Estimating Soil Moisture at High Spatial Resolution with Three Radiometric Satellite Products: A Study from a South-Eastern Australian Catchment

I.P. Senanayake¹, In-Young Yeo², Natthachet Tangdamrongsub², Garry R. Willgoose², Greg R. Hancock², Tony Wells², Bin Fang³, and Venkat Lakshmi³

¹Affiliation not available ²University of Newcastle ³University of South Carolina

November 22, 2022

Abstract

Long-term soil moisture datasets at high spatial resolution are important in agricultural, hydrological, and climatic applications. The soil moisture estimates can be achieved using satellite remote sensing observations. However, the satellite soil moisture data are typically available at coarse spatial resolutions (~ several tens of km), therefore require further downscaling. Different satellite soil moisture products have to be conjointly employed in developing a consistent time-series of high resolution soil moisture, while the discrepancies amongst different satellite retrievals need to be resolved. This study aims to downscale three different satellite soil moisture products, the Soil Moisture and Ocean Salinity (SMOS, 25 km), the Soil Moisture Active Passive (SMAP, 36 km) and the SMAP-Enhanced (9 km), and to conduct an inter-comparison of the downscaled results. The downscaling approach is developed based on the relationship between the diurnal temperature difference and the daily mean soil moisture content. The approach is applied to two sub-catchments (Krui and Merriwa River) of the Goulburn River catchment in the Upper Hunter region (NSW, Australia) to estimate soil moisture at 1 km resolution for 2015. The three coarse spatial resolution soil moisture products and their downscaled results will be validated with the in-situ observations obtained from the Scaling and Assimilation of Soil Moisture and Streamflow (SASMAS) network. The spatial and temporal patterns of the downscaled results will also be analysed. This study will provide the necessary insights for data selection and bias corrections to maintain the consistency of a long-term high resolution soil moisture dataset. The results will assist in developing a time-series of high resolution soil moisture data over the south-eastern Australia.

Estimating Soil Moisture at High Spatial Resolution with Three Radiometric Satellite Products: A Study from a South-Eastern Australian Catchment

¹The University of Newcastle, School of Engineering, Faculty of Engineering and Built Environmental and Life Sciences, Faculty of Science, Callaghan, NSW, Australia, ³University of South Carolina, School of Earth Ocean and Environment, Columbia, SC, United States. *E-mail: Indishe.Senanayake@uon.edu.au*

1. INTRODUCTION

- Soil moisture is a key variable in a number of environmental processes. Therefore, soil moisture data plays an important role in hydrological, climatic and agricultural applications.
- SMOS (launched in Nov-2009) [1] and SMAP (launched in Jan-2015) [2] are two recent missions dedicated to soil moisture mapping. Both SMOS and SMAP consist of 1.4 GHz L-band radiometers. SMAP radar (1.26 GHz) failed after ~3 months of operation. Both missions have a 3day revisit time and an expected accuracy of $RMSE = 0.04 \text{ m}^3/\text{m}^3 \text{ V}$.
- The point-scale in-situ observations and coarse resolution (~10s of km) satellite soil moisture products are unable to capture the high spatial variability of soil moisture as required by many of its regional-scale applications. Therefore, downscaling satellite soil moisture products is often required
- A long-term dataset of high spatial resolution soil moisture can assist in improving the outputs of a number of regional-scale applications.
- Soil moisture products of multiple satellites are required in developing a long-term time-series of high spatial resolution soil moisture dataset. However, soil moisture products of different satellites exhibit inconsistencies due to the differences in their spatial resolutions, band widths, retrieval algorithms, overpass times, penetration depths, etc.

2. OBJECTIVES

This study focusses on downscaling three satellite soil moisture products; SMAP 36-km, SMAP enhanced 9-km and SMOS 25-km, into 1 km resolution across the Krui and Merriwa River catchments in the Upper Hunter Region of, New South Wales, Australia over 2015.

This work includes:

- I. Validation of the coarse-resolution satellite soil moisture products with the in-situ data.
- II. Inter-comparison of the satellite soil moisture products.
- III. Downscaling the satellite soil moisture products and validation of the downscaled data.

3. THERMAL INERTIA THEORY

- Thermal inertia relationship between the diurnal soil temperature difference (ΔT) and the daily mean soil moisture ($\theta \mu$) has been used in this work to downscale coarse-scale satellite soil moisture products.
- Thermal inertia (*TI*) is a property that characterizes the degree of resistance of a body to the change of its surrounding temperature. TI is a function of the material's density (ρ) , thermal conductivity (K)and specific heat capacity (c). i.e. $TI = \sqrt{\rho . K . c}$ [3].
- Presence of moisture increases the thermal inertia of soil. Therefore, higher the soil moisture content, lesser the diurnal temperature difference of soil (ΔT) [4]. This relationship between $\theta\mu$ and ΔT has been employed in this study to estimate soil moisture at high spatial resolution.

grids.

REFERENCES

3. Price, J. C. (1977). Thermal inertia mapping: A new view of the earth. *Journal of Geophysical Research*, 82(18), 2582-2590. 4. Fang, B., & Lakshmi, V. (2014). Soil moisture at watershed scale: Remote sensing techniques. Journal of hydrology, 516, 258-272.

Indishe Prabath Senanayake¹, In-Young Yeo¹, Natthachet Tangdamrongsub¹, Greg R Hancock², Tony Wells¹, Bin Fang³ and Venkataraman Lakshmi³

3. THE STUDY AREA – GOULBURN RIVER CATCHMENT

- climate.
- cropping and grazing.

Fig. 1: The study area, Goulburn River catchment and SASMAS soil moisture monitoring stations along with SMAP 36 km, SMAP-E 9 km and SMOS 25 km

1. Kerr, Y. H., Waldteufel, P., Wigneron, J. P., Delwart, S., Cabot, F., Boutin, J., Escorihuela, M.J., Font, J., Reul, N., Gruhier, C. & Juglea, S. E. (2010). The SMOS mission: New tool for monitoring key elements of the global water cycle. Proceedings of the IEEE, 98(5), 666-687. 2. Chan, S.K., Bindlish, R., O'Neill, P.E., Njoku, E., Jackson, T., Colliander, A., Chen, F., Burgin, M., Dunbar, S., Piepmeier, J. and Yueh, S. (2016). Assessment of the SMAP passive soil moisture product. IEEE Transactions on Geoscience and Remote Sensing, 54(8), 4994-5007.

5. Rüdiger, C., Hancock, G., Hemakumara, H.M., Jacobs, B., Kalma, J.D., Martinez, C., Thyer, M., Walker, J.P., Wells, T. and Willgoose, G.R. (2007). Goulburn River experimental catchment data set. Water Resources Research, 43(10), W10403.

The study area Goulburn River catchment (~7000 km²) is located in the Upper-Hunter region in south-eastern Australia. The catchment consists of a semi-arid

The two focus sub-catchments Krui (~562 km²) and Merriwa River (~651 km²) are located in the northern part of the Goulburn River catchment. These two sub-catchments are mostly cleared for

Under the Scaling and Assimilation of Soil Moisture and Streamflow (SASMAS) project, 26 monitoring stations have been established across the Goulburn River catchment measuring soil moisture and soil temperature (Fig. 1) [5].

Soil moisture is measured at 0-5, 0-30, 30-60 and 60-90 cm soil profiles every minute and averages are logged at every 20 minutes. The dataset is available from 2003 to 2015 with some data gaps.

- can be identified as two major limitations.
- fields in south-eastern Australia.

H21I-1598

SOUTH CAROLINA

Table 1: Comparison between coarse-resolution satellite soil moisture products and SASMAS in-situ observations over Krui and Merriwa River catchments in 2015.

Satellite soil moisture product	RMSE (cm³/cm³)	Pixel number			
SMAP 36-km	0.07	SMAP-7			
SMAP-E 9-km	0.10, 0.06, 0.05	SMAP-E 43, 51, 62			
SMOS 25-km	0.22	SMOS-10			

 Table 2: Inter-comparison between coarse-resolution
 satellite soil moisture products across Krui and Merriwa **River catchments in 2015/16.**

Satellite soil moisture products	RMSE (cm ³ /cm ³)	Pixel number			
	0.048	SMAP-6			
SMAP 36 km - SMAP 9 km	0.055	SMAP-7			
	0.042	SMAP-10			
	0.038	SMAP-11			
	0.144	SMOS-6			
SMOS 25 km - SMAP-E 9 km	0.144	SMOS-7			
	0.146	SMOS-10			
	0.147	SMOS-11			
	0.105	SMAP-6			
SMAP 36 km - SMOS 25 km	0.148	SMAP-7			
	0.054	SMAP-10			
	0.044	SMAP-11			
	0.071	SMAP-6			
SMAP 36 km - Adj. SMOS 25 km	0.100	SMAP-7			
	0.046	SMAP-10			
	0.057	SMAP-11			

				-
n ³ 0.3 0.4	a) SMAP 36 km	b) SMAP-E 9 km	c) Adj. SMOS 25 km	 Fig. 7: Spatial variability of soil moisture across Krui and Merriwa River catchments as captured by; a) SMAP 36-km, b) SMAP-E 9-km, c) Adjusted SMOS 25-
using	d) D/s SMAP 36 km	e) D/s SMAP-E 9 km	f) D/s Adj. SMOS 25 km	km,
S in-situ sm AP 36-km sm 350	SM (cm³/cm³)			 d) downscaled SMAP 36-km, e) downscaled SMAP- E 9-km, and f) downscaled adjusted SMOS data,
JISCUL	- 0			

• SMAP soil moisture products exhibit a good correlation with SASMAS in-situ observations (avg. RMSE= $0.07 \text{ cm}^3/\text{cm}^3$). SMOS soil moisture products exhibits a general under-estimation over the study area compared to in-situ data (0.22 cm³/cm³). • The accuracy of the downscaled data is highly dependent on the accuracy of the coarse-resolution satellite soil moisture products. • Unavailability of high resolution in-situ observations for validation and the data gaps due to the effect of the cloud cover on MODIS LST data

• Future studies will be focussed on improving the regression algorithms and on applying the algorithms over other soil moisture monitoring