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Abstract

A major source of lithospheric stresses is believed to be in variations of surface topography and lithospheric density. The
traditional approach to stress estimation is based on direct calculations of the Gravitational Potential Energy (GPE), the depth
integrated density moment of the lithosphere column. GPE is highly sensitive to density structure which, however, is often
poorly constrained. Density structure of the lithosphere may be refined using methods of gravity modeling. However, the
resulted density models suffer from non-uniqueness of the inverse problem. An alternative approach is to directly estimate
lithospheric stresses (depth integrated) from satellite gravimetry data. Satellite gravity gradient measurements by the ESA
GOCE mission ensures a wealth of data for mapping lithospheric stresses if a link between data and stresses or GPE can be
established theoretically. Following (Camelbeeck et al., 2013), we adopt the method that constrains lithospheric stresses by
direct utilization of the gravity gradient tensor. For comparison, we use more traditional methods as well: (2) the filtered
geoid approach (e.g., Chase et al., 2002; Coblentz et al., 2015), and (3) the direct thin-sheet approximation based on depth
integration of density moment (e.g., Medvedev, 2016). Whereas the last two approaches (2)-(3) calculate GPE and utilize
a computationally expensive finite element mechanical modeling to calculate stresses, the approach (1) uses a much simpler
numerical treatment but requires simplifying assumptions that yet to be tested. We applied all methods to the North Atlantic

region where reliable additional constraints are available and tested results against the World Stress Map.
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A major source of lithospheric stresses is believed to be in variations of surface topography and litho- GHAI"ENT TENS““ S51METHOD 2. GPE BASED ON FILTERED GEIOD ANOMALIE
spheric density. The traditional approach to stress estimation is based on direct calculations of the 3.1 NORTH ATLANTIC REGION AND ICELAND HOTSPOT | _

e : : . : The method of direct estimation of local (depth-integrated) lithospheric stress perturbation from o TR ProShell approach (Medvedev 2016) includes in-plane and
Gravitational Potential Energy (GPE), the depth integrated density moment of the lithosphere The lithospheric structure of the North Atlantic is controlled by ~56 Ma seafloor spreading ravity gradient tensor generally follows Camelbeeck et al. 2013. The method assumes that local per- i 5 bending deformation and is able to consider the complicated
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column and upper mantle. IS highly sensitive to density structure which, however, Is often poorly and Iceland Hotspot (peak of most recent activity at 23-7 Ma). turbation of depth integrated horizontal stresses is proportional to divergence of geoid gradient. 77z geometry of the plate, such as curvature of the lithospheric shell.
constrained. Density structure of the lithosphere may be refined using methods of gravity modeling. . U s i s" S The numerical model was constrained in several steps. We calcu-
However, the resulted density models suffer from non-uniqueness of the inverse problem. An alter- V-F=-23x10 (TXX T Tyy) or using 2D principal values —2.3x10 (Tl +1, ) /,%,:»g_ """ late GPE using filtered geoid anomalies (Method 2; 5.1) and a

native approach is to directly estimate lithospheric stresses (depth integrated) from satellite gravime-
try data.

Satellite gravity gradient measurements by the ESA GOCE mission ensures a wealth of data for map-
ping lithospheric stresses if a link between data and stresses or GPE can be established theoretically.
Following (Camelbeeck et al., 2013), we adopt the method (1) that constrains lithospheric stresses by
direct utilization of the gravity gradient tensor. For comparison, we use more traditional methods as
well: (2) the filtered geoid approach (e.g., Chase et al., 2002; Coblentz et al., 2015), and (3) the direct

_ density model for lithosphere and upper mantle (Method 3; 5.2).
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