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Abstract

It is widely recognized that multi-year drought can induce changes in catchment hydrological behaviors. However, at present,
our understanding about multi-year, drought-induced changes in catchment hydrological behaviors and its driving factors at
the process level is still very limited. This study proposed a new approach using a data assimilation technique with a process-
based hydrological model to detect multi-year drought-induced changes in catchment hydrological behaviors and to identify
driving factors for the changes in an unimpaired Australian catchment (Wee Jasper) which experienced prolonged drought from
1997 to 2009. Modelling experiments demonstrated that the multi-year drought caused a significant change in the catchment
rainfall-runoff relationship, indicated by significant step changes in the estimated time-variant hydrological parameters SC
(indicating catchment active water storage capacity) and C (reflecting catchment evapotranspiration dynamics), whose average
values increased 23.4% and 10.2%, respectively, due to drought. The change in the rainfall-runoff relationship identified by
the data assimilation method is consistent with that arrived at by a statistical examination. The proposed method provides
insights about the drivers of the changes in the rainfall-runoff relationship at the processes level. Declining groundwater and
deep soil moisture depleted by persistent evapotranspiration of deep-rooted woody vegetation during drought are the main
driving factors for the catchment behaviors change in the Wee Jasper catchment. The new method proposed in this study was
found to be an effective technique for detecting both the change of hydrological behaviors induced by prolonged drought and
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new approach using a data assimilation technique with a process-based hydrological model to detect multi-
year drought-induced changes in catchment hydrological behaviors and to identify driving factors for the
changes in an unimpaired Australian catchment (Wee Jasper) which experienced prolonged drought from
1997 to 2009. Modelling experiments demonstrated that the multi-year drought caused a significant change
in the catchment rainfall-runoff relationship, indicated by significant step changes in the estimated time-
variant hydrological parameters SC (indicating catchment active water storage capacity) and C (reflecting
catchment evapotranspiration dynamics), whose average values increased 23.4% and 10.2%, respectively,
due to drought. The change in the rainfall-runoff relationship identified by the data assimilation method is
consistent with that arrived at by a statistical examination. The proposed method provides insights about
the drivers of the changes in the rainfall-runoff relationship at the processes level. Declining groundwater
and deep soil moisture depleted by persistent evapotranspiration of deep-rooted woody vegetation during
drought are the main driving factors for the catchment behaviors change in the Wee Jasper catchment. The
new method proposed in this study was found to be an effective technique for detecting both the change of
hydrological behaviors induced by prolonged drought and its driving factors at the process level.
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Introduction

Drought is one of the most frequently occurring environmental disasters, and both historical observations
and future climate projections show increasing frequency of drought worldwide (Dai, 2013; Feng & Fu, 2013;
Trenberth et al., 2013). Droughts are mostly triggered by a reduction in seasonal or annual precipitation
(Mishra & Singh, 2010). Droughts can have devastating impacts on regional food production, water resources
management, drinking water supply, and even the stability of governments (Mishra & Singh, 2010; Dai, 2011;
Zhang, Zhang, Cui, & Zeng, 2011). Although drought usually has dire environmental and socio-economic
consequences, drought prediction is still a grand challenge (Dai, 2011; Mishra & Singh, 2011; Chiew et
al., 2014). Drought involves complex interactions amongst different dimensions including meteorological
conditions, vegetation water demand, hydrological conditions,etc . (Wang, Basia, & Arie, 2003; Nalbantis
& Tsakiris, 2009; Dai, 2011; Zhang et al., 2011; Buttafuoco, Caloiero, & Coscarelli, 2015) hat can induce
shifts in regional hydrological regime or rainfall-runoff relationship, leading to failures in predicting the onset,
duration, severity, and termination of drought (Guardiola-Claramonte et al., 2011; Mishra & Singh, 2011;
Zhang et al., 2011; Chiew et al., 2014; Huijgevoort, Lanen, Teuling, & Uijlenhoet, 2014; Yang et al., 2017).

Determining whether drought can lead to shifts in catchment hydrological behaviors is critical for future
accurate hydrological prediction (Huijgevoort et al., 2014; Saft, Western, Zhang, Peel, & Potter, 2015).
Previously, many studies have reported that drought can violate the assumption of stationarity in the
catchment rainfall-runoff relationship (Conway et al., 2004; Guardiola-Claramonte et al., 2011; Cheng et
al., 2012; Hughes, Petrone, & Silberstein, 2012; Chiew et al., 2014). Chiew et al. (2014) found that the
rainfall-runoff relationship during drought periods was simulated poorly and overestimated significantly (up
to 150%) by a hydrological model previously calibrated under normal period. Petrone, Hughes, Niel, &
Silberstein (2010) found a significant decline in the runoff coefficient and a shift in hydrological regime in the
headwater regions of southwest Western Australia after a long-term decline in rainfall from the mid-1970s
to 2008. Based on the long-term rainfall-runoff observations of 228 catchments in south-eastern Australia,
Saft et al. (2015) showed that prolonged drought during 1997-2009 led to a statistically significant shift
in the rainfall-runoff relationship in about 46% of the studied catchments. Although many studies have
statistically demonstrated that long-term drought can lead to shifts in catchment hydrological regimes based
on observations and modelling, there is still great uncertainty in detecting and predicting whether drought can
induce changes in catchment hydrological behaviors and in understanding why the rainfall-runoff relationship
can change at the process level.

Insights into this challenge can be gained by combining a data assimilation method with process-based hydro-



logical models. This approach accounts for hydrological non-stationarity in the rainfall-runoff relationship for
capturing shifts in the flow regime induced by long-term drought. It also accounts for time-variant parameters
in the hydrological model. Accounting for both factors leads to identification of possible mechanisms that
cause the changes in catchment hydrological behaviors. Parameters in a process-based hydrological model
represent catchment functional properties, and thus can be used to detect catchment hydrological behaviors
and their changes (Pathiraja, Marshall, Sharma, & Moradkhani, 2016). Parameters in hydrological models
are traditionally assumed to be stationary (i.e., time-invariant), and are calibrated against observed runoff
(Coron et al., 2012). There is an accumulated body of literature showing that hydrological systems can be
non-stationary, and that parameters in hydrological models should be time-variant. This is because substan-
tial anthropogenic changes of climate have occurred outside of the historically measured mode of natural
variability, and direct alteration of local water cycles has occurred as a result of land and water management
practices including deforestation (Destouni, Jaramillo, & Prieto, 2013; Lima et al., 2014; Cheng et al., 2017;
Guimberteau et al., 2017), groundwater extraction (Kinal & Stoneman, 2012; Miguez-Macho & Fan, 2012),
and damming of rivers for hydroelectricity (Botter, Basso, Porporato, Rodrigueziturbe, & Rinaldo, 2010;
Xue, Liu, & Ge, 2011). Recent studies have recognized that models with time-variant parameters can reason-
ably account for shifts in the catchment rainfall-runoff relationship or catchment behaviors under changing
environments (Merz, Parajka, & Bloschl, 2011; Chiew et al., 2014; Deng, Liu, Guo, Li, & Wang, 2016). Based
on time-variant parameters obtained by a data assimilation method, not only can changes in the catchment
rainfall-runoff relationship can be detected (Deng et al., 2016), but also the causes of the changes can be
identified from hydrological parameters (Pathiraja et al., 2016; Xiong et al., 2019). For example, (Deng et
al., 2016) combined a two-parameter monthly water balance model to obtain time-variant hydrological pa-
rameters, and successfully detected the impacts of land-use changes on catchment water storage capacity
in the Wudinghe Basin, which led to changes in the catchment rainfall-runoff relationship. Pathiraja et al.
(2016) demonstrated that land cover changes can lead to significant step changes in estimated parameters
in hydrological models using an ensemble Kalman filter with a locally evolutionary linear parameter in two
paired experimental catchments in the Western Australia. They identified changes in the excess runoff ge-
neration process that resulted from land use changes. Based on previous successful studies for detecting and
understanding hydrological non-stationarity under changing environments using a data assimilation method,
we employed a similar methodology to investigate the non-stationarity in hydrological behavior induced by
long-term drought.

In this study, the Particle filter (PF) data assimilation technique was combined with a two-parameter monthly
water balance model (TWBM) to obtain time-variant parameter series, and then to identify changes caused
by drought at the process level. The PF data assimilation technique is one of a general class of ensemble-
based statistical data assimilation methods that is more suitable for nonlinear data assimilation problems and
retaining the water balance (Arulampalam, Maskell, Gordon, & Clapp, 2002; Moradkhani & Weihermiiller,
2011; Field, Tavrisov, Brown, Harris, & Kreidl, 2016) , and thus was selected in this study. The TWBM
model is a widely used monthly hydrological model that has been successfully applied to simulate the
catchment rainfall-runoff relationship in a wide range of climates, soils, and vegetation conditions (Guo,
Wang, Xiong, Ying, & Li, 2002; Guo et al., 2005; Xiong & Guo, 2012; Shuai, Xiong, Dong, & Zhang, 2013;
Zhang, Liu, Liu, & Bai, 2013; Xiong, Yu, & Gottschalk, 2015). The specific objectives of this study were
to (1) demonstrate whether the PF data assimilation method can be used to detect changes in catchment
hydrological behaviors induced by drought; (2) detect whether prolonged drought can cause changes in
the catchment rainfall-runoff relationship; and (3) identify the mechanisms responsible for drought induced
changes in catchment hydrological behavior at the process level.



Methodology

Two-parameter monthly water balance model

The TWBM was applied in this study to simulate the catchment rainfall-runoff relationship. The TWBM was
developed by Xiong & Guo (1999) and has been widely applied worldwide to simulate monthly runoff (Guo
et al., 2005; Zhang et al., 2013; Deng et al., 2016). The model inputs are potential evapotranspiration (PET)
and precipitation (P ), both of which are readily available or can be estimated from routine meteorological
observations (Xiong & Guo, 1999).

Monthly actual evapotranspiration (E;) is estimated in TWBM as:

E; = C x PET; x tanh(pg) (1)

where C is an empirical parameter and the subscript iindicates the time step. The parameter C' was
originally proposed as an empirical coefficient. Essentially, C' accounts for time scale effects by applying a
Budyko-type equation to a monthly time scale, i.e., secondary influences of dynamics in soil water storage
rather than P and PET on catchment £ .

Monthly runoff (Q;) in TWBM is estimated from catchment water content (.5;) as:

Qi = S; x tanh(£L)  (2)

where SC is a parameter in mm. SC can be regarded as catchment active water storage capacity, which
regulates the response of catchment monthly runoff to rainfall.

By combining TWBM with the PF data assimilation method, monthly time-variant series of SC and C' were
obtained, reflecting the dynamic variation of catchment hydrological behaviors to climate variability. Shifts
in C reflect the changes in catchment evapotranspiration mechanisms resulting from the impacts of drought
on catchment water and the energy balance. Trends and/or step changes in SC indicate the influences of
drought on catchment water yields through the control of catchment soil water dynamics (e.g., groundwater
storage, interaction between surface water and groundwater, etc. ) on runoff generation.

The Particle filter

PF was used in this study to trace the variation of C' and SC. It is a sequential data assimilation method, using
many independent random samples, called particles, to simulate posterior distribution (Arulampalam et al.,
2002; Moradkhani & Weihermiiller, 2011). PF was selected for two main reasons in this study: superiority
in handling non-linear processes (Moradkhani, Hsu, Gupta, & Sorooshian, 2005; Moradkhani, 2008) and
capacity in retaining the water balance (Pan & Wood, 2006; DeChant & Moradkhani, 2012; Moradkhani,
DeChant, & Sorooshian, 2012). Two equations (i.e., state-transition and measurement equations) were the
fundamental equations of PF at each time step ¢t (k =0, 1, 2, ...) (Moradkhani et al., 2005).

The state-transition equation is:

Tp1 = f(og,ve)  (5)

where x € R™* is an n,-dimensional vector representing the system states at time step t (k =0, 1,2, ...).
R™ represents n,-dimensional real space; variable vy is ann,-dimensional vector representing a white noise
sequence with independent and identical distribution; f:R™ x R represents a nonlinear function transiting



the system from timet; to time t;1 in response to the model input vector.

The general measurement equation can be written as:

Rk = h(xk,wk) (6)

where z; € R™ is an observation vector withn, dimension; h is a measurement function representing the
relationship between the states and observations; wy is the measurement noise sequence, which is generally
considered as an independent and random vector.

With the state-transition equation (5) and the measurement equation (6), PF recursively estimates system
states at each time when an observation becomes available. For the initial time, the PF estimate process can
be divided into four steps. First, PF uses the given initial distribution to create N equally-weighted samples,
called particles. These particles are generally represented by{xé}fvzl. Second, the weights of all particles
are updated by comparing the simulated measurementz = h(x},ny) to the observed zy. The particle whose
agreement between simulation and observation is higher will be given a larger weight. Third, the estimated
statexy will be calculated. The collection of weighted particles{ (mé, wé) }jv ,can approximate the posterior

distribution of the state variable under the condition of the given observation by normalizing the updated
weights. The estimated state @y is calculated as (Moradkhani et al., 2005):

do =N wixh  (7)

The last step is resampling. Resampling is conducted in PF to reduce the particle degeneracy problem
(Arulampalam et al., 2002). The basic idea of resampling is to eliminate the low-weighted particles in favor
of concentrating on high-weighted particles. The resampling particles are generated by the system dynamic
functionz? = f (x(i), Uo). The obtained new collection of equally-weighted particles {x’i}is used for another
reweighting under the condition of subsequent observation y;. As the procedure continues at time step k
(k =1, 2, 3....), the subsequent estimated states®;, 2’3, #'3,... will be obtained analogously to Equation
(7) until the final observation is used. A more detailed description of the PF method can be found in
Arulampalam et al. (2002).

Derivation of time-variant parameters

In this study, the Particle filter is combined with hydrological model (i.e. , TWBM), to estimate the soil
moistures S , parameter C' and parameter SC at each time step. The state vectorzy = [SC,C, S |, includes
both state and parameters. The observed runoff is the observation in the Particle filter. The parameters C
and SC are set to range from 0.2-2.0 and 100-4000 (mm), respectively. The system state-transition equation
for the SC, C' and S are as follows:

SCr11 = SC, + v (8)

Cry1 =Cr+ & 9)
Sk+1 =5k + P — B, — Qi + Mk

where v, £ and 7, are the independent white noise for the state-transition equation; vy, & andny are all
the Gaussian distribution with zero mean.

The measurement equation is as follow:

Qr+1 =TWBM(SCri1, Crt1, Sk+1, Pet1, EPpi1) + wigpr (11)




Where TWBM represents the two-parameter monthly water balance model; wy1 represents the observation
error, following a Gaussian distribution with zero mean; Py is the precipitation at time k +1; EPgyq is
the potential evapotranspiration at time k& +1; Q41 is the observed runoff at time k +1.

In this study, the uncertainties in output and input (i.e. v, &, n and w in the Equation 8, Equation 9,
Equation 10 and Equation 11, respectively) are important to the performance of Particle filter in assimilating
the parameters (i.e. SC and C'). The uncertainties (i.e. v, £, n and w in the Equation 8, Equation 9, Equation
10 and Equation 11, respectively) are specified empirically to follow a Gaussian distribution with zero mean
and specified deviation following previous studies(Moradkhani et al., 2005; Wang, Chen, & Cai, 2009; Xie &
Zhang, 2010; Deng et al., 2016). The deviation of C is set as 0.05. Both the deviation of SC andS is assumed
to be proportional to the forecasted SC and S(i.e. obtained from state-transition equation), respectively,
at each time. The proportional factors are both set as 0.05. The deviation of observed error is assumed to
be proportional to the observed runoff. The proportional factor is set as 0.15. The Particle filter is run 100
times account the possible uncertainty in assimilated parameters and the ensemble mean of the 100 times
estimated parameters is considered as the final estimated parameters.

Pettitt’s test for step change detection

In this paper, the Pettitt’s test (Pettitt, 1979) is used to detect significant change in the average value for

the assimilated times series of SC and C. The test employs a statistic U;, n, to verify whether there is a

single change-point between two samples x1,...x; andz,y1,...,2n. The test statistic for each timet (t= 1, 2
.., N) is calculated by:

Un=U_1n+ Zj\;l sgn(xzy —xj)  (12)

The Pettitt’s test is proposed of H: the N variables follow one or more distribution with same location
parameter (no change) againstA: a change point exists. The statistic K; used in significance testing is given
by:

Ky = Maxi<;>n|Us,n|  (13)

The probabilities associated with K; are calculated as:

p = 2eap{—6(K,)"/(N* + N?)} (14)

The value of p < 0.05 means the time series divided by this point (¢) into two series have different distribu-
tions, which suggest there is a significant step change point. Here, hydrological behavior of the catchment
is regarded as changed or shifted if the step change point is identified in either SC or C time series with
p < 0.05.

Evaluation of model performance

The Nash-Sutcliffe efficiency (NSE) (Nash & Sutcliffe, 1970) and water balance bias (BIAS) were used to
evaluate model performance and were calculated as:

NSE =1— > (Qsirn,i_Qubs,ng (15)
2271 (Qobs,i —Qons)

BIAS — Z?:l Qsim,ifzzlzl Qobs,z‘ (16)

E?:l Qobs,i




where Qgim,; and Qops,; are the simulated and observed runoff at the 7 -th time step, respectively; the@

is the mean observed runoff.

Study area

Southeastern Austrilian has experienced the Millennium drought (1997-2009), which was the worst drought
period occurring from 1900 to 2010 (CSIRO, 2012; van Dijk et al., 2013). This drought has caused a severe
decrease in agriclutural production and great depletion of water storage. The Wee Jasper catchment has
experinced the Millenium drought (Saft et al., 2015), and was chosen as a case study catchment for this
study (see Figure 1). It is located in southeastern Austrilia and has an area of 990 km?. The latitude and
longitude of the catchment gauging station are 35.17°S and 148.69°E, respectively. This catchment is an
unimpaired catchment with almost no human impacts on streamflow, such as reservoirs, land-use changes,
irrigation systems,etc . Irrigation has not been reported in this catchment.

[Please insert Figure 1 here]

Climate of the Wee Jasper catchmet is winter-dominated rainfall regime. Mean annual rainfall (P ) of the
Wee Jasper catchment is 1002 mm and mean annual potential evapotransipiration (PET) is 1221 mm over
the study period. The inter-annual varaibility of P is very large. The coefficient of varaition of annual P
during the study period (1970-2014) is about 0.25. The long-term average runoff is 279 mm with a runoff
coefficient of 0.28 during the study period. February and March are the driest months with P less than 60
mm/month. July is the wettest month with mean monthly P of 121 mm. However, monthly PET shows an
opposite seasonal pattern, which varies from 26 mm in July to 206 mm in January. Therefore, catchment
evapotranpiration is generally limited by available water in summer (P < PET), and is limited by available
energy in winter (P > PET).

In this study, daily rainfall, potential evaporation, runoff, and other climate variables were collected from
the dataset of Zhang et al. (2013). Figure 2 presents the anomalies of rainfall, runoff, and temperature in the
Wee Jasper catchment from 1970 to 2014. The Wee Jasper catchment experienced extremely dry conditions
during the Millenium drought period (1997-2009). During this period, all years experienced below average
rainfall (averaged from 1970 to 2014) except for 1999, 2000, and 2005 when annual rainfall was slightly above
the long-term mean. All years from 1997 to 2009 experienced below average annual runoff except 2000. All
years from 1997 to 2009 had above average annual temperature.

[Please insert Figure 2 here]

Results

Rainfall-runoff relationships during pre- and post-drought periods

In order to verify whether there was a change in the rainfall-runoff relationship in the Wee Jasper catchment
due to multi-year drought, a statistical examination used by Saft et al. (2015) was employed. The observed
annual rainfall-runoff relationships for the Wee Jasper catchment during the pre- and post-drought periods
are shown in Figure 3. The entire study period (1970-2014) was divided into the pre- and post-drought periods
using the beginning year of the Millennium drought (1997) (CSIRO, 2012), as the catchment behaviors were
assumed to change during the Millennium drought and to not recover in the more normal last five years
(2010-2014). The runoff data were transformed by the Box-Cox transformation (Box & Cox, 1964) to make
them follow an approximately normal distribution and to become approximately linear with rainfall data as
done by (Saft et al., 2015). Figure 3 demonstrates that during the pre-drought period, the slope and intercept
of the rainfall-runoff relationship are 0.016 and 4.35, respectively. During the post-drought period, the slope
was the same (0.016), but the intercept was 2.19. The significant decrease in the intercept (p < 0.05) suggests



that the rainfall-runoff relationship between the pre- and post-drought periods were significantly different.
The small intercept means that the reduction in runoff with decreasing rainfall during the post-drought
period was smaller than expected for the same reduction of rainfall during the pre-drought period.

[Please insert Figure 3 here]

Simulated runoff by combining a data assimilation method with a hydrological
model

Observed and simulated monthly runoff are shown in Figure 4. The simulated monthly runoff was calculated
by TWBM with ensemble mean parameters from 100 runs using the PF data assimilation method. Figure
4 shows that the simulated monthly runoff agreed well with observed monthly runoff over the entire period
from 1970 to 2014 except March 2012. The NSE between the simulated and observed runoff was 0.94. High
NSE values indicated that the simulated runoff was almost the same as the observed runoff at every time step.
The BIAS between the simulated and observed runoff was -0.05, which indicated that the total volume of
simulated runoff was slightly less than the volume of observed runoff. Both NSE and BIAS values suggested
that the long-term monthly rainfall-runoff relationship of the Wee Jasper catchment was well captured by the
combination of the PF data assimilation method with TWBM. Thus, assimilated time-variant parameters of
the hydrological model (i.e., SC and C' ) can be used to infer the long-term dynamic state of the catchment
hydrological behavior.

[Please insert Figure 4 here]

Changes in the state variables (SC andC' )

Anomalies of the annual values of SC and C from 1970 to 2014 are shown in Figure 5. The anomalies were
calculated using ensemble mean parameters from 100 runs using the PF data assimilation method. Annual
anomalies of SC (Figure 5a) were generally seen to increase from negative to positive over the 1970-2014
period, with some variability. Annual anomalies of SC varied from -40.7% around 1976 to 22.4% around
2004. The entire study period can be divided into three different but consecutive periods (1970-1984, 1985—
1992, 1993-2014) by the three-year moving window curve. The three-year moving window of SC anomalies
was negative during the 15 period (1970-1984). The moving window curve alternated between negative and
positive values during the 2°¢ period (1985-1993). And moving window curve was all positive during the
3'4 period (1994-2014) except for 2013. The Millennium drought period (1997-2009) lies in the 3*{period
(1994-2014), indicating that during the Millennium drought period, SC was larger than the mean SC value
cacluated over the entire study period (1970-2014).

Figure 5b shows inter-annual fluctuations of the anomalies of C' . Annual anomalies of C' showed a similar
increasing time trend as seen for SC. Basically, anomalies of C were negative at the beginning of the study
period, and mostly positive at the end of study period. The C' anomaly fluctuated more frequently and
had shorter and more consecutive positive and negative periods than seen for SC (Figure 5a). Annual
anomalies ranged from -23.5% to 21.7%, and could be divided into three periods (1970-1979, 1980-1997,
1998-2014) using the three-year moving window curve. The three-year moving window ofC' anomalies was
always negative during the 1%'period (1970-1979). It then alternated between negative and positive values
during the 2°¢ period (1980-1997), similar to what was observed for SC, but with more fluctuation cycles.
The three-year moving window of C' anomalies was always positive during the 3™ period (1997-2014) except
for 2013. The Millennium drought period (1997-2009) fell in the 3"9period (1997-2014), during which the
three-year moving window of C' anomalies were all positive, indicating the during the Millennium drought
period C was larger than the mean C'value calculated for the entire study period (1970-2014).

Figure 6 presents of SC and C' at the monthly time scales over the 1970-2014 study period with the 5.0%—
95.0% prediction uncertainty range (grey ribbon) estimated from 100 model runs. Step changes in the
time-variant series of SC and C' were detected using the Pettitt-test and are also shown in Figure 6 (red



dashed line). In Figure 6a, the step change for SC was identified as occurring in April 1997. The average
values of SC before and after the step change were 2606.4 and 3217.4 mm, respectively. The average value
of SC increased 23.4% after the step change. The estimated monthly time series of C' is shown in Figure 6b.
The step change for C' was identified as occurring in November 1996. The average values of C' before and
after the step change point were 1.08 and 1.19, respectively. The meanC' value increased about 10.2% after
the step change. Figure 6 shows that TWBM parameters shifted significantly around the beginning of the
Millennium drought (i.e., 1997), which is consistent with the statistical examination described in Section
4.1, and indicates a significant shift in the rainfall-runoff relationship in the Wee Jasper catchment due to
the prolonged drought.

[Please insert Figure 5 here]

[Please insert Figure 6 here]

Discussion

Changes in rainfall-runoff relationship induced by drought

Figure 3 and Figure 6 both show the consistent result that there was a shift in the rainfall-runoff relationship
during the post-drought period (1997-2014) compared with the relationship during the historical period
(1970-1996). In this study, the increase in the catchment water storage capacity and the decrease in soil
moisture are considered to be the main causes that induced the observed change in the hydrological process
in terms of the increase of parameters SC and C' . The decline in soil moisture means decreased groundwater
recharge (Western, Grayson, & Bloschl, 2002) leading to a decline in groundwater level and reduced discharges
to stream networks. Increased catchment water storage capacity may also lead to a larger initial rainfall
loss during the drought and result in smaller runoff coefficient (Saft et al., 2016). The increase in catchment
water storage capacity may be caused by the decline in groundwater level, which will be discussed in Section
5.2. Many previous studies (Petrone et al., 2010; Petheram, Potter, Vaze, Chiew, & Zhang, 2011; Hughes
et al., 2012; Chiew et al., 2014) also reported that declining groundwater level and deep soil moisture could
lead to changes in the rainfall-runoff relationship during the Millennium drought in southeastern Australia.
The pre-drought groundwater level was close to the soil surface, and could amplify the generation of surface
runoff. However, this effect will be diminished during drought with lower groundwater level and drier deep
soil, resulting in less rainfall becoming runoff.

Estimated time-variant model parameters

SC represents the active water storage capacity (Xiong & Guo, 1999), which is not a constant, but rather
is a time-variant parameter in contrast to the original parameter definition. There is also a difference in
the physical meaning of C' compared with the original definition given by Xiong & Guo (1999). In this
study, a change in C' can reflect a change in the ratio between rainfall and soil moisture in supplying actual
evapotranspiration. The higherC' value means that the ratio of rainfall to soil moisture is smaller with
regards to supplying actual evapotranspiration. That result is due to Equation (1) of TWBM being based
on the Budyko framework (Xiong & Guo, 1999), where the mean variation of soil water content is assumed
to be zero on a multi-year scale. However, at a monthly scale, the rainfall is sometimes not enough to
provide water availability for evapotranspiration, and soil water content in the deeper soil layer is used
to sustain evapotranspiration during drought (Cheng, Xu, Wang, & Cai, 2011). If evapotranspiration is
calculated using equation (1) when TWBM is combined with the PF data assimilation method, then C' is
calculated optimally at each time step rather than over the entire study period. The time-variant parameter
C reflects the variation of the ratio of rainfall to soil moisture at each time step. Thus, the increase in C
can be attributed to the decrease of water supply (including rainfall and soil moisture) available for actual
evapotranspiration. This can be inferred from Figure 2, which also suggests that the Wee Jasper catchment



experienced a wet period from 1983 to 1996). Average PET and precipitation were approximately equal
during this wet period. The PET and precipitation were 1174 mm and 1105 mm, respectively. However,
during the period of 1997-2009, the average PET became 403 mm larger than average precipitation. Due
to changes in the ratio of PET to precipitation (i.e., aridity index), more soil moisture could be evaporated
(Western et al., 2002) during period of 1997-2009. In addition, Figure 2 shows, the rainfall in this period
became lower. With higher evaporation of soil moisture and lower rainfall, the ratio of rainfall to soil moisture
in supplying actual evapotranspiration was smaller.

More evaporated water from soil may come from deeper soil layers. During prolonged drought, trees can
access deep soil moisture and thereby sustain transpiration. Loeb, Wang, Liang, Kato, & Rose (2017) found
that during the Millennium drought, the moisture in the top soil layer stopped declining in 2002, while in the
lower soil layer the moisture continually declined until 2008 in central Australia, indicating that the deep soil
layer was capable of consistently supplying water for evapotranspiration. The decrease in deep soil moisture
may be due to the transpiration of vegetation with deep roots during dry periods (Gao et al., 2014; Loeb
et al., 2017). The capacity of deep soil moisture to consistently supply evapotranspiration is consistent with
the characteristics of the estimated parameter C time series.C' maintained a higher value for a long time
after the step change point in the Millennium drought period (1997-2009) (see Figure 5).

Groundwater decline was considered to be the main reason for the shift in SC. SC represents the active
water storage capacity, which exhibited large fluctuations at the monthly scale (Figure 6). The average
inter-monthly variation of SC was 43 mm. The large fluctuation of SC indicated that it is sensitive to
meteorological factors at the monthly scale. Typically, there are two main factors that can lead to changes
in catchment water storage capacity, i.e., groundwater and soil properties. Groundwater is considered to
be the main factor because of the quicker responses of groundwater to meteorological factors compared
with responses of soil properties (Hughes et al., 2012). Groundwater can also vary at a monthly time scale
(Jackson, Meister, & Prudhomme, 2011; Adams et al., 2012). Relative to the interdecadal variation of soil
properties, such as hydraulic conductivity, water repellence, and preferential flow pathways, groundwater is
more sensitive to meteorological factors in impacting catchment water storage capacity (Saft, Peel, Western,
& Zhang, 2016). Hughes et al. (2012) also found that groundwater level declined about 3 m or more
during the Millennium drought in many catchments in southern Australia, including at the Del Park, Bates,
Lewis, Gordon, Cameron West, and Cameron Central catchments. Many researchers also reported that
the catchment groundwater level dropped significantly during the Millennium drought in southern Australia
(Petrone et al., 2010; Petheram et al., 2011; Kinal & Stoneman, 2012; Gao et al., 2014). Significant declines
in groundwater levels reported by these literature sources are consistent with the findings in this study that
SC was larger during the Millennium drought period (1997-2009) than at other times (Figure 5 and Figure
6).

Data assimilation method for detecting drought impacts

Many studies have reported that drought can alter catchment rainfall-runoff relationships (Conway et al.,
2004; Guardiola-Claramonte et al., 2011; Petheram et al., 2011; Chiew et al., 2014). However, reasons for
changes in the relationship are still unclear, especially regarding the driving factors at the process level.
In this study, a new method involving the combining of a data assimilation technique (PF) with a process
hydrological model (TWBM) was employed to detect and attribute drought induced changes to the rainfall-
runoff relationship in the Wee Jasper catchment, which had experienced a 13-year prolonged drought. Shifts
in hydrological parameters adequately accounted for the change in the rainfall-runoff relationship, as they
represented functional properties of hydrological behaviors. This new method not only confirmed the fact
that prolonged drought altered the rainfall-runoff relationship, but also determined that increased catchment
water storage capacity and decreased soil moisture induced by deep soil moisture depletion through persistent
evapotranspiration of deep-rooted woody vegetation during drought were the main factors changing the
rainfall-runoff relationship during the Millennium drought in the Wee Jasper catchment. The results of this
study demonstrated that combining data assimilation with a process-level hydrological model is an effective
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method for detecting and attributing drought impacts.

Due to a lack of long-term groundwater and soil moisture observations, at this location, the relationship
between the change in hydrological parameters (SC and C) and observed groundwater and/or deep soil
moisture was not presented. Long-term groundwater data for such long-term drought impact studies are
typically very rare (Saft et al., 2016). However, the decline of groundwater and deep soil moisture can still
be inferred from the meaning of the hydrological parameters, as described in Section 5.2. This is one of the
advantages of using time-variant parameters to detect changes in the rainfall-runoff relationship (Deng et
al., 2016; Pathiraja et al., 2016).

The relationship between the hydrological parameters and runoff is non-linear in TWBM. To obtain the
parameters more accurately, the data assimilation used in this study must be capable of handling a non-
linear system. For the capacity of retaining water balance, in contrast to the to the Kalman filter-based
recursive method, PF upgrades the probability distributions of system states rather than changing the state
ensemble members, and thereby retains the water balance law of the hydrological model. Therefore, PF was
viewed as a suitable method for estimating the hydrological parameters in this study.

However, in this study, modeling experiments were not carried out to demonstrate the superiority of PF
and/or TWBM compared with other data assimilation methods and/or physical hydrological models. This
study can be viewed as an exploratory approach for detecting and attributing changes in the rainfall-runoff
relationship induced by prolonged drought rather than a determination of the best combination of a data
assimilation method with a hydrological model. PF was selected because of its ability to handle the non-
linear characteristic (Arulampalam et al., 2002; Moradkhani et al., 2005; Dumedah & Coulibaly, 2013) of
the rainfall-runoff relationship, which is widely recognized as a non-linear type of function. TWBM was
selected because of its successful application with data assimilation (Deng et al., 2016) and its capability
to simulate the catchment rainfall-runoff relationship across a wide range of climates, vegetation, and soil
conditions. Because of the limited number of parameters involved, combining TWBM with PF does not
afford the opportunity to obtain more information of impacted hydrological behaviors. In the future, a more
complex process-based hydrological model with more parameters could be employed to detect the impacted
hydrological behaviors in a prolonged drought situation in order to obtain a better understanding of the
stationarity of the catchment rainfall-runoff relationship, although this will likely involve more uncertainties
and/or computational costs.

Conclusions

A few previous studies using statistical approaches have reported that multi-year drought can induce a shift
in the catchment rainfall-runoff relationship, but rarely have studies provided process-level interpretation of
such shifts. Consistent with the results of previous research, the current study demonstrated that a change in
the rainfall-runoff relationship was detected after the beginning of a prolonged drought period (1997) in the
Wee Jasper catchment in New South Wales, Australia. However, the new analysis approach proposed in this
study found that the change in the rainfall-runoff relationship is induced by an increase of catchment active
storage capacity and a decrease in soil moisture resulting from persistent evapotranspiration of deep-rooted
woody vegetation during the drought, leading to a decline in groundwater level and deep soil moisture.

This study concluded that the combination of data assimilation and a hydrological model was a suitable ap-
proach for detecting the hydrological non-stationarity caused by prolonged drought. This approach not only
can detect changes in rainfall-runoff relationships, but also can identify the driving factors for such changes
at the process-level. The method used in this study can provide assistance in developing strategies and
management practices to mitigate the negative effects of prolonged drought, and in developing preparedness
and adaptation strategies for the challenges of climate change which will likely increase the frequency and
severity of drought in the future.
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List of figures

Figure 1 . Rainfall deciles during the Millennium Drought (1997 to 2009) in eastern Australia (a), and
the river networks of the Wee Jasper catchment (b) in New South Wales, Australia. The rainfall deciles
subplot (a) shows that mean annual precipitation in the region of the Wee Jasper catchment during the
Millennium Drought ranged from very much below average to lowest on record. Subplot (a) was accessed
from the Bureau of Meteorology of Australia (http://www.bom.gov.au). The green open circle indicates the
location of the Wee Jasper catchment.

Figure 2 . Annual rainfall, runoff, and temperature anomalies for the Wee Jasper catchment, New South
Wales, Australia (expressed as a percentage of mean annual rainfall, runoff, and temperature over the period
of 1970-2014). The bars in cyan and red indicate annual rainfall, runoff, and temperature values larger and
lower, respectively, than the mean values. The solid black lines are the three-year moving averages.

Figure 3 . Linear relationship between annual rainfall and runoff in the Wee Jasper catchment, New South
Wales, Australia transformed by the Box-Cox method during two different periods,i.e ., before (red line)
and after (cyan line) 1997.

Figure 4 . Observed (red line) and simulated (cyan line) monthly runoff from 1970 to 2014 in the Wee
Jasper catchment, New South Wales, Australia.

Figure 5 . Annual anomalies of the estimated values of parameters (a) SC (catchment active water stor-
age capacity and (b)C (constant reflecting catchment evapotranspiration dynamics) of the two-parameter
monthly water balance model expressed as a percentage of the mean annual value of SC or C over the
period of 1970-2014. The bars in cyan and red indicate annual values of SC or C that are larger and lower,
respectively, than the mean annual values. The solid black lines are the three-year moving averages of annual
anomalies.

Figure 6 . Estimated monthly values of parameters SC and C from 1970 to 2014. The grey ribbon and
the blue line represent the 5.0%-95.0% range and mean, respectively, of estimated monthly values of an
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ensemble of 100 model runs. The red dashed line represents the mean values of SC and Cfor the periods
before and after the step changes identified by the Pettitt’s test.
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