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Abstract

Extreme weather events have become a dominant feature of the narrative surrounding changes in global climate. with large
impacts on ecosystem stability, functioning and resilience, however, understanding of their risk of co-occurrence at the regional
scale is lacking. Based on the UK Met Office’s long-term temperature and rainfall records, we present the first evidence
demonstrating significant increases in the magnitude, direction of change and spatial co-localization of extreme weather events
since 1961. Combining this new understanding with land use datasets allowed us to assess the likely consequences on future
agricultural production and conservation priority areas. All land uses are impacted by the increasing risk of at least one
extreme event and conservation areas were identified as hotspots of risk for the co-occurrence of multiple event types. Our
findings provide a basis to regionally guide land use optimisation, land management practices and regulatory actions preserving

ecosystem services against multiple climate threats.

Abstract

Extreme weather events have become a dominant feature of the narrative surrounding changes
in global climate. with large impacts on ecosystem stability, functioning and resilience, how-
ever, understanding of their risk of co-occurrence at the regional scale is lacking. Based on
the UK Met Office’s long-term temperature and rainfall records, we present the first evi-
dence demonstrating significant increases in the magnitude, direction of change and spatial
co-localization of extreme weather events since 1961. Combining this new understanding with
land use datasets allowed us to assess the likely consequences on future agricultural produc-
tion and conservation priority areas. All land uses are impacted by the increasing risk of at
least one extreme event and conservation areas were identified as hotspots of risk for the co-
occurrence of multiple event types. Our findings provide a basis to regionally guide land use
optimisation, land management practices and regulatory actions preserving ecosystem services
against multiple climate threats.

Recent large flood and drought events have received global media attention. For example, unprecedented
winter rainfall across the UK in 2013/14 resulted in extreme flooding and storm surges with large areas of
agricultural land under water for more than 80 days (ADAS, 2014), while over 60 % of the state of California’s



land area was under varying severity of drought from 2011 to 2017 (U.S. Government, 2018). Flooding and
drought can have large economic impacts; the World Economic Forum has rated extreme weather events as
the most significant risk facing humanity (World Economic Forum, 2018). Losses to the UK agricultural
sector of £180 million were reported as a result of the 1995 drought and associated heatwave (Environment
Agency, 2006), while the 2013/14 flood led to losses of over £20 million (ADAS, 2014). Similarly, the total
economic impact of the European heatwave in 2013 was estimated at 11 billion Euros (Environment Agency,
2006), while extreme snow was estimated to cost the US economy up to $3 billion in 2016 (Lee and Lee,
2019). Natural ecosystems are also vulnerable, for example, record heat and dry conditions in 2010/2011
led to a sudden collapse of large areas of Australian eucalypt forest previously considered to be resilient to
drought (Matusick et al., 2013). Furthermore, the hot and dry conditions of 2018-19 in the UK resulted in
unprecedented wildfires in the globally rare moorland habitat with 135 individual fires burning 29,334 ha of
land (E.F.F.I.S.; 2019). In 2019, hot and dry conditions in Australia resulted in the generation of mega-fires
with unprecedented sizes and number of fires covering at least 3.8 million ha of temperate forest (Nolan et
al. 2020)

While there is a wealth of evidence that temperatures are increasing, the pattern for rainfall is uncertain
(IPCC, 2013) but predicted to become temporally uneven with the majority of annual precipitation totals
occurring in a small number of intense events (Pendergrass and Knutti, 2018). For many regions of the UK,
climate models and historical observations indicate that the frequency, intensity (Thompson et al. 2017;
Kendon et al. 2014) and duration (Roudier et al. 2016) of winter rainfall has increased, along with the
incidence and intensity of short burst summer downpours (ADAS, 2014) and the kinetic energy of autumn
rainfall (Alfieri et al., 2015). Models also predict an increase in the frequency of short-term droughts of three
to six months in duration (Burke et al. 2010). These all have implications for agriculture, conservation and
human health.

To date, the majority of studies investigating the risk of extreme weather events have focused on the global or
national scale, and often only on a single event type. There is greater uncertainty in changes at the regional
scale where the immediate impacts will be felt (Marotzke et al. 2017). Spatial variation in weather patterns
can be large and analysis at the national scale masks regional differences in the risk of occurrence and the
expected event type (Zampieri et al., 2017). Furthermore, extreme events might not occur in isolation and
there are an increasing number of examples of direct transitions from one extreme weather regime to another
(e.g. flood to drought or wice versa ) (Mahony and Cannon, 2018; Swain et al. 2018; Loecke et al., 2017). In the
UK, heavy spring rainfall in 2012 led to 78 days of flooding, while 98 days of official drought were declared the
following summer which the media dubbed ‘the wettest drought on record’ (Channel 4 News, 2012). In 2019
there were 5,600 flood warnings across England while groundwater reserves were depleted in 25 areas (The
Guardian, 2019)( Such events have highlighted the need for stakeholders, including farmers, water companies,
forestry and environmental protection and conservation bodies to prepare for the possibility of both flooding
and drought within the same year. So called ‘compound events’ have been identified by the World Climate
Research Program as a research priority (Alexander et al. 2016) and are likely to have disproportionately
severe impacts on ecosystems, potentially tipping ecosystem functions into new trajectories (Johnstone et
al. 2016).

To safeguard vulnerable ecosystems and the services they provide, adaption in management may be re-
quired. However, the specific strategy employed will vary depending on the event type. For example, the
re-introduction of grazing livestock to moorland could reduce fire risk during dry, hot summers but could
also increase the risk of compaction during wet periods increasing subsequent flood risk. Similarly, planting
trees to sequester carbon may increase fire risk under dry conditions leading to a potential reduction in air
quality, water quality and human health if planted in the wrong place (Lui et al. 2017).

To advise stakeholders and guide policy we need to understand the regional risk posed by different (single
and multiple) extreme events and identify where they might impact delivery of ecosystem services (e.g. food
security, biodiversity, carbon storage) by different land use types. In this study, we utilised the historical UK
weather record held by the UK Met Office National Climate Information Centre to examine, for the first time,



the change in frequency and distribution of, and interaction between, indicators of four weather extremes;
extreme heat, extreme cold, high rainfall and low rainfall, based on thresholds indicative of heatwaves, cold
snaps, floods and droughts, between two time periods 1961-1988 and 1989-2016. We integrated the results
from this analysis with national land cover data to identify extreme weather hotspots in relation to ecosystem
type and their ability to deliver different ecosystem services.

These datasets were statistically interrogated to answer four key questions: (1) Has the frequency of extreme
events in the UK increased between the two time periods? (2) Are there hotspots where the annual risk of
occurrence for two or more event types has increased? (3) Are there areas of the UK where the probability of
occurrence of two or more types of event within the same year has increased? and (4) Are some vulnerable
ecosystems more exposed to changes in risk of increased numbers of events occurring than others?

Through this analysis, we provide evidence for the perceived increase in the frequency of extreme events
across the UK. To date, most studies of this nature have focused on the incidence, or impact, at the national
scale. Our results show strong regional variation in the direction and magnitude of change enabling the
production of national risk maps which can be used by stakeholders to guide land management and policy
that promotes adaptation to protect the delivery of ecosystem services from different land uses.

Our analysis shows that between the two 28-year periods of high resolution meteorological records there has
been a notable change in the frequency of threshold exceedance across the UK with strong regional response
patterns (Fig. 1). Temperature metrics showed the largest and most widespread response but the direction
of change varied. For extreme heat events, there was a significant increase in the mean number of events
during the last 28 years, with the south east of England experiencing the largest change, corresponding
to on average 1.87 additional events each year. Significant increases (0.68-1.36) in the mean number of
extreme events also occurred across most of England, except the north west and across the east of Northern
Ireland, and the far north of Scotland. Concurrently, the frequency of extreme cold events decreased across
all regions except for much of Wales and small regions of south west England and northern Scotland. The
magnitude of change was greater than that for heat extremes, ranging from 1-2.3 fewer events each year.
Response patterns in rainfall extremes were weaker than for temperature; this is consistent with the large
body of research showing mixed results for predicted changes in rainfall patterns across the globe (Alfieri et
al. 2015). However, the results show a significant increase in wet extremes ranging from 1.0 - 1.6 additional
events each year in western Scotland to 0.8 - 1.0 additional events in the Welsh border region, along parts
of the south coast of England and East Anglia, and in western Northern Ireland. The change in extreme
dry events was small with no significant increase overall and a decrease of 0.9 events in the far north for
Scotland. However, a strong spatial pattern in extreme dry events did emerge, reflecting the changes in heat
events with an increase of up to 0.5 events in south east England.

These changes in threshold exceedances for temperature and rainfall provide statistical evidence underpin-
ning the perceived increase in UK heatwaves, floods and droughts over the past decade and provide insight
into which regions are most at risk. While the changes in temperature drivers relate directly to heat waves
or cold snaps, the use of precipitation as a proxy for flood or drought events is less robust. However, an
increase in extremely wet periods in Scotland, parts of southern England and Wales and Northern Ireland
will heighten flood risk. Furthermore, runoff extremes have been shown to increase more quickly than pre-
cipitation extremes in a warming climate, and increases in rainfall are likely to underestimate the risk of
flash flood events (Yin et al., 2018). These results corroborate the recent analysis of observed river discharge
trends between 1960 and 2010 which found the largest increase in flood discharge in these areas (Yin et
al., 2018). Similarly, drought risk is a function of both rainfall and temperature with prolonged high tempe-
ratures exacerbating soil dryness and providing feedback loops further reducing rainfall, increasing surface
temperatures and promoting fire risk(Teuling, 2018). Seasonal analysis of changes in extreme dry events
revealed that the greatest change occurs during spring (Fig. S1) when new season growth begins, and is a
vital period for sufficient soil moisture supply for agricultural crops. Spring drought has been shown to be
more detrimental to plant production compared to summer drought conditions across a range of ecosystems
(Song et al., 2019). Increases in dry spring events may be exacerbated by a spatially coupled increase in the



number of periods of suitable winter growing conditions utilising water reserves built up during preceding
wetter seasons (Fig. 2). Whilst not statistically significant (atp < 0.05), the indicative combination of i)
increased dry events with ii) an increase in heat events, and iii) increased winter growing periods, points
towards a heightened drought risk in the future, especially in the south east of England where these metrics
showed the greatest increase. Furthermore, the probability that a heat event and a dry event will occur
within the same year was high and ranged from 0.80 to 0.98 in this area (Fig. S2). Although the evidence
for increased extreme dry events, from this analysis is weak, it corroborates recent modelling indicating high
droug[ht] vulnerability in East of England based on reported historical agricultural impacts (Parsons et al.,
2019)130

The environmental impact of this increased frequency in extreme events depends on the land use and the
biodiversity and ecosystem services it is expected to deliver. The response may vary, in magnitude and direc-
tion, based on the type of ecosystem and the dominant services it provides (Table 1, Table S1). We grouped
the UK land cover categories (Rowland et al. 2015) into four broad classes each providing specific eco-
system services and levels of biodiversity: (1) Agriculture, incorporating arable/horticultural and improved
grasslands (provisioning), (2) Woodlands, incorporating broadleaf and coniferous woodlands (provisioning,
regulating and biodiversity), (3) Conservation, incorporating National Parks and Sites of Special Scientific
Interest (SSSIs) (supporting regulating and biodiversity), (4) Carbon stores, incorporating heathland, heath
grasslands and bogs (regulating).

The reduction in frequency of cold events (i.e. less frosts and snow) shows an impact across all ecosystem
types, ranging from 64% of all the land in SSSIs to >80% of the total area under arable land use, respectively.
Simplistically, it might be assumed that a reduction in winter cold events would be beneficial. However, many
plants rely on low winter temperatures for vernalisation and warmer winters can cause increased pest and
disease risk, loss of cold acclimation, asynchronicity of biological lifecycles and increased runoff (Table 1).

Agricultural systems and broadleaf forests represented the largest proportion of the total land area at in-
creased risk of extreme heat events and the arable sector in particular appears to the most affected with
83% of the total area at risk (Fig. 3a). This reflects the large dominance of arable land use in the East of
England. Furthermore, recent research suggests that heat extremes have a larger impact on grain yields than
extremes in precipitation, highlighting the risk to arable systems (Vogel et al., 2019) and, hot dry spells can
influence agricultural water use, especially under cropping. In the period between 2000 and 2017, the highest
2 years for abstraction for the purpose of spray irrigation correspond with the lowest 2 years of annual levels
of rainfall (DEFRA, 2019a). Temperature extremes also dominated in improved grasslands, with 56% of the
total area exposed to increase risk of extreme heat which directly impacts on livestock production. However,
the proportion of grassland exposed to increases in extreme rainfall, and therefore flooding, was greater than
in arable systems. Soil carbon (C) stores and coniferous forests appear to be most at risk of extreme rain and
flooding, with increased frequency of events occurring across 35-55% of the total area. Forests are common-
ly proposed as mitigation strategies to reduce flood risk through interception of rainfall and increased soil
infiltration (Stratford et al., 2017). However, extreme rainfall events often override this increased infiltration
capacity and the potential to reduce the severity of major floods is limited. When flooding does occur, the
impact can be severe in commercial forestry operations with largescale erosion and damage downstream from
woody debris. For soil C stores, reduced extreme cold and extreme rainfall present the largest risk. This has
large implications for the C cycle and is likely to increase the release of soil C and decrease sequestration
through and increase in wet-drying cycles and microbial respiration and increased erosion losses (Petrakis
et al., 2017; Reichstein et al., 2013; Kim et al., 2012; Schimel et al., 2007) (Table 1). Our analysis also
indicates that large expanses of upland bog or lowland fen peat are located in regions experiencing higher
temperatures, droughts and therefore potential fire risk. These events threaten to exacerbate greenhouse gas
emissions and destabilization of terrestrial C stores.

Specific regions of the UK show a significant increase in frequency of more than one extreme event type (Fig.
4). Risk hotspots, with significant increased frequency of three threshold exceedances are identified in the
south coast of England, areas in the Welsh borders and the north east of England, highlighting areas most



at risk of unexpected ecosystem response and largescale impacts on function (Table 1). Land of high nature
value appears to be at most risk of multiple extreme event types with all three stress indicators increasing
in frequency in 24 and 21% of the total area covered by National Parks and SSSIs (Fig. 3b). Due to the
importance of these sites as niche habitats for rare or endangered species this could have severe impacts
on biodiversity and genetic resources. This was seen following the 1995 UK drought which led to a shift in
butterfly communities from vulnerable specialised species to widespread generalist species (De Palma et al.,
2017).

Exposure to an extreme event can make ecosystems more susceptible to a subsequent stress, magnifying
impacts (Hohner et al., 2019; Ksudhal et al., 2018; Mazdiyasni and AghaKouchak, 2015; Zscheischler et al.,
2014) with the potential to decrease the threshold by which climatic metrics, such as precipitation amount,
generate an extreme event, such as flood or drought (DEFRA, 2019). Our results show that the overall UK
mean increase in the probability of all four event types occurring with the same year low at 0.275. However,
the impact on ecosystem function would likely be extreme. The increase in frequency of extreme heat events
was the dominant driver of the response pattern, with the highest probabilities in the south east of the UK
and the lowest probabilities in Scotland, Wales, Northern Ireland and north-west England (Table S2; Fig.
S2).

To illustrate the impact on agriculture, we have taken the UK arable sector as a case study since the
combination of adverse weather conditions can magnify the impacts on agricultural production. In particular,
the combination of extreme wet spells and extreme dry spells within the same year has been shown to be
particularly detrimental for crops. In 2017, there was an 8.3%, 17% and 19% reduction in income in England
from key three crops, wheat, sugar beet and potatoes respectively. This was attributed, in part, due to
reduced yields caused by wet spring conditions, hot dry summer and heavy autumn rains during harvest43].
Reductions in yields reduced the export value of wheat by 73% and 84% in 2017 and 2018 respectively, and
increased the import expenditure by 38% and 79% respectively (DEFRA, 2018). The majority of the UK’s
arable and horticultural land area is in the East of England, with 28% of total wheat production and 62%
of sugar beet production located in the South East, and East Anglia accounting for one third of England’s
potato crop (DEFRA, 2018). The probability that extreme hot, dry and wet events will occur within the
same year is highest for this region of the country and ranges from 0.69-0.99 (Fig. S2) highlighting the
vulnerability of this sector to future climatic risk.

Globally, societies are facing unprecedented and complex threats to food and water security, infrastructure
and well-being due to climate change. The increased frequency of multiple extreme events across different
land uses identified by our analysis is likely to have detrimental impacts on the ecosystem service provision.
While some benefits to service provision have been identified, these are likely to be out-weighed by the
negative impacts (Table 1). In May 2019, the UK government declared a state of climate emergency that
was swiftly followed by Ireland, France and Canada. Furthermore, large-scale land use change has been
identified as a strategy for the UK to meet its emission reductions in the Paris Agreement (Committee on
Climate Change, 2018), and its recent target of net zero emissions by 2050. The evidence herein provides
vital information on the vulnerability of different areas and economic sectors to climate extremes and should
be used by UK policy makers, farm advisers and environmental agencies to develop adaption strategies and
land use change policy tailored to the specific extreme event threat, based on location and ecosystem type.
This research highlights the importance of considering the change in exposure of land to (combinations of)
extreme weather at the regional scale and adoption of a similar approach in other countries could inform the
safeguarding of the vital ecosystem services on which society depends.

Methods
Dataset used in this study

We used the 5 km scale historical UK weather record held by the UK Met Office’s National Climate Infor-
mation Centre (Perry and Hollis, 2005). This gridded dataset covers the whole of the UK and includes daily
maximum and minimum temperature and rainfall data from observation stations from 1960 to 2016.



We developed indices relating to the risk of occurrence of four extreme weather events, namely (i) heat
waves, (ii) cold snaps, (iii) extreme rainfall (flood), and (iv) low rainfall (drought). We employed a threshold
approach and for each grid point extracted the frequency each year that the five day rolling mean temperature
or rainfall exceeded this threshold for a set number of days. We split the resulting dataset into two 27 year
time periods, 1961-1988 and 1989-2016, reflecting the Met Office’s definition of long-term averages for
weather data of 30 years (World Meteorological Organization, 2017), while keeping two discrete time periods
of equal length.

Setting extreme weather thresholds

With the exception of the index relating to drought, thresholds were set based on deviation from the mean va-
lue of the whole dataset for each grid point. Maximum daily temperature or rainfall above the 95" percentile
and minimum daily temperatures below the 5% percentile were considered extreme (World Meteorological
Organization, 2017al49. Temperature and rainfall conditions are spatially variable across the UK and utili-
sing percentiles as the threshold instead of a fixed value allows for regional variation in normal conditions.
What is considered an extreme temperature or rainfall amount in one location may be relatively normal for
another and it is likely that the largest impact on ecosystem function occurs when conditions are outside
the norm rather than at a fixed value (Zhang et al., 2011).

Using this approach, the following thresholds were proposed as an event metric for extreme heat, cold and
rainfall based on recommendations provided in the draft guidelines on the definition and monitoring of
extreme weather and climate events produced by the World Meteorological Organization (WMO) (World
Meteorological Organization, 2018a).

Heat: The number of times each year where the 5-day rolling mean of the maximum temperature exceeds
the 95" percentile of the whole dataset for 3 or more days.

Cold: The number of times each year where the 5-day rolling mean of the minimum temperature is below
the 5t percentile of the whole dataset for 3 or more days.

Ezxtreme rainfall: The number of times each year where the 5-day rolling mean of the daily rainfall total is
above the 95" percentile for 3 or more days.

Low rainfall: The number of times each year where the 5-day rolling mean of total daily precipitation was
below 1 mm for 14 days or more, based on a historical definition of agricultural drought used in Britain of
rainfall below 1 mm for more than 15 days (Heim et al., 2002).

For this study, extreme rainfall was used as a proxy for flood risk. While it is recognised that flood generation
encompasses many complex variables, including the hydrology and topography of the landscape, we focus on
rainfall totals as an indicator of the change in risk potential. Daily rainfall totals in the preceding 0 to 3 days
was shown to be the best predictor of river flood events across the Swiss Alps (Froidevaux et al., 2015). In
the UK the total rainfall over 3 days was linked to 40 year maximum peak river discharge and recorded flood
events in 3 out of 4 studied river catchments (Lavers et al., 2011). In China, persistent extreme precipitation
events, considered to indicate high damage potential were defined as daily precipitation total above 50 mm
for 3 or more days (Chen and Zhai, 2013). Similarly to the flood index, we used rainfall as a proxy indicator
for drought risk. However, prolonged dry spells, rather than a deviation from the minimum rainfall long-term
average are likely to be more significant in reducing soil moisture content and increasing risk of drought.

Data analysis

To investigate how the risk of each event type occurring within a year has changed between the two time
periods, we plotted the change in the number of events between 1961-1988 and 1989-2016 on a gridded map
of the UK, using output from the following model:

Single extreme weather event models: Generalized Additive Models or GAMs (Wood, 2017) were adopted as
the modelling framework to characterise the trends in extreme event frequency. This well-established class
of models allows for flexible characterisation of the spatio-temporal variability of a modelled environmental



variable and has been used extensively to characterise natural hazards (Youndman and Economou, 2017)
and in modelling environmental variables more generally (Wood, 2017). The data extracted relates to counts
of events y; +in grid cell s and year ¢. To capture the variability of these counts in space and time, we assume
a Poisson distribution with meanyi,;: the mean count in cell s and year ¢. This mean is then characterised
as a function of s and ¢ in the following way:

log(pee ) = po +fr (t) + fs (s) + fs,r (s,t)

The three unknown functions f (*) were all assumed smooth in the sense of capturing spatial and temporal
variation that does not change too extremely in neighbouring locations or points in time. Much more
extreme variation was captured by the random element of the model (i.e. the Poisson variability). The one
dimensional function fr (¢ ) of time (in years) was used to capture the overall temporal trend in the counts
across space, whereas fs (s ), a two-dimensional function of longitude and latitude was used to capture
overall spatial variability (across time). Lastly, the three dimensionalfs 7 (s,¢ ) captured spatio-temporal
variability, in the sense of allowing for different spatial patterns for each time point (year). This captured
inter-annual variability in the spatial patterns exhibited by y,: . Such models were estimated using the
statistical language R (R Core Team, 2019) and the package mgev (Wood et al., 2016).

The model was used to estimate event counts ys: using the simulation from the predictive distributionp
(ys,. ). This distribution captures both the Poisson variability in the counts as well as the uncertainty in
estimating the three unknown functions. From this, we computed the distribution of the difference in mean
counts between the two time periods, i.e. mean count in 1989-2016 less the mean count in 1961-1988. This
difference was plotted as a Z score in figure 1 and figure 2 and figure S1. Probabilities where this difference
is not zero at the 5% significance level are termed significant (analogous to a p value < 0.05).

The impact of rainfall on soil moisture is controlled to some extent by seasonality of resource use. Addi-
tionally, the impact of soil moisture deficit on plant response is related to growth stage. Therefore, we also
investigated the change in dry spells at the seasonal time scale. To do this, we split each year into four,
three-month time periods; Spring (March, April, May), Summer (June, July, August), Autumn (September,
October, November) and Winter (December, January, February), and carried out the above data analysis
on the defined threshold for low rainfall in each season.

Multiple event interactions

To investigate how the potential for the interaction of different extreme events types has changed, we em-
ployed two methods to answer two slightly different questions.

Are there areas of the UK where the annual risk of occurrence at an individual grid point has increased
between the two time periods (1961-1988 and 1989-2016) for two or more of the classes of extreme event?

To investigate this question we overlaid the grid points from the single event analysis to determine those
points where there was a significant increase in two or more event metrics.

Are there areas of the UK where the risk of two or more different types of extreme event occurring at an
individual grid point within a single year has increased between the two time periods?

To investigate this question we extended the methodology used for the single events to allow for dependence
between them, and investigated how the probability of events of two or more types occurring within a single
year has changed over the two time periods.

Multiple extreme weather event models

To quantify the correlation between the counts of the various stress events we used the single event models
to detrend the data for each event metric and create a transformed data set which does not exhibit spatio-
temporal variability. Using the transformed data, the dependency across the various event metrics was
quantified using correlation. The single event Poisson models were used to transform the original datays
(for each stress) to the scale of a Gaussian random variable with mean zero and variance one. At that



scale, all spatial and temporal variability has been factored out and the sample correlations between the
transformed counts for each event are estimates of the dependency between each event.

A modified simulation technique was employed to sample from the predictive distribution of the counts for
each event, allowing for the correlation between them. Firstly, we generated random samples of the data at
the detrended scale, respecting the correlation between the event metrics at this scale. Then, we transformed
these samples back to original scale of the data to obtain a set of simulated counts in each grid cell and year,
thus maintaining both the spatio-temporal variability in each event but also the correlation between event
metrics.

The thresholds were set as the sample mean of each event metric across all grid cells and years. The joint
probability that the annual mean count of two or more event categories exceeds a particular threshold was
then determined. Comparison of differences in these probabilities between 1961-1988 and 1989-2016 lie in
the region between -1 and 1, and conveys information about whether the risk of two or more stress events
occurring within one year has increased. Significant changes are ones that are above 0.05 or below -0.05.

Spatial mapping of the extreme weather event datasets

Data were exported from R as ascii text files with grid cell centroid locations provided as absolute integer
coordinates in British National Grid projection to facilitate import into ArcGIS 10.5 for visualisation and
further analyses. Null values (NA) representing offshore locations were recoded to (-9999), ensuring com-
pliance with numeric format prior to import. The point locations were plotted and then spatially joined to
a pre-calculated vector 5 km grid, whereupon joined null values and their corresponding grid squares were
identified and removed. The resulting datasets were then used to create thematic maps.

Geoprocessing (clipping) was used to extract underlying published land cover data (Rowland et al, 2017).
The resulting land cover data required planimetric areas to be re-calculated, and these were subsequently
summarized by ecosystem type and aggregate area. The UK land cover categories (Rowland et al. 2017)
were grouped into four broad classes each providing specific ecosystem services and levels of biodiversity:
(1) Agriculture, incorporating arable/horticultural and improved grasslands (provisioning), (2) Woodlands,
incorporating broadleaf and coniferous woodlands (provisioning, regulating, and biodiversity), (3) Conser-
vation, incorporating National Parks and Sites of Special Scientific Interest (SSSIs) (supporting, regulating
and biodiversity), (4) Carbon stores, incorporating heathland, heath grasslands and bogs (regulating).

Where the analyses had revealed significant change, a field attribute selection was used to identify the
corresponding grid squares, extracted, and then exported as separate geospatial datasets. To facilitate further
quantification of land cover types affected, the boundaries between resulting significant grid squares were
dissolved, so that only the perimeters of aggregated squares remained. These two datasets were combined
to produce a map for each of the four land cover categories overlain with areas of significant increase in
frequency of each extreme event metric.
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Figure 1: Change in the annual frequency of threshold exceedance between the period 1961 - 1988 and
1989 - 2016. Positive numbers denote an increase and negative numbers denote a decrease. A value of 1.0
corresponds to one additional event per year and a value of - 1.0 corresponds to one fewer event per year.
Areas of significant change (p<0.05) are denoted by hatching.

Figure 2: Change in the frequency of spells of (a) winter growing conditions and (b) spring dry spells between
the period 1961 - 1988 and 1989 - 2016. Significant areas of change (p<0.05) denoted by hatching.

Figure 3: Total area (ha) of vulnerable ecosystem category exposed to a significant increase in the frequency
of a) single stress event types and b) multiple stress event types.

Figure 4: Co-occurrence of a significant increase in the frequency of threshold exceedance of each event type
at the p < 0.05 significant level (a) and the interaction with vulnerable land use category: agriculture (b),
woodlands (c), Conservation areas (d) and carbon stores (e).

Table 1— Impact of the most prevalent extreme weather events on the main ecosystem services delivered
within each land use type. The main ecosystem service is given in brackets where P is provisioning, R is
requlation, S is supporting and C is cultural.

Supplementary document

Figure S1: Change in the frequency of extreme dry events between the period of 1961 — 1988 and 1989—2016
during each meteorological season. Significant areas of change ((p < 0.05) denoted by hatching.

Figure S2: Change in the joint probability that the annual mean count of two or more event categories exceed
their respective thresholds between the period 1961—1988 and 1989—2016. These values lie in the region of
— 1.0 to 1.0 and convey information on the change in the risk of (a) two, (b) three or (c) four extreme events
occurring within the same year. Significant change was inferred for probabilities above 0.05 or below —0.05.

Table S1— Summary of the risk and benefits of different extreme event stress on ecosystem service delivery
based on and expert-led comprehensive review of the literature.

Table S2— Summary statistics of the change in probability that all four extreme event thresholds will be
exceeded within the same year for the UK as a whole and for the individual regions defined by the Met Office
in the accompanying figure.

Hosted file

Main text table.docx available at https://authorea.com/users/327697/articles/455154-spatial-
co-localization-of-extreme-weather-events-a-clear-and-present-danger
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