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Abstract

Our purpose is to assess epidemiological agent-based models– or ABMs - of the SARS-CoV-2 pandemic methodologically. The
rapid spread of the outbreak requires fast-paced decision-making regarding mitigation measures. However, the evidence for the
efficacy of non-pharmaceutical interventions such as imposed social distancing and school or workplace closures is scarce: few
observational studies use quasi-experimental research designs, and conducting randomized controlled trials seems infeasible.
Additionally, evidence from the previous coronavirus outbreaks of SARS and MERS lacks external validity, given the significant
differences in contagiousness of those pathogens relative to SARS-CoV-2. To address the pressing policy questions that have
emerged as a result of COVID-19, epidemiologists have produced numerous models that range from simple compartmental
models to highly advanced agent-based models. These models have been criticized for involving simplifications and lacking
empirical support for their assumptions. In order to address these voices and methodologically appraise epidemiological ABMs,
we consider AceMod (the model of the COVID-19 epidemic in Australia) as an example of the modeling practice. Our case study
shows that, although epidemiological ABMs involve simplifications of various sorts, the key characteristics of social interactions
and the spread of SARS-CoV-2 are represented sufficiently accurately. This is the case because these modelers treat empirical
results as inputs for constructing modeling assumptions and rules that the agents follow; and they use calibration to assert the
adequacy to benchmark variables. Given this, we claim that the best epidemiological ABMs are models of actual mechanisms
and deliver both mechanistic and difference-making evidence. Furthermore, the efficacy claims are not only internally valid but
also adequately describe the effects of interventions in the targets of the models. We also discuss the limitations of ABMs and
put forward policy recommendations.
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Our purpose is to assess epidemiological agent-based models– or ABMs - of the SARS-CoV-2 pandemic
methodologically. The rapid spread of the outbreak requires fast-paced decision-making regarding mitigation
measures. However, the evidence for the efficacy of non-pharmaceutical interventions such as imposed social
distancing and school or workplace closures is scarce: few observational studies use quasi-experimental rese-
arch designs, and conducting randomized controlled trials seems infeasible. Additionally, evidence from the
previous coronavirus outbreaks of SARS and MERS lacks external validity, given the significant differences
in contagiousness of those pathogens relative to SARS-CoV-2. To address the pressing policy questions that
have emerged as a result of COVID-19, epidemiologists have produced numerous models that range from
simple compartmental models to highly advanced agent-based models. These models have been criticized for
involving simplifications and lacking empirical support for their assumptions.

In order to address these voices and methodologically appraise epidemiological ABMs, we consider AceMod
(the model of the COVID-19 epidemic in Australia) as an example of the modeling practice. Our case study
shows that, although epidemiological ABMs involve simplifications of various sorts, the key characteristics
of social interactions and the spread of SARS-CoV-2 are represented sufficiently accurately. This is the case
because these modelers treat empirical results as inputs for constructing modeling assumptions and rules
that the agents follow; and they use calibration to assert the adequacy to benchmark variables. Given this, we
claim that the best epidemiological ABMs are models of actual mechanisms and deliver both mechanistic and
difference-making evidence. Furthermore, the efficacy claims are not only internally valid but also adequately
describe the effects of interventions in the targets of the models. We also discuss the limitations of ABMs
and put forward policy recommendations.

Key-words: agent-based modeling, mechanism, causal inference, mechanistic evidence, difference-making evi-
dence, SARS-CoV-2

INTRODUCTION

In the aftermath of the outbreak of the novel coronavirus, governments around the globe have introduced
non-pharmaceutical public health interventions aimied at slowing down the spread of the resultant pande-
mic. These measures range from relatively mild requirements like wearing face masks, washing hands, or
avoiding close contacts to school closures and imposed isolation that are likely to have a detrimental and
unpredictable influence on social and economic life.1Despite their significant impact, the introduction of
many of these measures was not supported with high-quality evidence. First, conducting RCT would not be
feasible for both ethical and practical constraints. Second, significant differences between the coronaviruses
that caused the SARS and MERS outbreaks and SARS-CoV-2 (such as the likely airborne transmission2 and
asymptomatic infectiousness of the latter3,4) undermine extrapolation from the data gathered during these
previous epidemics. Finally, the current pandemic has not lasted long enough to gather observational data in
the amount and quality sufficient for the assessment of the efficacy of alternative public health interventions,
since the first reports were published just weeks after the first measures were introduced.5

One of the many ways to address the issue concerning the impracticality of conducting RCTs and observatio-
nal studies in the context of an ongoing pandemic is through scientific modeling, in particular epidemiological
modeling. Here, we focus on the so-called agent-based modeling (ABM) approach, which differs from more
traditional epidemiological modeling in several ways.

ABMs are a form of computational modeling strategy where agents are treated as entities interacting with
each other and their environment in a locally-defined fashion described by a set of rules. The overall dynamics
of the system are then computed, allowing for the simulation of complex patterns and an understanding of
how these patterns arise.6,7 ABMs are used in many scientific contexts, including modeling the spread of
infectious diseases, and have proven successful in informing policy decisions before. For instance, Eisinger
and Thulke8 modified and then applied a previously-developed ABM of the spread of rabies, generating
a rule-based model that represented specific spatial and behavioral characteristics of the fox population
(e.g., with fox families represented as moving within home ranges and young foxes engaging in long-distance
migratory behavior).6 Whereas the classical differential equation models predicted that vaccinating at least
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70% of the fox population would eliminate rabies, the ABM indicated that a successful vaccination strategy
could do with much less than 70% of the population being immunized once the spatial arrangements of fox
hosts were explicitly considered, saving millions of Euros as a result. Moreover, the ABM also suggested that
the classical strategy would fail more often than not, and was successfully applied to deal with the rabies
problem. However, despite the promising record of using ABMs in effective epidemiological interventions, its
use in informing proposed measures against the novel coronavirus epidemic has raised criticism.9–11

Unfortunately for the assessment of healthcare interventions based on this type of epidemiological models,
standard evidence hierarchies either exclude such studies all together or include theoretical or mechani-
stic inferences at the lowest level of the hierarchy. For example, the Oxford Centre for Evidence-Based
Medicine lists mechanism-based reasoning at the lowest, fifth stage,12and National Institute for Health
and Care Excellence(NICE) guidelines exclude both epidemiological mathematical models and mechanistic
reasoning.13Thiscan be explained by the novelty of agent-based modeling and the limited trust of EBMers in
theoretical and mechanistic reasoning, which, despite being used implicitly to assess the possibility of con-
founding and the quality of results,14 is downgraded or rejected as either subjective or fallacious.15However,
such a view has been challenged by a group of philosophers advocating for improving the practices of evi-
dence assessment in medicine by putting more weight on mechanistic reasoning in causal inference.16–18
The position of the EBM+program16–18 is encapsulated by the normative reading of the Russo-Williamson
Thesis,19which states that causal claims should be based on both difference-making and mechanistic evidence.

The causal claims supported by agent-based models have been interpreted inconsonantly: either as being
in line with the potential outcome approach (POA),20 as delivering theory-driven understanding21 or as
providing mechanistic evidence.22 Below, we show that all of these apparently inconsistent interpretations
are correct, because the best contemporary ABMs bear a resemblance to the actual mechanisms and the-
refore allow for the counterfactual assessment of intervention efficacy in the target while also delivering an
understanding of the phenomena of interest. Our argument proceeds by (1) discussing as a case study an
ABM of SARS-CoV-2 epidemic in Australia, (2) showing that the best ABMs represent actual mechanisms
despite the presence of various simplifications, and (3) considering the limitations of using ABMs as evidence
for clinical and policy decisions.

MODELING THE SARS-CoV-2 EPIDEMIC

Apart from the compartmental SIR (Susceptible, Infectious, Recovered) framework and its derivatives23–28or
regression analysis,29,30 most advanced models of the spread of the novel coronavirus are transformed versi-
ons of agent-based influenza pandemic models11,31. Such models have been used as evidence for introducing
(sometimes severe) public health measures,32with the recent change in British policy being the prime exam-
ple. In this section, we illustrate this approach to modeling the SARS-CoV-2 pandemic with an agent-based
model of the epidemic in Australia31 based on AceMod. Developed as a “framework for studying influenza
pandemics in Australia,”33(p412) AceMod is an influenza spread model that addresses the need for simulating
interventions responding to the outbreaks of future respiratory diseases. While the 2009swine flu pande-
mic was the motivation for constructing AceMod, the model was not intended to accurately represent the
outbreak of the H1N1 strain, but rather as a generalized framework for studying how an infectious disease
spreads through the social interactions of Australians. AceModutilizes census data to ascribe realistic spatial
and social characteristics to almost 20 million agents inhabiting the model world. These agents are divided
into different social groups of varying characteristics, withhouseholds differentiated proportionally according
to statistical data on the prevalence of different types of families (singles, single parents, and couples with or
without children). These features are ascribed to agents stochastically in a way that replicates the aggregate
structure of statistical data. During the daytime, children and students meet in classrooms and at schools,
adults go to work, and pensioners stay at home. During the nighttime, the agents encounter contacts at
households and in their neighborhoods (e.g., at supermarkets, theaters).

The disease can be contracted by an agent in the event of meeting an infected individual in one of these
settings. The probability that an agent i contracts the disease in a given step t depends on the number of
sick individuals met in that step and the contagiousness of the disease, scaled by . The modelers assume
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that the infectivity of the disease decreases linearly over time. Asymptomatic cases are assumed to be
50% less infectious than symptomatic ones, and the flu lasts 5 days within the model. After this period,
recovered agents cannot infect others. Additionally, those who experience symptoms do so after an incubation
period lasting approximately three days.The influenza epidemic is started by agents coming to Australia via
international airports and seeded into communities living near the airports at random.

In order to represent an epidemic of a particular strain of influenza with AceMod, the model requires
calibration. Modelers can proceed with this step in two ways, depending on the accessibility of data. In
the case of well-studied influenza strains, their infectivity and the ratios of transmission in different contexts
are well-recognized, and parameter values can be chosen on the basis of empirical studies. However, if these
data are missing, then parameter values have to be calibrated using statistical procedures such as simplex
or genetic algorithms to maximize the fit of the model to a benchmark. After constructing and calibrating
AceMod, modelers run simulations to obtain the estimates of prevalence, incidence, and attack rates, and
choose the most common outcome (due to stochasticity, different runs of the model may lead to obtaining
slightly different results).

Chang et al.31 have used a significantly amended version of AceMod to address the question of the effective-
ness of non-pharmaceutical interventions aimed at suppressing the SARS-CoV-2 epidemic in Australia. The
selection of models constructed to control a novel and possibly deadly strain of the seasonal flu in this case is
primarily the result of the rapid demand for evidence informing decisions regarding public health measures,
which may raise doubts about the justification and soundness of their conclusions. For example, one can
ask whether the efficacy claims assess healthcare interventions against the novel coronavirus epidemic or an
artificial pathogen existing only within the model world that shares some features of influenza and others of
SARS-CoV-2. To address this criticism (considered in depth below), we discuss the changes introduced to
the model and argue that the process of model calibration and validation suggests that the model represents
the actual mechanism of the SARS-CoV-2 epidemic.

ABMs such as AceModcan be seen as consisting of two parts: the rules specifying the behavior of agents and
the creation of the model society, as well as the assumptions characterizing the infectivity of the pathogen
causing the epidemic. Given that AceMod is based on 2016 census data and a major change in social behaviors
is unlikely to have occurred since then, the model accurately represents the social interactions of present-day
Australians. Hence, the former part of the model has been left mostly unchanged, beyond increasing the
number of agents to over 24 million to adjust for the growing population. In addition to introducing a social
structure sufficiently resembling the contact network of the present population, obtaining accurate predictions
of epidemic development and policy assessment requires inputting data on transmission likelihoods that are
true for the pathogen causing the modeled epidemic.34 Most changes in the model are concerned with the
assumptions specifying the infectivity of the disease. Even though several features of influenza epidemics are
similar to the epidemic caused by the novel coronavirus, they differ with respect to infectivity and attack
rates, mortality rates, the average duration of disease, the reproductive number R0 , and the distribution of
asymptomatic cases. Therefore, these parameters in the model required recalibration.

The transmission probabilities remained mainly as specified in the influenza model. In order to account for
the differences in the incubation period and disease length, Chang et al. set the time from contraction to the
appearance of symptoms to 5 days on average and the duration of the disease to 12 days. Infectivity increases
exponentially the day after an agent gets infected and then decreases linearly until the end of infection, so
cases are most infectious at the start of symptoms. The length of the generation period was calibrated to 6.4
days in order to reflect this difference in the model. Additionally, the likelihood of contracting SARS-CoV-2
but staying asymptomatic was set to be age-dependent, and equaled 1/3 for adults while minors were set to
be five times less likely to suffer from symptoms than adults. While this assumption is in agreement with
the empirical findings that children representa minor fraction of symptomatic cases, the calibration aimed
at reproducing aggregate epidemic curves and may diverge from the actual chances of developing symptoms.

Within the AceMod framework, the reproductive numberR0 is not one of the assumptions inputted into the
model. Rather, its estimate results from a simulation of the scenario described by the rules and assump-
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tions, some of which are stochastic. The assumptions considered and, particularly, the parameter denoting
contagiousness of the disease ( ) have been calibrated such that R0 stays within the limit of (2.0-2.5), i.e.,
in agreement with empirical estimates of the reproductive number at the beginning of the SARS-CoV-2
outbreak.35,36 The set of parameter values that result in the estimate ofR0 =2.27 create the epidemic dyna-
mics reproducing the beginnings of the outbreak in a few countries experiencing the disease prior to Australia
(China, Italy, Spain), where the growth rate of cumulative incidence equaled roughly 0.2. In addition to
reproducing the empirical data for the beginning of the epidemic, the recalibrated AceMod allows for simula-
ting what the future of the epidemic in Australia may look like. As the modelers admit, the Baselinescenario,
which is based on the assumption that agents do not change their behavior in response to the epidemic, is
unlikely given the widespread self-imposed isolation in other countries. However, it allows for counterfactual
comparisons of the different possible (sets of) interventions relative to the Baseline scenario. In order to
assess the efficacy of particular healthcare policies, Chang et al. modify relevant rules and assumptions to
describe the spread of SARS-CoV-2 under either case isolation, school closure, along with three levels of
compliance with social distancing, along with a few combinations of the three policies. For instance, in order
to assess the effect of school closure (including primary and secondary schools, colleges, and universities),
the parameter denoting the chance of meeting an infected agent in schools is set to zero, which describes
the situation when both students and teachers stay at home (and hence cannot contract the virus). These
counterfactual scenarios represent the effects of interventions on the model world. All interventions are mo-
deled as taking place after the number of cases exceeds 1000. The comparison of most common outcomes
(given the stochasticity of the assumptions and rules, they are indeterministic) including interventions with
the baseline scenario allows for putting forward counterfactual causal claims that describe the effects of in-
terventions on peak incidence and prevalence and the development of the epidemic in time. The conclusions
are internally valid as long as no coding error occurs. However, the reliance of the model on simplifications
generates a question as to whether the assessment of intervention efficacy holds for the novel coronavirus
epidemic in Australia (i.e., of external validity).

ABMS AS MODELS OF ACTUAL MECHANISMS

Before proceeding to our argument, let us first make several general remarks about modeling. These remarks
should prove essential in clarifying the main issues that are often raised with regard to using simplified
models, particularly in the context of policy decision-making. First of all, ABMs are instances of mechanistic
models, for they clearly fit the characterization of what a mechanism is: a set of entities whose activities
and interactions are organized such that they are responsible for the phenomenon.37

It should also be noted that much like any other kind of model, ABMs serve as simplified representations of
their target phenomena. As the AceMod case clearly shows, modelers introduce various simplifications by
which they purport to adequately capture the core dynamics of the modeled phenomenon. In this process,
they first abstract away from the complexities of the real system by ’extracting’ certain features that they
believe to be of crucial importance and that will then be the focus of modeling, whereas other features
that may or may not have a causal influence are disregarded in these early stages. Modeling is an iterative
process during which the merits of the model’s assumptions are continuously being evaluated, and if required,
the assumptions are refined and additional assumptions added. More importantly, some of those extracted
features are distorted to the extent that, if taken literally, they would misrepresent the actual state of things.
However, introducing such distortions is often made in full awareness, with the ultimate goal of finding out
whether the consequences they have for the behavior of the system make a difference and to what degree.
Philosophers often refer to the former - i.e., the set of properties retained in a model -as an abstraction,
while the latter case - i.e., the distortions of the system’s features - is called an idealization.38

However, abstractions and idealizations do not exhaust the conceptual toolbox available to modelers. A
popular way to attempt to model a given system realistically is to introduce various approximations. Al-
though there are noteworthy differences between approximations and idealizations, we cannot afford to go
into any detail here. In summary, models often effectively disregard, distort and otherwise simplify possibly
important details. In light of this, many wonder whether we can gain insight into the modeled phenomenon
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at all, and if so then how.

Although the SARS-CoV-2 ABM is fairly detailed and precise, it cannot do without some of the simplifi-
cations discussed above. Consider some of the following assumptions introduced in the model. On the one
hand, the basic features of the social life of the majority of the population are extracted and considered in
the model: e.g., the inclusion of day and night regimes with their respective differences in social behavior
allows for modeling a more realistic scenario than in simpler models. On the other hand, the infectivity
of symptomatic and asymptomatic cases is considered to be constant for all members of the two groups of
agents, albeit it differs between the groups. In reality, we expect that infectivity varies, which is further
supported by extreme cases of super-spreaders who infect a large number of people and thus may seed
new local outbreaks, which could arguably impact the predictions.39–41Other parameter values also have a
wide distribution but are treated as constant, often by calculating the mean value. The ABMalso does not
consider the potential impact of ethnic differences42–46in the population with respect to differing lifestyles,
socioeconomical status and immune host responses, all of which could affect the dynamics of the spread.

Furthermore, some other assumptions exceed our current understanding of the epidemic and SARS-CoV-2’s
transmission mechanism. For example, one of the assumptions of the AceMod model is the linear reduction
of infectivity over time. Unfortunately, empirical results47 suggest only that infectivity reduces over time,
but do not indicate the linearity of this process. Additionally, AceMod and its SARS-CoV-2 model put
agents into working groups of 20 agents, despite the heterogeneity of their working conditions. Considering
the differentiation of work duties (from healthcare workers and shop assistants to writers with virtually no
social interaction), the chance of meeting an infected person at work is actually job-specific and therefore
the model simplifies the reality.

Consequently, we concur with Andersen’s claim that“no mechanism model can include all the actual, much
less the potential, causal relationships in which such a mechanism may engage in a system.”48(p995) This
pessimistic view on simplified models has inspired the method known as exploratory modeling.49 In ca-
ses when the values of parameters and assumptions inputted into the model cannot be established with
certainty, researchers can simulate multiple possible worlds to discover the dependencies that are stable
across the set of different models. In cases when only a fraction of assumptions are uncertain, researchers
conduct sensitivity analyses to check if changes in the values of the parameters lead to changes in their
conclusions.50Theresultsthatremainunchangeddespite minor adjustments to assumptions are considered to
be robust.51This, in turn, leads to choosing those interventions that are most effective across different sets
of parameter values, known as robust decision-making.49

Others prefer to think in terms of the distinction between how-actually and how-possibly modeling, referring
to models that describe an actual mechanism or a possible mechanism, respectively.52There are two general
ways to unpack the concept of a how-possibly model. First, we may want to say that a model serves as a
hypothesis to be confirmed or disconfirmed as new evidence emerges. In this sense, a how-possibly model
will eventually either turn into a how-actually model, should the evidence confirm it, or be discarded if the
evidence is contrary to the model’s conclusions. The other general notion of a how-possibly model invites
a different attitude. Rather than being in the position of having little data to establish whether or not the
model does, in fact, represent the actual mechanism, we may interpret the model as representing something
other than the potentially actual mechanism. On this view, claims about possible mechanisms do not attempt
to pick out actual states, nor do they attempt to explain how a phenomenon actually occurs. Instead, they
refer to conceivable states, and ask whether the hypothesized mechanism could, in principle, produce the
phenomenon in question if certain assumptions are satisfied.

Here we argue that, notwithstanding the simplifications introduced in the discussed influenza and SARS-
CoV-2 ABMs, the epidemiologists are, in fact, providing representations of actual mechanisms of the spread
of the viruses. This can be supported by exploiting the relevant similarities53,54 between the SARS-CoV-2
ABM and the actual outbreak. The respects in which an ABM can be judged similar to its target concern
the features retained in that model, while the degree(s) of similarity concern the extent to which the model’s
features match those of the phenomenon. A good example is setting the parameter/assumption of incubation
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period=5 days. This assumption was introduced based on empirical research: “We maintained the incubation
period (the interval from the infection to the onset of disease in an individual) around the mean value of
5.0 days, as reported in several studies, e.g., the mean incubation period was reported as 5.2 days, 95%
confidence interval (CI), 4.1 to 7.0, while being distributed around a mean of approximately 5 days within
the range of 2–14 days with 95% CI.”31(p3)

To elaborate this further, Glennan55 introduced a useful conceptual distinction between what he called be-
havioral adequacy and mechanical adequacy. According to Glennan, a model represents an actual mechanism
if it reproduces the aggregate behavior of the phenomenon, and truthfully describes its parts and interac-
tions. Concerning the behavioral adequacy, one should be asking if “the model predict[s] (quantitatively or
qualitatively) the overall behavior of the mechanism?”55(p457). By calibrating the model todata from the
beginning of the epidemic, Chang et al.31 showed that it reproduces the benchmark variables (R0 and attack
rate).

Two remarks are in order here. First, one may oppose the claim that what is being represented is the actual
mechanism by arguing that the mechanism underlying the beginning of the outbreak and the fully-fledged
epidemic are distinct. Changes in social behavior or genetic mutations could undermine the behavioral
adequacy of the model. Second, it is possible (at least in principle) that the model represents a false
mechanism, but is calibrated to the relevant benchmark such that it reproduces it. For example, there is no
data confirming (or disproving) the assumption that children are asymptomatic five times more often than
adults. As the modelers admit, this assumption was made not only to account for the lower attack rate among
minors, but also to make the model adequate to aggregate-level data. This approach to calibration resembles
the estimation of statistical parameters (a.k.a. curve fitting) and is considered dubious. The main line of
criticism highlights that it is in principle possible to construct a model that represents a possible mechanism
and, using calibration, adjust parameter values so that it reproduces the represented phenomenon, i.e.,
obtains behavioral adequacy despite being false. However, while this criticism is indeed justified regarding
models of mechanisms that are epistemically inaccessible in other ways (such as mechanisms in the social
sciences56), it is not so in the case of epidemiological mechanisms whose transmission mechanism can be
studied empirically and compared to the mechanism represented by the model.

This can establish that the mechanism represented by the model is similar (in relevant aspects and to relevant
degrees) to the mechanism that generates the outbreak, i.e., achieves mechanical adequacy in Glennan’s
terminology. Applying the list of Glennan’s55(p457) criteria for mechanical adequacy justifies the claim that
the mechanism represented by Chang et al.31 resembles the actual mechanism. First, according to our
best contemporary understanding of the spread of the novel coronavirus, the model identifies all of the
components of the mechanism. This would change if further studies identified other significant transmission
routes, e.g., the fecal-oral route. Second, the model represents the entities of the mechanism in a localized
way, given that it retains the spatial distribution of inhabitation in Australia. Additionally, the model
simulates the development of an epidemic in time. This asserts that the “spatial and temporal organization
of the mechanism” is accurately represented. Third, given that the number and place of social interactions
are crucial for modeling the spread of contagious diseases, the model accurately captures relevant properties
of the agents inhabiting the model world. Fourth, the calibration to census data asserts that the model
provides “quantitatively accurate descriptions of the interactions and activities of each component,” at least
on average for groups of agents. Finally, our background knowledge suggests that there is no other mechanism
(different from the spread of the pathogen through human interactions) that could be responsible for the
epidemic of SARS-CoV-2.

Given that AceMod fulfills Glennan’s criteria for behavioral and mechanical adequacy, considering our current
understanding of the novel coronavirus, we can conclude that Chang’s et al.31model represents the actual
mechanism of the spread of the disease in Australia. Given this, the claims assessing the efficacy of the
mitigation measures under consideration are likely to be accurate not only within the model but also about
its target. We claim this with several caveats in mind to be discussed in the next section.

DISCUSSION AND RECOMMENDATIONS
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Our study defends using ABMs for informing decisions regarding mitigation and suppression measures by
arguing that its best epidemiological models represent actual mechanisms. Provided that the model’s as-
sumptions are calibrated and checked against the background empirical data - that is, the components, their
activities, and spatiotemporal organization resemble (in relevant aspects and to a certain degree) the actual
state of things - iterative runs of the simulations can indeed provide understanding and inform policy deci-
sions. This is because the model delivers both difference-making and mechanistic evidence by satisfying the
criteria of behavioral and mechanical adequacy, respectively.

In contrast to our claim, epidemiological SIR models and ABMs have been criticized for over-simplifying
target phenomena and hence lacking relevance for policy decisions. For instance, Eubank et al. criticized the
Imperial College London model11 for its “reliance on a simplified picture of social interactions [that] limits
its extensibility to counterfactuals. The general nature of conclusions based on such model can be expected
to be similar to those of a simple compartmental model.”57(pp5-6) Similarly, Squazzoni et al. suggested
that even though AceMod is better calibrated than other epidemiological ABMs, “these [models] do not
capture network effects nor people’s reactive responses as the population states simply change via stochastic
(randomized) processes determined by parameters (although the parameters derive from data).”9(p2.6)In
our view, these highly-advanced epidemiological models, while being simplified representations of reality,
account for relevant aspects of social interactions and crucial aspects of the novel coronavirus epidemic (e.g.,
contagiousness), therefore allowing them to be put forward as evidence for policy-relevant claims.

However, all models involve not only simplifications of the represented phenomena but also isolate certain
aspects of interest. Epidemiological models usually do not account for the harms of non-pharmaceutical
interventions. Severe mitigation measures such as imposed social distancing and business closures are likely
to hamper economic and social life. All models are partial representations of reality and, given that the
primary purpose of an epidemiological model is to address the efficacy of health care interventions, they
isolate away certain factors and effects of interventions (economic and social) and are more accurate in
predicting the spread of the disease. Other models58,59 tradeoff epidemiological accuracy with accounting
for social and economic effects, and may be more relevant for assessing the harms of mitigation measures.

Additionally, ABMs, much like the compartmental models, are dependent on the assumptions of the
modelers.10 Our claim that AceMod calibrated for SARS-CoV-2 bears similarity to the actual mechanism of
the epidemic depends on the accuracy of the empirical results used as an input for this model. We need to
acknowledge the provisional nature of these empirical results, given the novelty of the pathogen. If the param-
eter values in AceMod were miscalibrated, then the assessments of intervention efficacy could be wrong. This
implies that neither the virus can mutate nor that people can significantly and unpredictably change their
behavior since “the efficacy of implementation depends on people’s reactions, [the stability of] pre-existing
social norms, and structural societal constraints.”9 Furthermore, the effects of epidemiological agent-based
modeling are highly dependent on social structure and carefully calibrated to social and economic charac-
teristics. Therefore, the epidemiological ABMs are geographically-localized and their conclusions should not
be extrapolated beyond their target systems,60 as long as the models and their predictions are calibrated to
particular settings. Finally, while AceMod is well-documented in the two publications discussed throughout
our paper, neither its code nor detailed documentation regarding its use is published (this unfortunately also
applies to some other ABMs of the SARS-CoV-2 epidemic). Given these limitations, the models should be
carefully checked for coding errors and other possible flaws before applying their implications in the policy
context.

In summary, we have argued that, despite the criticism raised against models being the appropriate vehicle
for informing policies, the SARS-CoV ABM is suitable for this purpose because the mechanism described
by the model sufficiently resembles the mechanism at work in the real world. Thus, our best contemporary
epidemiological ABMs are representations of the actual mechanism of the spread of the virus. Unfortunately,
such models have been left out from methodological discussions and are not explicitly listed by evidence
hierarchies. While the need for appraising mechanistic reasoning in medicine is also voiced by EBMers,61
there is no broadly-accepted view on how to amalgamate evidence of different types. Further research is
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needed to assess the risk of bias in the epidemiological models that deliver both difference-making and
mechanistic evidence. However, considering the current situation and pressing need for rapid and accurate
decisions regarding mitigation measures, policymakers should take to heart the advice that “if no randomized
trial has been carried out [. . . ], we must follow the trail to the next best external evidence and work from
there.”62(p74) In the current situation, accurately calibrated epidemiological ABMs are the best existing
evidence.
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