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Abstract

Feasibility of observing near-inertial waves with a single cast of a lowered Acoustic Doppler Current Profiler is quantitatively

assessed in simulated Garrett-Munk internal waves. Because the inertial period is shorter in higher latitudes and the interval

between the upand downcasts is longer in shallower depths, the performance of the estimator is better in higher latitudes at

shallower depths. Even in the best conditions, however, the estimates are contaminated by relative uncertainties greater than

100%. It is not feasible to estimate nearinertial waves accurately using a LADCP cast. Nevertheless, repeated casts at one

station are capable of resolving typical near-inertial waves.
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Can we observe near-inertial waves by using
lowered Acoustic Doppler Current Profiler?

K. Katsumata∗

December 5, 2022

Abstract

Feasibility of observing near-inertial waves with a single cast of a
lowered Acoustic Doppler Current Profiler is quantitatively assessed
in simulated Garrett-Munk internal waves. Because the inertial pe-
riod is shorter in higher latitudes and the interval between the up-5

and downcasts is longer in shallower depths, the performance of the
estimator is better in higher latitudes at shallower depths. Even in the
best conditions, however, the estimates are contaminated by relative
uncertainties greater than 100%. It is not feasible to estimate near-
inertial waves accurately using a LADCP cast. Nevertheless, repeated10

casts at one station are capable of resolving typical near-inertial waves.

1 Introduction

Measurement of horizontal current velocity with Acoustic Doppler
Current profilers attached to a Conductivity Temperature Depth (CTD)
profiler is routine since the data processing methods have been estab-15

lished (Fischer and Visbeck, 1993; Visbeck, 2002). The sensors on a
CTD are designed to be used with a descent or ascent speed of ap-
proximately 1 m/s and one cast of CTD often takes hours at deep
water. Two profiles of horizontal current velocity measured in up-
and downcasts or in two casts at an interval of several hours often20

show totally different profiles. A typical example is found in Figure
17a of Richardson et al (1979).

∗RIGC, JAMSTEC, k.katsumata@jamstec.go.jp
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As is often demonstrated in frequency power spectrum of velocity
field (e.g. Fu, 1981), the power of horizontal velocity or kinetic energy
shows a conspicuous peak at the inertial frequency.25

These two facts suggest a possibility that variation of horizontal ve-
locity at or near the inertial frequency can be measured by an LADCP
cast in deep waters. Multiple velocity measurements have been used
to study internal waves by Sanford (1975) and his collaborators (e.g.
Leaman and Sanford, 1975; D’Asaro and Perkins, 1984; Kunze and30

Sanford, 1984). The question here is if it is possible to reduce the
number of samples to as few as two in one inertial period. Multiple
inertial periods have been used for coarse (∼ 6 hours) sampling (e.g.
Dosser and Rainville, 2016).

The number of measurements of near-inertial gravity waves would35

dramatically increase if each of these LADCP casts resolves the near-
inertial waves. These waves play important roles in energy transfer
from wind to interior ocean and in concurrent mixing (Alford et al,
2016). Nevertheless, the near-inertial waves are difficult to observe due
mainly to two reasons. One is that these waves occur intermittently40

in space and time (e.g. Yu et al, 2022). Most of large amplitude near-
inertial waves in the upper ocean are observed in response to surface
events such as passage of tropical cyclones. The other reason is that
these waves propagate almost horizontally, as prescribed by the dis-
persion relation (see later Equation 2), with water parcel oscillating in45

the horizontal plane such that they are not visible in temperature and
salinity profiles unless the inertial wind has some rotary component
and supports Ekman pumping at the inertial period (Gill, 1984).

In this short note, I investigate if it is possible to estimate the
amplitude and phase of near-inertial waves from one LADCP cast. At50

one depth, two components of horizontal velocity are available (usually
northward and eastward). There are two measurements at one depth,
one at downcast another at upcast. In theory, these four data are just
sufficient to determine four unknowns once its frequency is assumed
to be inertial (e.g. amplitude and phase of upward propagating and55

downward propagating waves). The result, however, proves to be
negative – it is not possible to observe near-inertial waves in typical
oceanic internal wave field. Repeated casts are shown necessary to
quantitatively estimate wave properties such as amplitude and phases
of the near-inertial waves.60
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2 Method

2.1 Simulated internal wave field

The Garrett-Munk (GM) model of the oceanic internal waves (Gar-
rett and Munk, 1972, 1975; Munk, 1981) is used to simulate the ve-
locity field, in which a virtual LADCP measures the inertial waves.65

The GM model prescribes the amplitudes of internal waves at given
wavenumbers (two components in the horizontal directions and one in
the vertical) and frequencies. The phases are given by a quasi-random
number generator. A wave in a box with zonal and meridional hori-
zontal extents of Lx = Ly =200 km and a vertical depth of Lz =400070

m has zonal and meridional wave lengths of Lx/nx and Ly/ny, re-
spectively, where nx and ny are integers from 1 to 100. The vertical
wavenumber m is given by the vertical mode number j under the
WKB approximation

m =
π

b

N

N0
j, (1)

where b = 1300m is the vertical length scale and N is the buoyancy75

frequency scaled by N0 = 5.2 × 10−3 s−1. Vertical modes from 1 to
100 are used. These wavenumbers fix a frequency ω by the dispersion
relation

ω = ±

√
k2 + l2

k2 + l2 +m2
N2 +

m2

k2 + l2 +m2
f2. (2)

Half of the modes are randomly chosen to have positive frequencies
and the other half negative frequencies. Finally, the velocity power80

〈u2 + v2〉 at this frequency and vertical mode j is given by

〈u2 + v2〉 =

∫ N

f

∑
j

b2N0N
ω2 + f2

ω2
B(ω)H(j)E0dω (3)

which is the 1981 version (Munk, 1981) of the GM spectrum. Here,
B(ω) = 2π−1fω−1(ω2 − f2)−1/2, H(j) = (j2 + j2∗)

−1/Σ100
1 (j2 + j2∗)

−1,
E0 = 6.3× 10−5, and j∗ = 3. We truncate the vertical summation at
j = 100. We did not include the horizontal mode zero (i.e. uniformly85

moving field, representing waves with scales larger than the box size).
We expect wind events add near-inertial waves on top of the back-

ground GM spectrum. For quantitative analysis, it is necessary to be
able to estimate the amplitude of the near-inertial waves such that
these enhanced waves can be distinguished from the background. To90
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test this ability, we performed experiments with enhanced near-inertial
wave. Here, near-inertial waves are defined as waves with frequency
ω < 1.05f . From these near-inertial modes within the GM spectrum,
half modes are randomly chosen and their amplitudes are increased
by a factor F > 1. The phases of these enhanced waves are assigned95

randomly within a range of Φ±∆Φ, where Φ is a randomly chosen cen-
tral phase and ∆Φ = π/10 is the bandwidth. By restricting the phase
within a 2∆Φ bandwidth, the enhanced near-inertial waves appear as
a wave packet, mimicking the responses from wind events (Figure 1).
Three cases of amplification F are used; a = 5, 10, and 15 dB where100

a(dB) = 10×log10 F . This decibel (dB) notation was used to facilitate
comparison with observation by Fu (1981).

2.2 Virtual measurements

A virtual LADCP measures the simulated velocity fields. We do not
consider measurement errors here. For downcast at time t = td, if105

the horizontal velocity is totally inertial with an eastward amplitude√
u2s + u2c and a northward amplitude

√
v2s + v2c ,

ud = us sin ftd + uc cos ftd

vd = vs sin ftd + vc cos ftd (4)

and for upcast at t = tu

uu = us sin ftu + uc cos ftu

vu = vs sin ftu + vc cos ftu (5)

Note that as the expansion sin(f + δf)t = cos(δf · t) sin ft + sin(δf ·
t) cos ft shows, the fit does not distinguish a small deviation of fre-110

quency from inertial (δf � f) from a small change in amplitude. The
unknown zonal velocity amplitudes oscillating at the inertial frequency
are determined as(

us
uc

)
=

1

D

(
cos ftu − cos ftd
− sin ftu sin ftd

)(
ud
uu

)
, (6)

where
D = sin f(tu − td). (7)

The meridional velocity amplitudes vs, vc are determined similarly.115

It is noted that the estimation performs best when the upcast and
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(a)

(b)

Figure 1: (a) Simulated internal wave field at 30◦N latitude. The top 2
panels show the zonal and meridional component, respectively, in 48 hours
(horizontal axis) at depths (vertical axis) between 1000 and 2000 m. The
bottom 2 panels are a time series at a fixed depth of 1400 m. (b) Simulated
internal waves with near-inertial waves enhanced by a multiplicative factor
of 15 dB (= 31.6). Both upward and downward propagating near-inertial
wave packets are visible between 1000 and 1500 m depth.
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downcast is separated by an interval of a quarter of the inertial period
tu−td = π/(2f), instead of apparently optimal half the period tu−td =
π/f . The following example shows that the half inertial period is not
actually the optimal. At a latitude of 30◦ N, the inertial period is120

24 hours. If an zonal speed of 1 m/s is observed at T =0 hours
and −1 m/s at T =12 hours. If the phase ψ of an inertial wave
u = A sin((2π/f)t + ψ) is ψ = π/2, A = 1 m/s, but for ψ = π/4,
A =

√
2 m/s. We thus need the linear independence of the upcast and

downcast, D 6= 0, to estimate both phase and amplitude.125

From (7), it is seen that the solution becomes unstable as the
interval between upcast and downcast, tu − td, at a particular depth
(henceforth called measurement interval TI) becomes short compared
to the inertial period 2π/f . In order to examine this relationship, we
vary the Coriolis frequency f and the measurement interval TI . The130

Coriolis frequency is varied by setting the latitude at 10, 20, 30, 40, and
50 degrees north. In CTD casts, the ascend and descent speed of the
sensor is generally set at approximately 1 m/s. In a typical cast at a
4000 m depth, the measurement interval TI at 1000m depth is (4000−
1000) × 2 = 6000 seconds = 100 minutes. The measurement interval135

TI is varied at 10, 20, . . ., 100 minutes. We assume effects of the
background stratification is accounted for by the WKB approximation,
i.e., the horizontal velocity scaled by

√
N and the vertical wavenumber

by (1).
A time series of horizontal velocity is extracted from the simulation140

described in the previous Section 2.1 at a depth of 2000 m with a du-
ration of 48 hours and a resolution of 1 minute. Although we add the
near-inertial waves, the waves do not necessarily increase the ampli-
tude at the observation depth as the near-inertial waves form a packet
which does not necessarily go through the 2000 m depth (Figure 1).145

We therefore define the true near-inertial wave amplitude A by fitting
a sinusoidal curve to the 48 hour timeseries using the least squares
method, instead of using the spectral power. From the timeseries, a
virtual measurement is made by choosing a velocity couple at t = T0
minute and at t = T0 +TI minute. An ensemble of 24 such ”measure-150

ments” are thus made from a single timeseries with TI =10, 20, . . .
100 minutes. We simulate 10 timeseries and repeated the process for
each simulated time series.
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3 Results

Twenty-four virtual measurements are made from each of 10 simulated155

timeseries with different measurement intervals TI and inertial wave
amplitudes A. The experiment is repeated at five different latitudes of
10, 20, . . ., 50 degrees. From each virtual measurements, amplitudes
of each sinusoidal functions us, uc, vs, vc are calculated using (6). By
denoting the ”true” (i.e. estimated by the least squares fit to the160

simulated timeseries) amplitudes by the superscript ∗, we calculate
root-mean-square error σ for 24 virtual measurements of, say us, as

σ(us) =

(
1

24

24∑
i=1

(u(i)s − u∗s)2
)1/2

. (8)

The behaviour of σ(us), σ(uc), σ(vs), and σ(vc) are shown in Figure
2. As expected from (7), the error decreases with the measurement
interval TI , but only slowly. For example, at 40◦ latitude, doubling TI165

from 40 to 80 minutes leads to only ∼ 30% decrease in σ (average RMS
= 0.10 m/s for TI = 40 minute, 0.07 m/s for TI = 80 minute). The
distribution of different markers indicate that the error is not sensitive
to the true amplitude. The smallest error is found for the longest
measurement interval TI = 100 minutes as expected from the largestD170

in (6). Even at these conditions, however, it is seen that the error is of
the same order as the true amplitude. This is a hopeless performance
of the present method, suggesting that the present method cannot be
used for qualitative analysis. Despite the large error, the estimates
are not biased (figure not shown).175

The Doppler sensors of LADCP output vertical shear of the hor-
izontal current, which is processed with ship position and pressure
timeseries to estimate the horizontal currents. Some instruments (e.g.
expendable current profiler) can only measure vertical shear of hori-
zontal currents. It is a simple modification to obtain the simulated180

field of vertical shear of horizontal velocity associated with the GM in-
ternal wave – multiplication of horizontal velocity by the vertical wave
number. Virtual observation was made to the vertical shear field and
the result (Figure 3) shows that extraction of near-inertial waves are
even more difficult with vertical shear than with horizontal velocity.185
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Figure 2: Distribution of root-mean-square error in estimated amplitudes
(us, uc, vs, and vc) for 10 simulated wavefield at latitude of (a) 10◦N, (b)
20◦N, (c) 30◦N, (d) 40◦N, and (e) 50◦N, and (f) shows the average of the
markers at each latitude and measurement interval. The abscissa shows
the measurement interval TI with leftmost TI = 10 minutes, the ordinate
the root-mean-square error. The color and shape of the markers indicate

the amplitude of the true component (A =
√
u∗2s + u∗2c + v∗2s + v∗2c ). All

components, both zonal (u) and meridional (v), and both cosine (uc, vc) and
sine (us, vs), are plotted without distinction.
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Figure 3: Distribution of root-mean-square error in estimated shear am-
plitudes (∂us/∂z, ∂uc/∂z, ∂vs/∂z, and ∂vc/∂z) for 10 simulated wavefield
at latitude of (a) 10◦N, (b) 20◦N, (c) 30◦N, (d) 40◦N, and (e) 50◦N, and
(f) shows the average of the markers at each latitude and measurement
interval. The abscissa shows the measurement interval tI with leftmost
tI = 10 minutes, the ordinate the root-mean-square error. The color
and shape of the markers indicate the amplitude of the true component

(A =
√

(∂u∗s/∂z)2 + (∂u∗c/∂z)2 + (∂v∗s/∂z)2 + (∂v∗c/∂z)2). All components,

both zonal (u) and meridional (v), and both cosine (uc, vc) and sine (us, vs),
are plotted without distinction.
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4 Discussion and Conclusions

Although the estimation of horizontal velocity oscillation at the iner-
tial frequency is possible in theory, the simulated virtual observation
shows that the estimated coefficients of the sinusoidal functions are
contaminated by errors with the magnitude comparable to the signal.190

From the coefficients of sine and cosine, say b and c, the amplitude Φ
and phase θ are given as Φ2 = b2 + c2 and tan θ = b/c, respectively.
The magnitude of the error for each quantity is given as

(δΦ)2

Φ2
=

b2(δb)2 + c2(δc)2

Φ4

∼ b2b2 + b2b2

(b2 + b2)2

∼ 1

2
(9)

and

(δθ)2 =
c2(δb)2 + b2(δc)2

Φ4

∼ b2b2 + b2b2

(b2 + b2)2

∼ 1

2
∼ π

6
(10)

where δ signifies the uncertainty and we assumed the uncertainty is195

of a similar magnitude as the signal, i.e., b ∼ δb ∼ c ∼ δc. In other
words, the relative error of amplitude is as bad as 1/

√
2 ≈ 0.7 and the

absolute error of phase is π/6.
One way to reduce the error is to combine multiple observations

that are statistically independent. Spatially, two observations can be200

regarded independent if the two are separated by a distance greater
than the coherence length scale. As shown in Garrett and Munk
(1975), the vertical coherence for a separation Y for fixed measure-
ments (referred to as ”moored vertical coherence” or MVC) is given
by205

MVC =

∫ ∞
0

H(j) cos(jπλY )
dj

j∗
, (11)

where H(j) is defined in Equation (3). Similarly, the horizontal co-
herence (”moored horizontal coherence” or MHC) for a separation X

10



by

MHC =

∫ ∞
0

H(λ)J0(jπ
√
ω2 − f2X dj

j∗
, (12)

where J0 is the Bessel function. Numerical evaluation for modes j =1
to 100 gives the vertical and horizontal scale lengths of 300 m and 220210

km, respectively, as the first zero crossing of the coherence curves. We
set ω = 1.04f for (12). From a year-long mooring observation, Yu et al
(2022) obtained a mean vertical and horizontal wavelengths of near-
inertial waves with mean frequency (1.039± 0.018)f are 652± 185 m
and 79±28 km, respectively. These wavelengths suggest that it is not215

possible to obtain more than several independent observations in one
wavelength by the present method. We conclude that LADCP cannot
be used to observe near-inertial waves with the present method.

Another approach to investigate the horizontal velocity measured
by LADCP is through the use of the vertical wavenumber spectra.220

This is equivalent to assuming a range of vertical wavelengths for
near-inertial waves. Waterhouse et al (2022) employed this method,
using a vertical wavelength band of between 100 m and 320 m for
LADCP, and showed that globally downward going energy is greater
than upward going in the upper 600 m and that no obvious asymmetry225

found below that depth.
Given the large errors in one cast of LADCP measurement, re-

peated LADCP casts (often called yo-yo casts) should be employed if
one attempts to retain the frequency information rather than assuming
the vertical scale of the horizontal velocity measurements. Expendable230

current profilers (XCP), which measure vertical shear of horizontal
velocity can be an efficient alternative to LADCP for repeat mea-
surements, but we note that the vertical shear cannot substitute the
horizontal velocity measurement in typical internal wave fields (Fig-
ure 3). We also note that the measurement depth of XCP is limited235

(< 1000 m depth). If horizontal velocity in an internal wave field is
measured N times, the error can be reduced by a factor of

√
N . At

30◦ latitude, where the inertial period is 24 hours, Figure 2 shows that
at this latitude, an measurement interval TI longer than 50 minutes
has an error of 0.1 ms−1. At 4000 m depth, a CTD cast without water240

sampling would take 8000 seconds or approximately 2.5 hours. Four
casts within 24 hours are sufficient to resolve the amplitude by 0.05
ms−1 and the phase by π/12 = 1 hour. As demonstrated by mooring
observation (Yu et al, 2022), the internal waves below mixed layers
are observed in response to wind events. The wave propagates at a245
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speed of 50 to 80 m/day (Yu et al, 2022). It is quite plausible to
observe by ship these near-inertial waves at around 500 m depth after
6 to 10 days after a storm. This sort of event dependent observation
is difficult to plan ahead but can serve as one possible option when a
cruise fortuitously end up with some extra time offshore.250
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