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Abstract

A Bayesian data assimilation scheme is formulated for advection-dominated or hyperbolic evolutionary problems, and observa-

tions. It uses the physics to dynamically update the likelihood in order to extend the impact of the likelihood on the posterior,

a strategy that would be particularly useful when the the observation network is sparse in space and time and the associated

measurement uncertainties are low. The filter is applied to a problem with linear dynamics and Gaussian statistics, and com-

pared to the exact estimate, a model outcome, and the Kalman filter estimate. By comparing to the exact estimate the dynamic

likelihood filter is shown to be superior to model outcomes and to the Kalman estimate, when the observation system is sparse.

The added computational expense of the method is linear in the number of observations and thus computationally efficient,

suggesting that the method is practical even if the space dimensions of the physical problem are large.
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Abstract
A Bayesian data assimilation scheme is formulated for advection-dominated or

hyperbolic evolutionary problems, and observations. It uses the physics to dynam-
ically update the likelihood in order to extend the impact of the likelihood on the
posterior, a strategy that would be particularly useful when the the observation net-
work is sparse in space and time and the associated measurement uncertainties are
low. The filter is applied to a problem with linear dynamics and Gaussian statis-
tics, and compared to the exact estimate, a model outcome, and the Kalman filter
estimate. By comparing to the exact estimate the dynamic likelihood filter is shown
to be superior to model outcomes and to the Kalman estimate, when the observa-
tion system is sparse. The added computational expense of the method is linear in
the number of observations and thus computationally efficient, suggesting that the
method is practical even if the space dimensions of the physical problem are large.

Problem Addressed
Sparse observations can often produce no improvements in a data assimi-
lation setting on hyperbolic (wave-like) or advection-dominated problems.
The Dynamics Likelihood Approach (DLF) to filtering [1] exploits the dy-
namics of hyperbolic systems to extend the range over which observations
inform a likelihood. Moreover, the methodology can extend observations
into the future, thus allowing Bayesian assimilation of future data assimi-
lation estimates.

Background
Time dependent Bayesian data assimilation combines model outcomes
x(t) ∈ RN , 0 ≤ t < tf and observations y(tm) ∈ RK , m = 1, 2, ...,
tm ≤ tf , with the aim at improving estimates of
•Retrodictions: X(t), for t < t0, t0 is the present.
•Nudictions: X(t), for t = t0.
• Forecasts: X(t), for t ≥ t0.

The errors inherent in the model outcomes and the observations are taken
into account. We obtain estimates X(t) [1, 2] by computing the mean (and
variance) of

P (x|y)(t) ∝ Π
Nf

n=1P (y(tn)x(tn))P (x(tn))

to estimate X(t), where the likelihood

P (y(tn)x(tn)) =

{
P (y(tm)x(tm)), if tm = tn, (tm ≤ tn)
1, otherwise.

is informed by observations from the past/present.

The Kalman Filter
A sequential model of V(t) ≈ x(t), and observations Y are used to pro-
duce estimates the mean 〈V〉n and variance Pn via
• Forecast:

Ṽ = Ln−1〈V〉n−1 + ∆tfn−1, n = 1, 2, . . . , Nf ,

〈V〉0, and P0, known.
•Analysis:

〈V〉n = Ṽ + Km
(
Ym −HmṼ

)
,

Pn = (I−KmHm)P̃.

The Kalman Gain is defined as

Km = P̃H>m
[
HmP̃H>m + Rm

]−1
δtn,m,

The observation matrices, H(tm) : RN → RK .

The Dynamic Likelihood Filter
  

Kalman Likelihood uses Y(x, ti). The DLF Likelihood uses Y(ζ, ti, t).

• Propagate observations and their uncertainties (using Yt −
c(x, t)Yx = 0):

Y(∆tc(ζn, tn) + ζn, , tn+1) = Y(ζn, tn),

Rn+1
m = An(t)[An(t)]>∆t + Rn, tn ≥ tm,

with ζ0 = H(tm)X, Y(ζ0, tm) = Ym. and Rm
m = Rm.

• Project onto model space:

Hn
mYn

m = Vn + Hn
mε

n
m,

at time tn ≥ tm. Here εmm is equal to εm.

• Forecast:

Ṽ = Ln−1〈V〉n−1 + ∆tfn−1, n = 1, 2, . . . , Nf ,

•Multi-Analysis:

〈V〉n = Ṽ + Km(HmYm − Ṽ)δtm,n.

Pn = (I− δtm,nKm)P̃.

Km = P̃(P̃ + HmRmH>m)−1δtm,n.

Rank Ordering of Projected and Actual Observations and Uncertainties.

Computational Complexity of the DLF
The additional computational load of the method is linear in the number of
observations K � N , and the number of time steps Nf :

O(K ×Nf ).

Computational Example
Aim: Comparison of the Kalman, DLF estimates, a finite-difference model
outcome and the exact answer (truth) of

ut − C(x, t)ux = F (x, t), t > 0, x ∈ [0, L],

u(x, 0) = U(x), x ∈ [0, L],

with random initial conditions, forcing, and phase speed:

F` dt = f`(x, t)dt + A`(t)dW
(f )
` (t),

C`(x, t) dt = c`(x, t)dt + B`(t)dW
(c)
` (t),

U ∼ N (0, 1), dW (t)(.) ∼ N (0, 1), normal variates,

given observations (noisy samples of the exact solution).
Observations:

Y(tm) = H(tm)V(tm) + ε(tm), m = 1, ...,M.

The observation matrices, H(tm) : RN → RK . The observation errors are
normally distributed, with variance

Rm := 〈εmε>m′〉δm,m′.

Outcomes
Let the vector Φ(t) be such that Φ`(0) = U(x`). For ` = 1, 2, ..., N ,

dΦ`
dt

= F`(x, t), t > 0,

Φ`(0) = U(x`).

dx`(t)

dt
= C`(x, t), t > 0,

x`(0) = X`, ` = 1, 2, ..., N,

Exact (Truth) Outcome:

beginequationdx = (α0 + α1t
1/2)dt + βdW,

with associated initial conditions. Here α0 and α1 are constants. This prob-
lem has a solution

xn+1 = xn + α0∆t +
2

3
α1∆t3/2 +

√
β2∆tN (0, 1),

for n = 0, 1, ...Nf − 1. The mean and the covariance of the solution are,
respectively,

〈xn+1〉 = 〈xn〉 + α0∆t +
2

3
α1∆t3/2, cov(xn+1) = cov(xn) + β2∆t.

Model Estimate: Lax-Friedrichs,
√

∆t∆wn = −Vn + LnVn−1 + ∆tfn−1, n = 1, 2, . . . , Nf ,

where L ∈ RN×N . Model noise ∆wn, normal variates. Model noise vari-
ances, Qn = ∆t〈wnw

>
n′〉δn,n′.

Estimates: Truth, Model, KF and DLF.

Truth-Model, Truth-KF, Truth-DLF.
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Data was sampled at every 4 space steps, and every 10 time steps.

Summary
• The DLF is a data assimilation strategy, applicable to hyperbolic, or ad-

vection dominated problems, such as linear and nonlinear waves, ad-
vected transport.

• The DLF strategy can be applied to linear (Gaussian) as well as nonlinear
(non-Gaussian) dynamic problems.

•DLF is computationally-efficient.

•DLF is particularly effective when observations are sparse.

•Unlike other sequential data assimilation schemes, DLF can produce
Bayesian forecasts, by projecting observations into the future.
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