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Abstract

Low-field nuclear magnetic resonance (NMR) relaxometry is an attractive approach for point-of-care testing medical diagnosis,
industrial food science, and in situ oil-gas exploration. However, one of the problems is the inherently long relaxation time of
the (liquid) sample (and hence low signal-to-noise ratio) which causes unnecessarily long repetition time. In this work, a new
methodology is presented for a rapid and accurate object classification using NMR relaxometry with the aid of machine learning
techniques. It is demonstrated that the sensitivity and specificity of the classification are substantially improved with a higher
order of (pseudo)-dimensionality (e.g., 2D or multidimensional). This new methodology (the so-called Clustering NMR) may
be extremely useful for rapid and accurate object classification (in less than a minute) using the low-field NMR.

Introduction

High resolution nuclear magnetic resonance (NMR) spectroscopy is a powerful and attractive approach in
biochemistry (e.g., protein analysis[1], metabolomics[2–4]) and inorganic chemistry[5]. In the recent years
however, with the rapid advances in NMR engineering (e.g., IC-based spectrometer[6–12], microfluidic-based
chip[13–17], artificial intelligence[18,19]) utilizing small foot-print permanent magnet, the time-domain NMR
instrumentations have seen a myriad of interesting applications from point-of-care testing (PoCT) medical
diagnosis[7,20–23], industrial food science [24,25], and in-situ oil-gas exploration[26,27].

Biochemical information is typically detected and encoded in the frequency domain (´chemical shift´) in
the high-field NMR. In contra, the low-field NMR, information is encoded in the time domain, with the
dephasing of the spin-spin relaxation (T2 relaxation) of the water-proton of the observed sample used as
diagnostic criterion[20,21]. Time domain NMR however, suffers from inherently long relaxation time of the
(liquid) sample, (and hence low signal-to-noise ratio (SNR)) causes unnecessarily long repetition time[28,29].
Furthermore, the T2-relaxation measurement (in one-dimensional) which is frequently reported in NMR
relaxometry experiments has limited number of dimensionality (e.g., healthy/non-healthy)[20,21].

In this work, a new class of methodology is presented for rapid and accurate object classification using
PoCT NMR relaxometry with the aid of machine learning (Fig. 1). It is demonstrated (using various edible
oils as proof-of-concept) that the sensitivity (´true positive rate´) and specificity (´true negative rate´)
of the classification is substantially improved using higher order of (pseudo)-dimensionality (e.g., 2D or
multidimensional). Further, by leveraging on the advances in machine learning techniques (e.g., pre-trained
dataset) the detection time was sped up (in minutes) as compared to conventional 2D or multidimensional
NMR (>hours), without resorting to using Ultrafast NMR[30]. This methodology (termed as Clustering
NMR) is extremely useful for rapid and accurate classification of objects (in less than a minute) using the
low-field NMR at point-of-need.
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Figure 1: Conceptualization of the (pseudo) two-dimensional mapping using the Clustering NMR method
proposed in this work. A pair of (T1, T2) relaxation time for each objects (e.g., edible oils, blood) were
measured using micro NMR relaxometry system. A (pseudo) two-dimensional map is constructed with
(T2, T1) relaxation time with a (X, Y) scatter plot (Fig. 2c), where the object clustering became obvious
in comparison to its´ one-dimensional counterparts (i.e, T1relaxation or T2 relaxation). The efficacies of
Clustering NMR method were validated using both the supervised and unsupervised learning methods. The
relationship between each objects is established using (unsupervised) clustering analysis methods (e.g., tree
classfication, hierarchical clustering) and its´ quantitative linkage (e.g., inter/intra cluster similarity) of each
objects which is depicted on a dendogram with a heat map (details in Supp. Figs. 2-3). Supervised learning
techniques (e.g., kNN, random forest, logistic regression) were used to train the classification of objects
and the best trained model is subsequently chosen to predict the object classification. (e.g., oils content,
infection/non-infection).

Methods

NMRmeasurement and detection. The relaxometry measurements (T1 relaxation, T2 relaxation) were carried
out on four group edible oils (i.e., peanut, olive, sunflower, corn) labelled as (A, B, C, D), respectively (Figs.
2a-b). In order to avoid bias, more than one different manufacturers were used for the same oil (with the
exception of corn oil) and the detail on fat compositions were presented in Supp. Fig. 1. (A, A´, B, B´,
C, C´, C´´, D) were the variants of the same oil from various manufacturers. The manufacturer labelling
indicated 100% of oil contents (no mixture of oils). The edible oils were cooking oils bought locally in Braga,
Portugal. No further alteration was made before the NMR measurements.
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Figure 2: NMR measurements and (pseudo) two-dimensional mapping with Clustering NMR approach. T1
and T2relaxation times were carried on various edible oils (i.e., peanut, olive, sunflower, corn), with the
label of (A, B, C, D) respectively using micro NMR relaxometry. One-dimensional mapping with (a) T1
relaxation time, (b) T2 relaxation time, and (c) (pseudo) two-dimensional mapping using a pair of (T1, T2)
relaxation times. NMR measurements were carried out on each edible oils in quintuplicate manner with a
total of 40 points (datasets). The clustering circles were drawn for eye-balling purposes. Details of the oils
(e.g., manufacturers, fat compositions) were presented in Supp. Fig. 1. The box plots represent 25% and
75% quantile of the entire measurements. The diaganol line (T1=T2) represents the border limit where it is
physically non-measurable. Two tailed Student´s T-test was used to calculate the P -value.

NMR measurements were carried out (in single blinded manner) on each oils in quintuplicate manner (i.e.,
five repeated times) with a total of 40 points for all the samples. Details on NMR parameter are reported in
Supplementary Methods. Clustering NMR method uses a pair of (T2, T1) relaxation time for each objects
(e.g., edible oils, blood) to construct a (pseudo) two-dimensional map (Fig. 2c). The pseudo two-dimensional
map can be used a referencing map (control).

Machine learning learning algorithm and workflows. Using a statistical programming languages (e.g., R or
Orange 3.1.2), the raw datasets can be processed using supervised and unsupervised learning techniques.
The machine learning algorithms were written and runs on a personal laptop (Intel Core Pentium i7 CPU
@ 2.70GHz, 8.00 GB RAM). Once the model in machine learning is built, all the tasks run simultaneously
and completes typically in less than 1 minute.
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Figure 3: Unsupervised learning techniques (e.g., hierarchical clustering, tree classification) can be used for
clustering analysis. This hierarchical clustering was constructed based on Euclidean distance (between T1
relaxation and T2relaxation) and its´ quantitative linkages (e.g., inter/intra cluster similarity) shown in a
heat map. (A, A´, B, B´, C, C´, C´´, D) were the variants of the same oil content taken from different
manufacturers. Tree classification method is shown for comparison (Supp. Fig. 2).

Using unsupervised learning, the relationship between each objects were rapidly constructed using clustering
analysis (e.g., tree classification, hierarchical clustering) and its´ quantitative linkages (e.g., inter/intra cluster
similarity) were shown on a dendogram and a heat map (Fig. 3). Supervised learning models (i.e., neural
network, kNN, logistic regression, näıve Bayes, and random forest) can be used to train the datasets and the
best model with the highest accuracy can be chosen to predict the object classification (e.g., oil classification,
infection/non-infection) using pre-trained datasets (Fig. 4 and Table 1).
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Figure 4: The Area Under Curve (AUC) plot as evaluated by Receiver Operating Characteristic (ROC)
of various supervised models (i.e., kNN, random forest, neural network, näıve bayes, logistic regression)
evaluated using target variables of (a) one-dimensional (T1-relaxation), (b) one-dimensional (T2-relaxation),
(c) two-dimensional (T1-relaxation, T2-relaxation), and (d) three-dimensional (T1-relaxation, T2-relaxation,
A-ratio) using leave-one-out training method. Other details can be found in Table 1.

Hosted file

image5.emf available at https://authorea.com/users/322019/articles/451126-clustering-nmr-
machine-learning-assistive-rapid-two-dimensional-relaxometry-mapping

Table 1: The sensitivity and specificity of the various supervised models evaluated using target varia-
ble/s of (a) one-dimensional (T1-relaxation), (b) one-dimensional (T2-relaxation), (c) two-dimensional (T1-
relaxation, T2-relaxation), and (d) three-dimensional (T1-relaxation, T2-relaxation, A-ratio) from leave-one-
out training method. The synonyms used were: T1-relaxation/T2-relaxation (A-ratio), area under the curve
(AUC), classification accuracy (CA), F1 score – the balance between precision and recall, Precision – how
many selected items were relevant, Recall - how many relevant items are selected. The training method using
cross validation of k=5 was also evaluated for comparison (Supp. Fig. 4).

Results

Each edible oils (i.e., peanut, olive, sunflower, corn) were assigned to its´ respective label (A, B, C, D)
following the blinded NMR measurements. As depicted in the one-dimensional map, each of oil contents has
a specific T1 relaxation and T2 relaxation characteristic reading (Figs. 2a-b). The means for T1 relaxation
time were (191.3, 199.3, 228.4, 247.8) ms and means for T2 relaxation time were (127.9, 136.8, 162, 163) ms
for (A, B, C, D), respectively.

The spread of the readings were, however, substantially large making objects (A and B) and objects (C and
D) inseparable in the T1 relaxation dimension (P >0.05) (Fig. 2a). Further in the T2 relaxation dimension,
the objects (C and D) were also inseparable (Fig. 2b). The undesirable spread causes (similarly to spectral)
cluster overlapping and hence making classification difficult (if not impossible). One straightforward solution
is to increase the SNR (e.g., increasing the number scans) or/and increase the number of samplings, which
unfortunately, came at the expenses of acquisition time. In addition, the relaxation time of liquid sample is
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inherently long. On the other hand, using the Clustering NMR method (as proposed in this work), one can
leverages on the combined characteristic of (T1, T2) relaxation times of the oil contents. It forms (visibly)
unique and specific cluster based on the oil contents (´molecular fingerprint´) in (pseudo) two-dimensional
map (Fig. 2c). With the minor exception of corn oil (which partially overlapped with sunflower oils), which
could be due to possible adulteration or factory processes. Upon further investigation, we found that this
artifact can be removed with higher SNR.

Interestingly, unsupervised techniques based clustering analysis (e.g., hierarchical clustering (HC), tree-
based classification, and k-means) can be performed in conveniently using (open-source code) user friendly
third party software (e.g., R , or Orange 3.1.2). A front-end statistical programming language allows the
clustering analysis (once compiled), can be executed in the next occasion. The HC analysis successfully
separated the (peanut and olive) cluster from the (sunflower and corn) cluster, and subsequently split between
themselves (Fig. 3). The HC was constructed based on Euclidean distance (between T1 relaxation and T2
relaxation) and its´ quantitative linkages (e.g., inter/intra cluster similarity) were shown in a heat map.
The HC methods also confirmed the oil variants (A, A´, B, B´, C, C´, C´´, D) based on its´ respective
manufacturer. Similarly, the Chemometric approach[31] based on fat compositions (Supp. Fig. 2) and tree-
based classification technique based on the T1-relaxation cutoff and T2-relaxation cutoff criterion (Supp. Fig.
3) appear to be in good agreement (qualitatively) with the HC classification using Euclidian distance of T1
relaxation and T2 relaxation obtained with NMR experimentally. It is worth noting, however, that the figures
(i.e., fat compositions) given by the manufacturers are for references (and not for scientific) purposes. The
clustering analysis models despite using various differential clustering criterions (e.g., Euclidean distance,
fat compositions, relaxation cutoff) were in agreement with our observation (Clustering NMR, Fig. 2c).
This demonstrated the robustness of Clustering NMR method, which can be validated using unsupervised
techniques.

In order to evaluate the classification accuracy on the quantitative basis, various supervised learning models
(i.e., kNN, random forest, neural network, näıve Bayes, and logistic regression) were used to train, validate
and predict the datasets. The Area Under Curve (AUC) as evaluated with Receiver Operating Characteristic
(ROC) were on average (0.820, 0.876, 0.915, 0.933) with (one-dimensional (T1-relaxation), one-dimensional
(T2-relaxation), two-dimensional (T1-relaxation, T2-relaxation), and three-dimensional (T1-relaxation, T2-
relaxation, A-ratio)), respectively, using the leave-one-out training method (Fig. 4). A-ratio is the ratio
between T1-relaxation and T2 -relaxation. Similar conclusions were observed using cross validation method
(e.g., k=5) (details in Supp. Table 1). This confirmed that the sensitivity and specificity of the proposed
Clustering NMR method has substantially improved at the higher order of (pseudo)-dimensionality (e.g., 2D
or multidimensional) over low dimensionality (e.g., n=1). With the (minor) exception of logistic regression,
all the supervised models performed reasonably well (AUC>0.80) (Table 1). Furthermore, all the machine
learning tasks run simultaneously and computational time taken were typically in less than 1 minute (in this
work).

Discussion

The proposed Clustering NMR method works on the rational that accumulative characteristic of each di-
mensionality would forms a specific and unique signature (´molecular fingerprint´). This is the same concept
which borrowed from the data mining[32]. Fortunately, the characteristic of (T1, T2) relaxation times in
the relaxometry is rather specific and prominent, and as the results suggested, an optimal n=2 to 3 of di-
mensionality are essential to attain a high AUC (Fig. 4)[33]. With the recent advances in machine learning,
however, its´ becoming computationally cheaper (e.g., shorter analysis time) to calculate a big dataset. The
computational time reported in this analysis (less than one minute) much shorter than a conventional two-
or multidimensional NMR (>hours), without resorting to the use of Ultrafast NMR.

Two- or multidimensional relaxometry experiments (e.g., T1-T2 correlation spectroscopy), however, may
provides much more information (e.g., cross peaks) but are far more time consuming than that of Clustering
NMR method. One way to speed up acquisition time is to employ the use of gradient fields (e.g., Ultrafast
NMR[30], continuous spatial encoding[34]) which require modification to the radio-frequency probe. Machine
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learning in the form of dimension reductionist (e.g., principal component analysis (PCA), partial least squa-
res (PLS)) have also been used to reduce the dimensionality in multidimensional spectroscopy (e.g., NMR
metabolomics[19,35,36]). A recent deep learning assistive NMR spectroscopy[18], which signals reconstruc-
ting were demonstrated. We summarized and compared Clustering NMR method with the state-of-the-art
methodologies in a SWOT-like analysis (Table 2).

In conclusion, this proposed methodology, termed as Clustering NMR is extremely powerful for rapid
and accurate classification of objects using the low-field NMR. This methodology is highly distruptive to
the low-field NMR applications, in particularly, the recent reported NMR-based PoCT medical diagno-
stic. These include the immuno-magnetic labelled detection (e.g., tumour cells[14,20], tuberculosis[37] and
magneto-DNA detection of bacteria[38]) and the label-free detection of various pathological states (e.g.,
blood oxygenation[15]/oxidation level[10] and malaria screening[21,22,39]). Interestingly, with the recent ad-
vances on machine learning technique, it has become remarkably efficient that a large data run in almost in
´real-time mode´, which open-up opportunity to combine real-time NMR (or MRI) with machine learning
simultaneously.

(1675 words)

Table 2: State-of-the-art (with/without) machine learning assistive NMR works in comparison to the current
work (Clustering NMR).

Authors/Year NMR Applications
n-
Dimensional

Machine
Learning Advantageous Weakness

Wishart
(2008)[19],
Karaman
(2015)[36],
Rocha
(2018)[35]

spectroscopy metabolomics 2D PCA/PLA informative slow

Frydmann
(2014)[30]

spectroscopy ultrafast
NMR

2D no rapid gradient
field

Qu
(2019)[18]

spectroscopy generic n-
dimensional

deep
learning

speed up information
lose?

Haun
(2010)[40],
Haun[20]
(2011),
Liong
(2013)[37],
Peng
(2014)[21],
Neely
(2016)[41],
Robinson
(2017)[42]

relaxometry medical
diagnosis

1D no rapid, PoCT low
specificity
and
sensitivity,
missing out
cross peaks?!

Robinson
(2014)[43], Ok
(2016)[44]

relaxometry food science 1D no rapid, PoCT

Santos
(2016)[45], Zhu
(2016)[38]

relaxometry food science 1D PCA/PLA rapid, PoCT

7
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Authors/Year NMR Applications
n-
Dimensional

Machine
Learning Advantageous Weakness

Xu (2014)[46],
Rudszuck
(2019)[27]

relaxometry food science 2D no PoCT, high
specificity and
sensitivity

slow

Hurlimann
(2002)[47]

relaxometry oil-gas
exploration

1D, 2D no in situ, high
specificity
and
sensitivity

slow

Lewis
(2013)[48]

relaxometry oil-gas
exploration

2D no slow

Birdwell
(2015)[49]

relaxometry oil-gas
exploration

2D PCA/PLA slow

Clustering
NMR (2020)

relaxometry-
clustering

generic (pseudo)
n-dimensional

clustering
analysis,
supervised
model

rapid, PoCT,
high specificity
and sensitivity

missing out
cross peaks?

Supplementary Methods

NMR setup and parameters. The 1H magnetic resonance measurements of edible oils were carried out at the
resonance frequency of 21.67 MHz using a portable permanent magnet (Metrolab Instruments, Switzerland),
Bo=0.5T using a benchtop-type console (Kea Magritek, New Zealand). A temperature controller was set to
maintain the measurement chamber at 30°C. The T1 relaxation and T2 relaxation pulse sequences were set
at standard inversion recovery, followed by Carr-Purcell-Meiboom-Gill (CPMG) train pulses, respectively.
The experimental parameters used were echo time=200 μs, number of echoes=2000 and signal averaging=4.
A recycle delay of 4s was set between each experiment to provide sufficiently long time to allow all the
molecular spins to return to thermal equilibrium.

Statistical methods. Two tailed Student´s T-test was used to calculate the P -value.

Data availability statement. The machine learning algorithms and raw NMR datasets are available upon
reasonably request at weng.kung@inl.int.
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Figure 1: Conceptualization of the (pseudo) two-dimensional mapping using the Clustering NMR method
proposed in this work. A pair of (T1, T2) relaxation time for each objects (e.g., edible oils, blood) were
measured using micro NMR relaxometry system. A (pseudo) two-dimensional map is constructed with
(T2, T1) relaxation time with a (X, Y) scatter plot (Fig. 2c), where the object clustering became obvious
in comparison to its´ one-dimensional counterparts (i.e, T1relaxation or T2 relaxation). The efficacies of
Clustering NMR method were validated using both the supervised and unsupervised learning methods. The
relationship between each objects is established using (unsupervised) clustering analysis methods (e.g., tree
classfication, hierarchical clustering) and its´ quantitative linkage (e.g., inter/intra cluster similarity) of each
objects which is depicted on a dendogram with a heat map (details in Supp. Figs. 2-3). Supervised learning
techniques (e.g., kNN, random forest, logistic regression) were used to train the classification of objects
and the best trained model is subsequently chosen to predict the object classification. (e.g., oils content,
infection/non-infection).
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Figure 2: NMR measurements and (pseudo) two-dimensional mapping with Clustering NMR approach. T1

and T2relaxation times were carried on various edible oils (i.e., peanut, olive, sunflower, corn), with the
label of (A, B, C, D) respectively using micro NMR relaxometry. One-dimensional mapping with (a) T1

relaxation time, (b) T2 relaxation time, and (c) (pseudo) two-dimensional mapping using a pair of (T1, T2)
relaxation times. NMR measurements were carried out on each edible oils in quintuplicate manner with a
total of 40 points (datasets). The clustering circles were drawn for eye-balling purposes. Details of the oils
(e.g., manufacturers, fat compositions) were presented in Supp. Fig. 1. The box plots represent 25% and
75% quantile of the entire measurements. The diaganol line (T1=T2) represents the border limit where it is
physically non-measurable. Two tailed Student´s T-test was used to calculate the P -value.
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Figure 3: Unsupervised learning techniques (e.g., hierarchical clustering, tree classification) can be used for
clustering analysis. This hierarchical clustering was constructed based on Euclidean distance (between T1

relaxation and T2relaxation) and its´ quantitative linkages (e.g., inter/intra cluster similarity) shown in a
heat map. (A, A´, B, B´, C, C´, C´´, D) were the variants of the same oil content taken from different
manufacturers. Tree classification method is shown for comparison (Supp. Fig. 2).

Figure 4: The Area Under Curve (AUC) plot as evaluated by Receiver Operating Characteristic (ROC)
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of various supervised models (i.e., kNN, random forest, neural network, näıve bayes, logistic regression)
evaluated using target variables of (a) one-dimensional (T1-relaxation), (b) one-dimensional (T2-relaxation),
(c) two-dimensional (T1-relaxation, T2-relaxation), and (d) three-dimensional (T1-relaxation, T2-relaxation,
A-ratio) using leave-one-out training method. Other details can be found in Table 1.

Table 1: The sensitivity and specificity of the various supervised models evaluated using target vari-
able/s of (a) one-dimensional (T1-relaxation), (b) one-dimensional (T2-relaxation), (c) two-dimensional
(T1-relaxation, T2-relaxation), and (d) three-dimensional (T1-relaxation, T2-relaxation, A-ratio) from leave-
one-out training method. The synonyms used were: T1-relaxation/T2-relaxation (A-ratio), area under the
curve (AUC), classification accuracy (CA), F1 score – the balance between precision and recall, Precision –
how many selected items were relevant, Recall - how many relevant items are selected. The training method
using cross validation of k=5 was also evaluated for comparison (Supp. Fig. 4).

Table 2: State-of-the-art (with/without) machine learning assistive NMR works in comparison to the current
work (Clustering NMR).

12



P
os

te
d

on
A

u
th

or
ea

14
M

ay
20

20
—

C
C

-B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

9
4
89

81
.1

40
48

43
8

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Authors/Year NMR Applications
n-
Dimensional

Machine
Learning Advantageous Weakness

Wishart

(2008)[19],
Karaman
(2015)[36],
Rocha
(2018)[35]

spectroscopy metabolomics 2D PCA/PLA informative slow

Frydmann

(2014)[30]
spectroscopy ultrafast

NMR
2D no rapid gradient

field

Qu

(2019)[18]
spectroscopy generic n-

dimensional
deep
learning

speed up information
lose?

Haun

(2010)[40],
Haun[20]

(2011),
Liong
(2013)[37],
Peng
(2014)[21],
Neely
(2016)[41],
Robinson
(2017)[42]

relaxometry medical
diagnosis

1D no rapid, PoCT low
specificity
and
sensitivity,
missing out
cross peaks?!

Robinson

(2014)[43], Ok
(2016)[44]

relaxometry food science 1D no rapid, PoCT

Santos

(2016)[45], Zhu
(2016)[38]

relaxometry food science 1D PCA/PLA rapid, PoCT

Xu (2014)[46],
Rudszuck
(2019)[27]

relaxometry food science 2D no PoCT, high
specificity and
sensitivity

slow

Hurlimann

(2002)[47]
relaxometry oil-gas

exploration
1D, 2D no in situ, high

specificity
and
sensitivity

slow

Lewis

(2013)[48]
relaxometry oil-gas

exploration
2D no slow

Birdwell

(2015)[49]
relaxometry oil-gas

exploration
2D PCA/PLA slow

Clustering
NMR (2020)

relaxometry-
clustering

generic (pseudo)
n-dimensional

clustering
analysis,
supervised
model

rapid, PoCT,
high specificity
and sensitivity

missing out
cross peaks?

References

[1] M. Salzmann, K. Pervushin, G. Wider, H. Senn, K. Wuthrich,Proceedings of the National Academy of
Sciences 1998 ,95 , 13585–13590.

13



P
os

te
d

on
A

u
th

or
ea

14
M

ay
20

20
—

C
C

-B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

9
4
89

81
.1

40
48

43
8

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

[2] M. E. Bollard, E. G. Stanley, J. C. Lindon, J. K. Nicholson, E. Holmes, NMR in Biomedicine 2005 , 18
, 143–162.

[3] I. F. Duarte, S. O. Diaz, A. M. Gil, Journal of Pharmaceutical and Biomedical Analysis 2014 , 93 ,
17–26.

[4] M. R. Viant, B. G. Lyeth, M. G. Miller, R. F. Berman, NMR in Biomedicine 2005 , 18 , 507–516.

[5] L. Ronconi, P. J. Sadler, Coordination Chemistry Reviews2008 , 252 , 2239–2277.

[6] J. Anders, P. SanGiorgio, G. Boero, in 2009 IEEE Custom Integrated Circuits Conference , IEEE, San
Jose, CA, USA, 2009 , pp. 471–474.

[7] H. Lee, E. Sun, D. Ham, R. Weissleder, Nature Medicine2008 , 14 , 869–874.

[8] K. Takeda, Journal of Magnetic Resonance 2008 ,192 , 218–229.

[9] N. Sun, T.-J. Yoon, H. Lee, W. Andress, R. Weissleder, D. Ham,IEEE Journal of Solid-State Circuits
2011 , 46 , 342–352.

[10] W. K. Peng, L. Chen, J. Han, Review of Scientific Instruments 2012 , 095115.
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figures/fig1--concept/fig1--concept-eps-converted-to.pdf
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figures/fig2--pseudo-2D-NMR/fig2--pseudo-2D-NMR-eps-converted-to.pdf
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figures/fig3-unsupervised/fig3-unsupervised-eps-converted-to.pdf
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figures/fig4--AUC/fig4--AUC-eps-converted-to.pdf
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