Mapping Change in the Science of Ocean Change

Dwight Owens¹, S. Kim Juniper², David Campbell¹, Matt Durning¹, Indi Hodgson-Johnston¹, and Tim Moltmann¹

¹Affiliation not available ²Ocean Networks Canada

November 24, 2022

Abstract

Using bibliometric analysis techniques, we trace the evolution of climate and climate-change related articles in major oceanographic journals, 1987-2017. We use these bibliometric tools (network mapping, cluster analysis, alluvial analysis, corpus keyword detection) to document trends in growth, integration and centralization of climate-related research within ocean sciences over the past three decades. Such analysis methods offer an objective and complementary methodology, in contrast to the traditional "expert panel" approach, for guiding long-term strategic science planning. But how does the macro trend compare to scientific outputs supported by large ocean observatory facilities? Have scientists making use of these facilities followed, led or diverged from the general trend? We compare the macro trend to corpora of published science from two such facilities, Australia's Integrated Marine Observing System (IMOS) and Ocean Networks Canada (ONC). The goal is to discern the extent to which these "big science" ocean observatories have been able to support or lead research that helps inform policy, management and the public about critical societal issues such as long term ocean change.

ED14A-2316

Mapping Change in the Science of Ocean Change

Dwight Owens¹, S. Kim Juniper¹, David Campbell², Matt Durning², Indi Hodgson-Johnston³, Tim Moltmann,³

¹Ocean Networks Canada (ONC), Victoria, British Columbia, CANADA; ²Science-Metrix, 1335, Mont-Royal Est, Montréal, Québec, CANADA; ³Intergrated Marine Observing System (IMOS), University of Tasmania, Hobart, Tasmania, AUSTRALIA

246

248

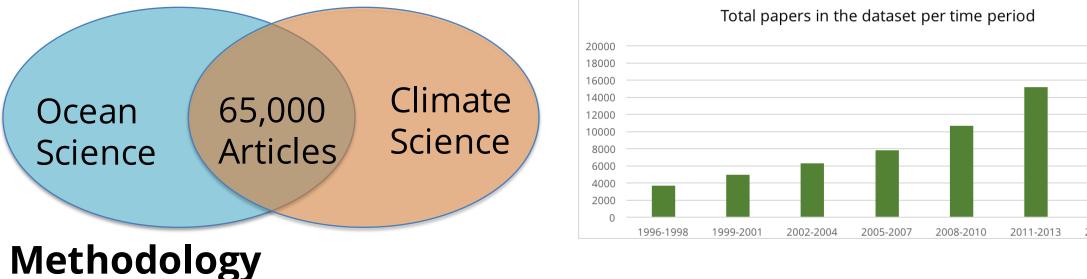
2412

2414

24u

2413

247

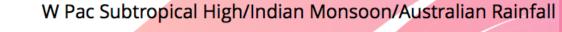

2002-2004

Introduction

Using bibliometric analysis techniques, we trace the evolution of ocean science research related to climate science, over the period 1996-2016. Resulting diagrams illustrate trends in growth, divergence and merging of topic clusters over time. We relate these trends to the publicaton output of Ocean Networks Canada (ONC) and the Australian Integrated Marine Observing System (IMOS).

Data Selection

Starting with papers in specialist journals in the fields of oceanography and climate change, the dataset was expanded using keyword-based queries in titles, author keywords, and abstracts. The relevant terms were identified by computing the TF-IDF^{*} of each term. The final corpus of 65,000 papers on ocean-climate change research was created from the intersection between the two datasets. *TF-IDF, or term frequency-inverse document frequency is a statistical measure used to evaluate how important a word is to a document in a collection or corpus.



Influence of Large Experiments

Names of several large experiments and infrastructure or numerical modeling platforms appear as significant terms in the corpus. AVHRR, Calipso, CCM3, CFS, GPCP, Grace, HADCM, HyMeX, ISCCP, SODA, TOGA, TOPEX Poseidon, and SSMI all occurred within the top 100 terms for a time period. This approach enables major developments and science investments to measure and trace their impact on the corpus of scientific literature.

Expanding Research

- Ocean-climate change research has expanded significantly over the past two decades:
- Total paper counts grew from 1160 in 1996 to 6490 in 2016 (**560%** increase)
- In 1996-1998, the dominant thematic cluster, Rainfall Anomaly /Decadal/Cyclone/Monsoon, included **156** terms.
- In 2014-2016, the dominant thematic cluster Arctic Ice/Polar Vortex/Monsoon Precip, included 904 terms.

Simbiodinium/Copper/Adaptation

Metabolism/Catalase/Hypercapnia

Arctic Ice/Polar Vortex/Monsoon Precip

Atmospheric Component/Forecast Skill

Overfishing/Management/Shoreline

Marine Protected Areas

2014-2014

Zooxanthellae/Symbiosis/Gadus Morhua/Coral

Southern China/Walker Circ/Multidecadal-Iterdecadal Variability

To identify themes, terms (keywords) were detected using co-occurrence patterns of word pairs and expressions within the corpus. Two distinct words or expressions co-occur if they are present in the same document. The corpus consisted of titles, abstracts, author keywords, and titles of references collated into seven 3-year subsets between 1996-2016. Co-occurences within these subsets were determined by converting text into noun phrases after merging variants of the same words¹. Relevance scores for each noun phrase were assigned according to the distribution of co-occurrences¹.

Filtered keywords were then ranked by relevance scores, with 10% of papers filtered out due to insufficient terms. Clustering was then performed in VOSviewer using total link strength for weighting. This generated a set of 10-18 clusters per time period. The evolution of these clusters over the 3-year time periods is visualized by the large Sankey diagram, with groups of terms merging into and diverging out from the various clusters over time along the X axis.

Deglaciation/Pollen/N Atl Deep Water 9110 Tropical Atlantic/Coupled Model/ENSO Sensitivity experiment/Radiative Forcing/Tempertaure Change -9111

TOGA/Upper Troposphere/SSMI

Coastal/Phytoplankton/Eutrophication

Reef/Deposit/Disturbance/Metal

Risk/Cost/Coastal Zone Coral Reef/DIC/Mixing/CO2

East Asia/Rossby Wave/Monsoon/Ocean Atmos System/TOPEX Rainfall Anomaly/Decadal/Cycone/Monsoon Internal Variability/Models/Sensitivity Holocene/Iceland/North Atlantic/Isotopes High Resolution Radiometer/Albedo Colony/Coastal Region/Ecology/Taxon 919 Coastal Zone/Hydrology/Damage/Cost Protein/Plankton/Food Web/Copepod/DOC 917

Asian Monsoon/Coupled Model/W Equatorial Pacific 4612 Pleistocene/Miocene/Pollen Speleothem/Pollen/Glaciation Pollen/Interglacials/Shoaling Variability/Predictability/Monsoon/ccm3/Oscillation N Atl Deep Water/Atl Thermohaline Circ 1311 5714 Soda/Deep Water Formation North Atlantic Deep Water Calipso/Heavy Precip **Orbital/Holocene/Benthic Foraminifera** Radiometer/Marine Boundary Lyr/Cloud Fraction Gadus Morhua/Euphausiids/Anchovy 579 8014 Energy Flux/Labrador/Downwelling Glacial/Marine Isotope/Benthic Foraminifera/Abrupt Climate Change 4615 Specie/Northward/Life History/N Ca Low Level Cloud/Calipso Hydrogen/Electricity/Fuel Marine Bnd Lyr/Black Carbon/Trop Rainfall/Sea Salt 1314 5712 8013 Anaerobic/Anoxic/Gammaproteobacteria Sand/Coastal Erosion/Beach/Storm Surge 809 Predator/Late Summer/El Nino 571 Plankton/Bacteria/Methane 5713 5710 Archaea/Bact Prod/UV/Nitrification Cost/Vulnerability/Protection/Hurricane Phytoplankton/Caco3/Alkalinity/Silica 4613 1313 Ammonium/Bact Prod/Dinoflagellate Eutrophication/Toxicity/Energy 13u 8012 57u 1315 80u 4611 1310 Mercury/Metals/Bioaccum/PAHs 8011 4610 Fluid/Gas Hydrate 8016 Natural Gas/Electricity/Fertilizer 4616 8017 4618 PCBs/Metals/Contamination 8010 4614

Growth relative to

16% 1.55

12.3% 1.79

2014-2016

field over period

« Metabolism/Catalase/Hypercapnia »

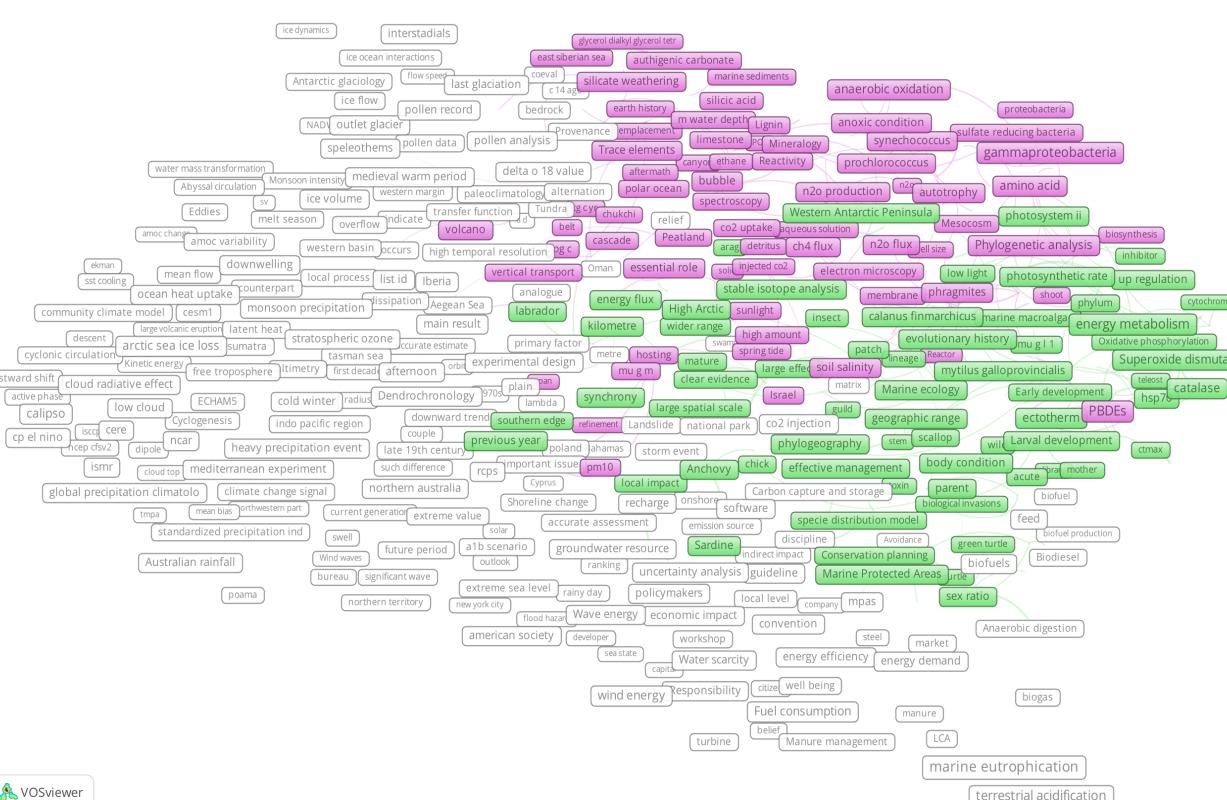
« Marine Protected Areas»

1996-2098

Shape of the Science

When mapped as clustered topics by VOSviewer, major topical areas are indicated by colour. Some clusters, such as the red, yellow, magenta, green and blue ones below, are displayed as distinct, tightly connected groupings around the edges of the map. These clusters could be characterized as having greater coherence. Others, such as the dark green, pink and purple clusters, are more diffuse and centrally located, indicating that terms in these clusters have weaker coherence and stonger affinities across cluster boundaries.

1999-2001

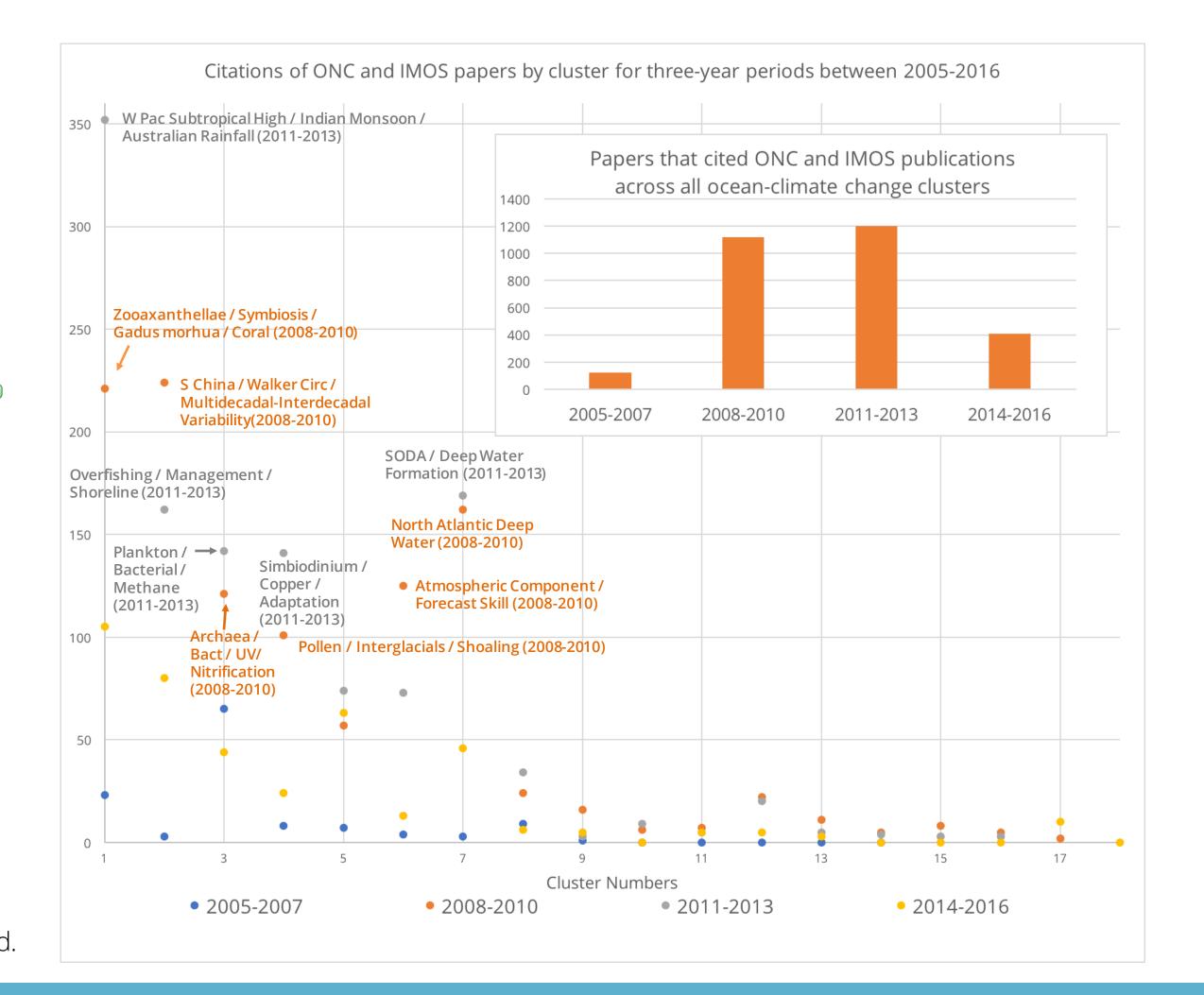

Major clusters in the 2014-2016 period include « Arctic Sea Ice Loss/Polar Vortex/Monsoon Precipitation » (904 terms), « Energy Metabolism/Superoxide dismutase/Hypercapnia » (621 terms), « MPAs/Guideline/Recharge » (535 terms), « Speleothems/Last Glaciation/Trace Elements » (505 terms), « Anaerobic oxidation/Gammaproteobacteria/Amino Acid » (457 terms).

ammaproteobacteria amino acid metabolic pathway nergy metabolism peroxide dismutase hypercaphia

Areas of Notable Growth

Two topical clusters (highlighted below) stood out as areas with significant growth between 1996-2016. Over 21 years, terms in the « Anaerobic oxidation/Gammaproteobacteria/Amino Acid » cluster grew from 4.6% to 16% of the total share, while terms in the « Energy Metabolism/Superoxide dismutase/Hypercapnia » cluster grew from 1.6% to 12.3% of the total share.

In contrast, the « Arctic Sea Ice Loss/Polar Vortex/Monsoon Precipitation » cluster remained stable and dominant theme, growing slightly from 25% to 29.2% of the total share over the period



2005-2007

IMOS & ONC Contributions

We also examined the numbers of papers identified in the dataset, which cited papers that made use of ONC and IMOS data, infrastructure or support. IMOS was established in mid-2006, and ONC in 2007, so citations counts for the 2005-2007 period were minimal. Citation counts crest for the 2011-2013 period because citations generally lag publication year by several years.

Citations within the larger, more robust clusters (generally 1-7) are much more numerous than those in the the smaller, more transient clusters (8-18). Many ONC and IMOS-related

Global warming potential

<pre>(freshwater ecotoxicity)</pre>

References

👫 VOSviewer

Google (n.d.), Google Charts Sankey Diagram, Available from:

https://developers.google.com/chart/interactive/docs/gallery/sankey (Accessed 6 February 2018)

Rosvall, M., & C. T. Bergstrom (2010), Mapping Change in Large Networks, edited by F. Rapallo, *PLoS One*, 5(1), e8694,

doi:10.1371/journal.pone.0008694.

¹ Van Eck, N. J., & Waltman, L. (2011). Text mining and visualization using VOSviewer. *arXiv preprint arXiv:1109.2058*.

Van Eck, N.J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. *Scientometrics*, 84(2): 523-538.

Waltman, L., Van Eck, N.J., & Noyons, E.C.M. (2010). A unified approach to mapping and clustering of bibliometric networks. *Journal of*

