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Abstract

While Jupiter’s gravity strongly binds the neutral atmosphere to the planet, energization in the auroral region can lead to
field-aligned upward transport and escape of electrons and ions. This field-aligned transport mechanism provides a way for
heavier ions like H2+ and H3+ to enter Jupiter’s magnetosphere. Formation of H3+ from H2+ occurs quickly in the collisional
ionosphere, so rapid field-aligned transport of H2+ is the most likely mechanism for H2+ ions present in Jupiter’s high-latitude
ionosphere and magnetosphere. We model these processes using the PWOM model for ionospheric field-aligned transport
and J-GITM providing the neutral atmosphere and lower ionospheric boundary. The ionosphere is formed and heated by a
combination of solar EUV flux and electorn precipitaiton. The effects of energization from electron precipitation and resonant
wave heating are also accounted for. We show the energy input that is needed to produce ion escape in both the fluid and
kinetic regimes, and we show the formation of ion conics in the kinetic PWOM model. We discuss what observations from

JUNO are needed to allow us to constrain and test our model results.
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Background

Recent JUNO results show ion conics escaping from Jupiter’s
polar ionosphere [Clark et al., 2017] that indicate perpendicular
lon acceleration leading to field-aligned upward transport and I  op,

escape. — N momentum
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Transport Model

These processes at Earth allow ionospheric-origin ions to affect
the composition of magnetospheric plasma and modify space
weather processes in Earth’s magnetosphere.

Field-aligned superthermal
electron transport model by
Solomon et al. [1988].

courtesy of G. Collinson

energy

Magnetic field-aligned transport is driven by
pressure gradients and enhanced by the electric

At Jupiter, field-aligned transport and escape provides a way Coupled with PWOM through

for heavier ions like H2+ and H3+ to enter the magnetosphere. Solvtes thetfleld-allg:ned r o [?i (e + peu?) + 2 peas ambipolar electron fluid equations and fields set up by electron pressure.

Formation of H3+ from H2+ occurs quickly in the collisional JYTOtropit transport Squations i E-field self-consistent ambipolar E- Additional forces such as wave heating will be
lonosphere, so rapid field-aligned transport of H2+ is the most L%rnr\r/':;'ialg flic; T dsl?r]eec:;es along 1% (Zl [(“‘f‘“’i) % 52\; +5gf field. added in future work.

likely mechanism for H2+ ions present in Jupiter’s upper '

jonosphere and magnetosphere. [Glocer et al., 2007, 2012] [Gombosi & Nagy, 1989] [Glocer et al., 2014]
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We can self-consistently model magnetic field-aligned
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