sensitive to the time to concentration, and less to the weir width, while for smaller lakes
the best estimation of the water level seems to be very dependent on a good estimate of the weir width
whilst still requiring a long enough hydrograph. Unfortunately, it doesn’t seem possible to generalise overall
behaviour in water levels as even lakes that seem to be similar in size and with a comparable inflow show
different values of recorded water lake fluctuation. Since these analyses highlighted how an overestimation of
the inflow duration shouldn’t heavily penalize the model performance, a fixed value of 200 hours was chosen
for the time to concentration to use hereafter.

3.1.83 Validation of the model with synthetic hydrographs

The sensitivity tests were performed on a dataset of 31 stations, using average observed water levels as
reference. From now on, for the actual validation, the model was run on a reduced subset of 23 stations (the
ones that also have available LIDAR data). Running the model using synthetic hydrographs produced three
simulated water level increases for the three examined return periods (20, 100 and 350 years). A plot with
the results can be found in Figure 2 of supplementary materials.



[Table 1]
[Table 2]

To evaluate the performance of the physical model and determine if it is worth implementing it in the
workflow of flood modelling, the results were compared to using a median GEV distribution for all the 23
stations. Table 1 summarises the error that would derive from applying a median GEV distribution to all
the 23 lakes in the subset, while Table 2 shows how the physical model would perform in terms of bias and
RMSE (Root Mean Square Error). By comparing the RMSE values to the standard deviation associated with
the GEV distribution, it is possible to deduce that, although the physical based approach produces smaller
errors than just referring to the average values predicted by a statistical analysis across all the stations, the
difference in precision of the two methodologies is not substantial. The error varies from 0.58 to 0.71 m when
using a fixed GEV distribution and from 0.49 to 0.63 m when using the physical model. Figure 3 presents
examples where the physical model greatly underestimates lake levels (Lake Simon, station 040408), one
where it is close to the GEV (Lac Barriere, station 040407) and one that overestimates the lake level (lac
du Poisson Blanc, station 040602), whereas graphical results for all the stations are presented in Figure 1 of
supplementary material.

[Figure 3]

A study of the error associated with this type of model was performed to check the assumption of homosce-
dasticity and potentially identify any influence of some specific variables on the performance of the model.
The model was analysed in relation to several variables: lake area, watershed area, peak discharge, peak
discharge times lake area, degree of regulation and surface area variation index. The degree of regulation
(DOR) is an index designed to quantify hydrological alterations induced by dams (Mailhotet al. 2018) and
should show if dams have an identifiable effect on the water level fluctuations in lakes. The surface area
variation index refers to the increase in the extension of the lake’s surface area with level increase and thus
considers the impact of topography on the process. The tests revealed the errors to be homoscedastic, being
homogeneously distributed when plotted against the possible predictors, and there was no clear relationship
between the residuals of the model and any of the analysed variables (plot in Figure 2 of supplementary
materials).

3.2 Statistical model
3.2.1 Single variable regression analysis

The relationships between the 350-year water level (estimated using a GEV distributions fitted to gauged
level data at 23 stations and a set of individual predictor variables were initially tested using single variable
regressions. Note that these 23 stations are a subset of the 31 stations with at least 25 years of water level
data, as for this analysis we also needed LiDAR data as well as HYDROTEL discharge data to be available.
The first step consisted of identifying significant correlations between water level and any single variable
such as lake area, upstream drainage area, peak discharge or outflow channel width. The results showed no
statistically significant relationship existed between water levels and any single variable; performing standard
transformations to the variables, such as applying a logarithm or square root, did not yield any improvements.

3.2.2 Multivariable regression analysis

A multi-variable regression analysis was undertaken to identify any significant relationship between the same
350-year water level variation and a range of sets of variables. In order to find a plausible regression model,
different predictors were taken into consideration, as well as their possible interaction terms. To conduct
the analysis in a systemic way and explore all the possible combinations of the predictors, a maximum of
ten input variables have been considered: lake area, watershed area, outflow channel width, peak discharge
(return period of 350 years) and their six associated interaction terms (i.e. lake area multiplied by watershed
area, lake area multiplied by outflow channel width, etc.). Most of the regression models showing p-values
lower than the threshold value of 0.05 are associated with high RMSE or very low values of adjusted R
squared. Moreover, none of the regression models proved to be robust: by simply removing a few stations



from the sample and re-running the fitting we can obtain models that use completely different variables as
predictors.

3.2.3 Multivariable regression analysis applying variable transformations

Two transformations were then applied to the predictors (logarithmic and square root), to identify any linear
correlation between the water level above the LiDAR level and the transformed variables. The predictors
considered by this analysis were lake area, upstream drainage area, outflow channel width and peak discharge
with return period of 350 years. In this context it was observed that squaring the discharge values made a
relevant difference in the predictive performance of the model, while performing the same transformation on
the area and watershed areas was not as significant. The weir value was not identified as a relevant variable.
The simplest significant model used as predictors the lake area and the square root of the peak discharge,
and shows a RMSE of 0.48 m with an adjusted R squared of 0.5495. The p-values for both the predictors
are in the order of 107°, showing a statistically significant correlation (Table 3, Figure 4).

[Table 3]
[Figure 4]

The error characteristics of this approach show the assumption of homoscedasticity to be valid in this model.
Neither the error nor the absolute value of the error are shown to be linked with an increase of any of the
predictors or other lake characteristics (plot in Figure 3 of supplementary materials).

An identical multivariable regression procedure was applied using return periods of 100 and 20 years. The
results show that an equivalent model, with slightly modified coefficients, provides a good performance for
a 100 year flow (RMSE = 0.48 m, adjusted R squared of 0.4849). However, the adjusted R squared dropped
to 0.3574 for the 20-year events, indicating that the model was not able to predict water levels associated
with more frequent events. We hypothesise that this is because higher frequency events are more readily
controlled by engineered features leading to highly unpredictable water level behaviour.

Conclusions

Even though the physically based approach shows some predictive skill in estimating lake water level fluc-
tuations, the small difference in precision when compared to using an average distribution inevitably leads
to the question of whether it is worth implementing it in a large-scale modelling framework. Including it in
the automated process of flood simulation and deriving all the data needed as input (especially the outlet
channel width, which needs to be measured manually) would require a considerable amount of effort. Moreo-
ver, the results suggest that the physical model is not suitable to simulate the complexity of the processes
that take place during flood routing of a streamflow in lakes. Although it performs reasonably well when
accurate streamflow data is provided, it is not reliable enough when run with synthetic hydrographs across
all Quebec. It is likely that similar findings would have been obtained in other geographical contexts.

The statistical approach on the contrary provides a lower RMSE than the one obtained using the physical
based model and eliminates the need for measuring the outflow channel width for every lake, thus simplifying
the process. This procedure can be easily implemented in a more extensive large-scale modelling framework
to provide first-order approximations of water levels associated with extreme floods. These levels could be
used as boundary conditions for two-dimensional hydraulic simulations of river flow into the lake, a very
common situation in Canada but also in many other regions affected by the Laurentide or Scandinavian
ice sheets, as well as to define flood prone areas around lakes where detailed hydrological models are not
available.
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GEV distribution

RP 20 years RP 100 years RP 350 years
Average (m) 0.91 1.11 1.27
Standard deviation 0.58 0.65 0.71

(m)

Physically-based model compared to observations

RP 20 years RP 100 years RP 350 years
Bias (m) -0.02 -0.03 -0.04

RMSE [m] 0.49 0.56 0.63



Multivariable regression model

Predictors used
Lake area (km?)

Sart(Qsso) (m?/s)°*

Formula

Predictors used

Lake area (km?)

Sqrt(Qaoo) (m?/s)°>

Formula

Predictors used

Lake area (km?)

Sqrt(Qao) (m*/s)**

Formula

RP 350 years
p - values RMSE R squared adjusted
3.55e-05
0.4880 0.5495
6.32e-05

Water level (m)

= 0.716 —0.0048-A

+ 0.0593 * /O350

RP 100 years

p - values RMSE R squared adjusted
1.41e-04
0.4771 0.4849
2.28e-04
Water level (m)
= 0.619 —0.0042-A
+ 0.0562 * /Q190
RP 20 years
p - values RMSE R squared adjusted
0.0014
0.4722 0.3574
0.0021

Water level (m)

= 0.515 — 0.0033- 4
+ 0.0357 * /g0
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