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Abstract

We examine how zooplankton influence phytoplankton bloom phenology from the top-down, then use inverse modelling to

infer the distribution and drivers of mean community zooplankton grazing dynamics based on the skill with which different

simulated grazing formulations are able to recreate the observed seasonal cycle in phytoplankton biomass. We find that

oligotrophic (eutrophic) biomes require more (less) efficient grazing dynamics, characteristic of micro- (meso-) zooplankton,

leading to a strong relationship between the observed mean annual phytoplankton concentration in a region and the optimal

grazing parameterization required to simulate it’s observed phenology. Across the globe, we found that a type III functional

response consistently exhibits more skill than a type II response, suggesting the mean dynamics of a coarse model grid-cell

should offer stability and prey refuge at low biomass concentrations. These new observationally-based global distributions will

be invaluable to help constrain, validate and develop next generation of biogeochemical models.
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Key Points:12

• Oligotrophic (eutrophic) biomes exhibit more (less) e�cient mean community graz-13

ing dynamics, characteristic of micro- (meso-) zooplankton.14

• There is a strong relationship between mean phytoplankton biomass and the graz-15

ing dynamics required to simulate its observed seasonal cycle.16

• A type III response does a consistently better job of recreating observed phyto-17

plankton phenology compared to a type II response.18
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Abstract19

We examine how zooplankton influence phytoplankton bloom phenology from the top-20

down, then use inverse modelling to infer the distribution and drivers of mean commu-21

nity zooplankton grazing dynamics based on the skill with which di↵erent simulated graz-22

ing formulations are able to recreate the observed seasonal cycle in phytoplankton biomass.23

We find that oligotrophic (eutrophic) biomes require more (less) e�cient grazing dynam-24

ics, characteristic of micro- (meso-) zooplankton, leading to a strong relationship between25

the observed mean annual phytoplankton concentration in a region and the optimal graz-26

ing parameterization required to simulate it’s observed phenology. Across the globe, we27

found that a type III functional response consistently exhibits more skill than a type II28

response, suggesting the mean dynamics of a coarse model grid-cell should o↵er stabil-29

ity and prey refuge at low biomass concentrations. These new observationally-based global30

distributions will be invaluable to help constrain, validate and develop next generation31

of biogeochemical models.32

Plain Language Summary33

To improve our predictions of the ocean’s ability to feed a growing human popu-34

lation and bu↵er a changing climate we must improve our understanding of what hap-35

pens to carbon once it is absorbed into the ocean. One of the largest gaps in marine car-36

bon cycling is the role of zooplankton grazing. The rate at which zooplankton graze (or37

consume) phytoplankton modifies the size and seasonal evolution of both populations38

and in turn their associated rates of net primary production (the base of the food chain),39

secondary production (an indicator of fisheries catch) and export production (the bio-40

logical sequestration of carbon). However, regional di↵erences in in-situ grazing dynam-41

ics, which cannot be directly measured outside of a laboratory, remain poorly constrained42

by observations and thus di�cult to model. Here, we run many model simulations, each43

of which simulate grazing dynamics in a di↵erent way, then compare the results to in-44

fer which type of grazing dynamics are required to match observations. We find that there45

is dramatic spatial variability in how zooplankton appear to be grazing and that this vari-46

ability maps well onto the observed phytoplankton concentration, suggesting that the47

type of zooplankton present may be determined by the amount of prey available.48

1 Introduction49

Marine net primary production (NPP) accounts for roughly half of global carbon50

fixation (Falkowski et al., 2000) and supports the biological export of carbon (de la Rocha,51

2006) and base of the marine food chain (Armengol et al., 2019). Although oceanogra-52

phers have historically focused on light (Sverdrup, 1953) and nutrients (Howarth, 1988),53

increasing experimental (Lima-Mendez et al., 2015; Guidi et al., 2016), observational (Behrenfeld54

et al., 2013) and modelling (Hashioka et al., 2013; Prowe et al., 2012; Laufkötter et al.,55

2015; Rohr, n.d.) work has highlighted zooplankton grazing as a critical control on NPP.56

However, zooplankton grazing dynamics are poorly constrained (Everett et al., 2017),57

di�cult to model (Petrik et al., 2022), and sensitive to environmental change (Richardson,58

2008). This uncertainty can lead to large biases in export and secondary production in59

global marine biogeochemical (BGC) models (Rohr, n.d.).60

Empirical laboratory experiments have shown that grazing dynamics (i.e. the man-61

ner in which specific grazing rates increase with prey concentration) vary substantially62

across zooplankton species, age, and size (Hansen et al., 1997; Hirst & Bunker, 2003).63

However, these studies, which consider the idealized behavior of a single species in a well-64

mixed environment, are unlikely to be representative of the open ocean. To parameter-65

ize relatively coarse global models, oceanographers must understand the mean dynam-66

ics of many species, averaged across a patchy ocean, which may diverge dramatically from67

the dynamics of individual zooplankton (Rohr et al., 2022). Unfortunately, unlike chloro-68
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phyll and phytoplankton biomass, which can be inferred from ocean optical properties69

measured remotely (Sathyendranath et al., 2019; Westberry et al., 2008), zooplankton70

biomass cannot be measured from satellites. Instead, zooplankton must be measured at71

sea using a variety of di↵erent methods (Pakhomov et al., 2020; Pinkerton et al., 2020;72

Benfield et al., 1998), each with large uncertainties and disparate units (Moriarty et al.,73

2013), making it di�cult to describe the global distribution without large levels of sta-74

tistical inference (Everett, n.d.; Heneghan et al., 2020).75

Without robust global data sets of zooplankton biomass and growth rates, it is dif-76

ficult, if not impossible, for modellers to prescribe the correct grazing dynamics. This77

likely contributes to persistent uncertainty in futrue projections NPP (Tagliabue et al.,78

2021), export production (Fu et al., 2016) and zooplankton biomass (Petrik et al., 2022).79

Given the increasingly under-constrained nature of heavily parameterized BGC models80

(Schartau et al., 2017), it is imperative to build out an observationally-informed under-81

standing of the distribution and drivers of grazing dynamics to help constrain them.82

Here, were use inverse modelling to reach an initial estimate of the global distri-83

bution and drivers of grazing dynamics. In the absence of robust observations of zoo-84

plankton biomass, we rely on the well-established influence of grazing dynamics on phy-85

toplankton population dynamics (Gentleman & Neuheimer, 2008; Truscott et al., 1994;86

Steele, 1974) to asses model skill from the top-down. We run a suite of simulations in87

a global, coupled ocean-BGC model, parameterized with a wide range of grazing param-88

eters. We determine the optimal parameters required to best match the phenology of the89

observed phytoplankton seasonal cycle to infer the global distribution of grazing dynam-90

ics (Sec. 3.1). We then show how this distribution appears to be driven by regional vari-91

ability in phytoplankton biomass (Sec. 3.2) and explain the underlying mechanisms (Sec.92

3.3). Finally, we address the limitations of these estimates and means to improve them93

(Sec. 4.1), before discussing how they could improve model validation and design (Sec.94

4.2).95

2 Materials and Methods96

2.1 The Grazing Formulation in BGC Models97

In the simplest BGC models zooplankton grazing occurs between one group of zoo-98

plankton on one group of phytoplankton and can be described with a single-prey func-99

tional response curve (Gentleman & Neuheimer, 2008). Qualitatively, BGC models are100

largely split in the type of functional response curve (type II vs III) they use (Rohr et101

al., 2022). The primary di↵erence between them is that the type II response increases102

linearly at low prey concentrations, while the type III increases exponentially (Figure103

1). Either way, this curve, g([P ]), can be parameterized with a saturation grazing rate104

(gmax; 1/d), which describes the rate when prey is not limiting, and half saturation con-105

centration (K1/2; mmolC/m3), which describes how much prey is required to get there106

(i.e. g([K1/2]) = 0.5⇤gmax). Here we focus on K1/2 because it has been shown to have107

a stronger influence on population dynamics than gmax (Rohr et al., 2022).108

2.2 Influence of Grazing on Phytoplankton Phenology109

Grazing dynamics can influence the shape of seasonal phytoplankton biomass ac-110

cumulation via the curvature of the functional response, which has either a stabilizing111

or destabilising influence on phytoplankton population dynamics depending on its con-112

cavity (Steele, 1974; Truscott et al., 1994; Gentleman & Neuheimer, 2008). If the func-113

tional response is concave upward, then phytoplankton specific loss rates to grazing in-114

crease with the size of the population. This creates a negative feedback loop which damp-115

ens changes in the size of the phytoplankton population, thereby exerting a stabilizing116

influence on phenology. Alternatively, downward concavity means phytoplankton spe-117
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cific loss rates to grazing decline with population growth, creating a destabilizing, pos-118

itive feedback which amplifies changes in the size of the phytoplankton population.119

The shape of the functional response, and thus its stabilizing influence on phenol-120

ogy, is determined by it’s response type (II or III) and parameters (particularly K1/2).121

While the parameter values determine the magnitude of curvature and thus the strength122

of the stabilizing influence, the response type determines the direction. A type II response123

is always concave downward and thus always destabilizing. However, a type III response124

has upward concavity below K1/2 and thus stabilizing properties a low phytoplankton125

concentrations. In turn, the grazing formulation has been shown to exert a strong in-126

fluence on population stability, and thus the size, likelihood, and possibility of phyto-127

plankton blooms, sub-seasonal oscillations, and extinction events (Dunn & Hovel, 2020;128

Steele, 1974; Adjou et al., 2012; Hernández-Garćıa & López, 2004; Truscott et al., 1994;129

Malchow et al., 2005).130

2.3 Model Set up131

Ecologically, the true shape of the mean functional response curve in a given swath132

of the ocean is determined by both the physiological characteristics of individual zoo-133

plankton as well as their relative distribution (Rohr et al., 2022). This is di�cult to mea-134

sure in-situ, but can be inferred through inverse modelling via its the top-down influ-135

ence of grazing dynamics on the simulated phytoplankton seasonal cycle. Here we use136

a global, coupled ocean-BGC to determine which K1/2 values and response types are re-137

quired to best match the observed phytoplankton seasonal cycle.138

The BGC model used, the Whole Ocean Model of Biogeochemistry and Trophic-139

dynamics (WOMBAT) (Law et al., 2017), is part of the Australian Earth Systems Model140

(ACCESS-ESM1.5) (Ziehn et al., 2020) and has been used extensively in previous stud-141

ies (Mortenson et al., 2021; Kwiatkowski et al., 2020; Ziehn et al., 2017; Oke et al., 2013).142

The ocean model is the global configuration of Modular Ocean Model version 5 (Gri�es,143

2012). WOMBAT has a relatively simple BGC structure ((Rohr, n.d.)) with 1 phyto-144

plankton and 1 zooplankton group. More complex models include multiple zooplankton145

grazing on multiple prey types, but we are interested in basin-scale variability in the mean146

dynamics of the entire plankton community. These can be inferred by tuning single-prey147

grazing response toward the observed community-averaged phytoplankton phenology as148

observed from space.149

2.4 Model Experiments150

We ran a total of 36 global simulations, each with a di↵erent grazing formulation.151

To isolate the influence of grazing, each run was initialized from the same state, embed-152

ded in an identical repeat-climatological physical ocean and forced with identical sur-153

face flux and freshwater runo↵ from the Japanese 55-year atmospheric reanalysis sur-154

face dataset, JRA55-do (Tsujino et al., 2020). After initialisation, each run was spun up155

for 5 years to a quasi-steady state, long enough to equilibrate with changes to its graz-156

ing formulation. Model output is reported from the fifth year of the simulation and can157

be considered climatological.158

We ran two suites of experiments, using a type III and II functional response. Within159

each suite we tested 18 di↵erent parameters combination: K1/2 = 0.5, 1, 2, 4, 8, 16160

(mmolC/m3) and gmax = 0.5, 1, 2 (1/d). These values are consistent with the range161

that has been derived empirically and used in models historically (Rohr et al., 2022). All162

other parameters were kept constant and are identical to those in Law et al. (2017).163
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2.5 Model Skill Assessment164

We used two metrics to evaluate the model’s ability to recreate the observed phy-165

toplankton seasonal cycle, the correlation coe�cient (CC ) and coe�cient of variation166

(CV ). The CC measures the co-variability between the simulated and observed clima-167

tologies, while the CV measures the magnitude of variability relative to the mean (i.e.168

standard deviation divided by the mean). Together they capture the shape (CC ) and169

strength (CV ) of the seasonal cycle. Importantly, both metrics are normalized by (or170

in the case of CC agnostic to) the mean annual phytoplankton population size to con-171

trol for the influence of grazing rates on the mean state and isolate its influence on phe-172

nology.173

For each metric, the seasonal cycle of simulated surface phytoplankton biomass was174

compared to an 18-year remote sensing climatology (July 2002 - April 2021) from the175

Carbon-based Productive Model (CbPM) (Westberry et al., 2008). The remote sensing176

record was interpolated onto the model grid in space (2160x4320 to 300x360) and time177

(8-day to 5-day resolution) and all time series were centered on the summer solstice. We178

used observed carbon instead chlorophyll because WOMBAT does not explicitly resolve179

chlorophyll. However we repeated the entire analysis using the VIIRS chlorophyll record180

(comparing model carbon to observed chlorophyll) and found qualitatively similar re-181

sults (Supplemental Section 1).182

The cost function for model skill was quantified for each run in each grid-cell by183

subtracting the absolute di↵erence between the modelled (CVmod) and observed (CVobs)184

coe�cient of variation from the correlation coe�cient (CCmod,obs),185

Model Skill = norm(CCmod,obs)� norm(|CVmod � CVobs|) (1)

Note, both metrics are normalized across all model output such that their contribution186

to the cost function is equally weighted and cost function scores can provide a direct com-187

parisons between the skill of runs between the type II and III experiment suites.188

For each response type, we consider three sets of 6 runs, with each run using a dif-189

ferent K1/2 values (0.5,1,2,4,8,16), but a constant gmax value across the set. Within each190

set the cost function score is interpolated between K1/2 values using a piece-wise cubic191

polynomial and the K1/2 value with the maximum score is identified (see Figure 3). This192

value is then averaged across all three sets, each of which use a di↵erent gmax value (0.5,1,2).193

Finally, very high latitude regions below -55S or above 55N with limited remote sens-194

ing coverage were excluded.195

3 Results196

3.1 Global distribution and drivers of grazing dynamics197

The distribution of observed mean annual surface phytoplankton biomass estimated198

observationally from CbPM (Figure 1A) has a striking co-variability with the distri-199

bution of grazing dynamics inferred by the optimal K1/2 value required to match the ob-200

served seasonal cycle (Figure 1B, C). We find that more oligotrophic regions with low201

mean annual phytoplankton biomass require smaller K1/2 values to best match the ob-202

served phenology (Figure 1A-C; bluer), while more eutrophic regions with high mean203

annual phytoplankton biomass require larger K1/2 values (Figure 1A-C; greener). Qual-204

itatively, this pattern generally holds regardless of whether a type II (Figure 1B) or III205

(Figure 1C) functional response is used to described grazing dynamics or whether re-206

mote sensing biomass (Figure 1A) or chlorophyll (Figure S1) is used to described the207

observed phenology.208
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This is remarkably consistent with the community composition which we would ex-209

pect to inhabit those respective biomes (Everett, n.d.; Heneghan et al., 2020). Ecolog-210

ically, the value of K1/2 at a fixed gmax is related to the rate at which zooplankton can211

capture (rather than consume) prey. Physiologically, the zooplankton which have high212

prey capture rates are typically rapidly-grazing microzooplankton and filter feeders. How-213

ever, these zooplankton species are generally unable to consume anything larger than214

small flagellates, ciliates and cyanobacteria, exactly the sort of phytoplankton that tend215

to dominate less productive, nutrient-poor, regions such as the gyres. On the other hand216

slowly-grazing euphausiids, copepods and macrozooplankton tend to have much slower217

capture rates but are capable of consuming much larger prey, such as dinoflagellates and218

diatom assemblages, which tend to dominate more productive, nutrient-rich, regions like219

the coasts and higher latitudes. Our results not only agree that there is substantial di-220

versity in the zooplankton community across the globe but suggest that these distinc-221

tions are essential in mechanistically shaping phytoplankton phenology (see Sec. 3.2).222

Plotting the distribution of mean annual observed surface biomass against the op-223

timal K1/2 values required to match its seasonal cycle further clarifies the relationship224

between bulk phytoplankton biomass and the mean dynamics with which it appears to225

be grazed (Figure 1D). Regardless of functional response type (II - circles; III - diamonds))226

or gmax value (thin lines), larger K1/2 values are required to recreate the seasonal phe-227

nology of biomes with more mean annual phytoplankton biomass. Switching from a type228

III to type II response or increasing gmax both increase mean grazing rates and the y-229

intercept of the regression but have relatively little influence on its slope (Table S1; Fig-230

ure 1D). A similar response is seen when using chlorophyll as the predicting variable231

(Figure S1D). Plotting the optimal K1/2 value averaged across all three sets of gmax232

values yields our best guess at the relationship between K1/2 and mean phytoplankton233

biomass ([Phyto]).234

Type II : K1/2 = 15.8[Phyto]� 7.3

Type III : K1/2 = 15.2[Phyto]� 10.2
(2)

The slope of of this relationship was not particularly sensitive to the selection of gmax235

when a type III response was used (Supplemental Section 2. Note that the top and236

bottom 20% of biomass grid cells are excluded because the relatively coarse ocean model237

is less suited to resolve end-member biogeochemical scenarios. However, extending the238

range to biomes considered suggests that the the optimal K1/2 value begins to asymp-239

totically approach a minima and maxima in low and high biomass biomes, respectively.240

This could imply two ecologically distinct biomes rather than a continuum, suggesting241

a piece wise fit may be more appropriate (Supplemental Section 3).242

Finally, regardless of gmax value or biome, using a type III function response does243

a consistently better job of recreating seasonal phenology compared to a type II response(Figure244

1D), scoring 30% better on average (Table S1). This is consistent with in-situ (Morozov245

et al., 2008) and mathematical (Rohr et al., 2022; Morozov, 2010) observations that the246

downward concavity, prey refuge, and stabilizing properties associated with a type III247

response may be a better empirical representation of the mean state of a patchy ocean,248

even if individual zooplankton graze with a type II response (Hansen et al., 1997; Hirst249

& Bunker, 2003).250

3.2 Influence of the grazing formulation on regional bloom phenology251

When K1/2 is large, phytoplankton phenology tends to exhibit a stronger, well-defined252

seasonal cycle with less high frequency variability (Figure 2; green lines). This is be-253

cause the grazing formulation does not heavily influence the stability of the system (Gentleman254

& Neuheimer, 2008; Rohr et al., 2022), allowing bloom phenology to be driven primar-255

ily by bottom-up controls, such as light and nutrient availability, which generally follow256
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Figure 1. The distribution and drivers of grazing dynamic. A) The observed climatological

mean annual phytoplankton biomass concentration is plotted as a percentile of the full spatial

distribution. Below, the corresponding K1/2 parameter required to best recreate the observed

phytoplankton seasonal cycle using a B) Type II or B) III response function is also plotted as

a percentile for direct qualitative comparison. Beside each is an example functional response

curve for their respective (bolded) response types, both parameterized with the same K1/2 and

gmax values. Below A) and C) is a schematic of the characteristic phytoplankton associated with

low and high biomass waters and the characteristic zooplankton associated with low and high

K1/2 values. C) The optimal K1/2 required with a type II (circles; B)) and type III (diamonds;

C)) response are plotted against the corresponding phytoplankton biomass. Points are colored

by their mean cost function score, with redder colors indicating increasing model skill. Each

point represents then mean of roughly 30 grid cells, binned based on their percentile biomass,

with the lowest and highest 20th percentiles excluded. All points and the thick dashed regression

were computed by averaging the optimal K1/2 value across three experiment suites, each using

a di↵erent gmax values. Uncertainty bounds (thin solid lines) are provided by calculating the

relationship using just lowest (0.5) and highest (2) gmax values. E) The linear regression (dashed

lines) and mean model skill is quantified in the inset table and included for all gmax values in

Table S1.
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Figure 2. Influence of K1/2 and response type on regional phenology. Example seasonal cy-

cles and their model skill are provided from the A, B Subantarctic zone south of Australia and

B, D Sargasso sea. The emergent phenology for all six K1/2 values is include for both a A, B

Type III and C, D type II functional response. All simulations use the same identical gmax value

of 1/d. A) In the upper panel of each subplot the observed (black) and simulated (blue-green)

seasonal phytoplankton biomass cycles are plotted with the simulation which best matches the

observed phenology boldened. In the lower panel the cost function scoring is demonstrated for

each simulation, with the corresponding CC and CV shown above the combine cost function

score. Red (blue) color shading indicates better (worse) model skill. The optimal K1/2 value is

determined by the interpolated maximum of the cost function scores (red line). In the inset map

(top right corner) the distribution of optimal K1/2 values is shown with the example location

marked in red. Note, these distributions are qualitatively identical to Figure 1, with the same

percentile-based colorbar, and di↵ers only in that they show results from runs with gmax = 1 to

be consistent with the traces, rather than the mean of all gmax values. B-D Identical to A) but

a di↵erent location or response function.
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a stronger seasonal cycle linked to vertical mixing cycle and the length of the day. In turn,257

regional phenology is not as sensitive to the whether a type II (Figure 2A, C) or III258

(Figure 2B, D) response is used. However, as K1/2 decreases, the grazing formulation259

has a stronger influence on the stability on the system. This influence is stabilizing if a260

type III response is used but destabilizing if a type II response is used (see Supplemen-261

tal Section 4), resulting in substantively di↵erent phenologies depending on the response262

type used (Figure 2; blue tracers). To demonstrate this mechanistic influence of the graz-263

ing formulation we consider two cases studies in the sub-Antarctic zone and Sargasso sea,264

which are generally representative of the seasonal variability in high and low biomass biomes,265

respectively (see Figure S4) .266

In the sub-Antarctic zone south of Australia (Figure 2A, C) the observed evo-267

lution of biomass (black line) exhibits a strong seasonal cycle with an amplitude ⇠ 20%268

greater than its mean and relatively little sub-seasonal variability. It is best recreated269

using larger K1/2 values and exhibits slightly more model skill when a type III response270

is used. When using a type III response (Figure 2A), lower K1/2 values reduce the mean271

biomass but do not systematically modify the CV , leaving the ratio of summer to win-272

ter biomass roughly proportional. This occurs because the lower K1/2 values systemat-273

ically increase mean grazing rates, driving biomass down, but increase the first order sta-274

bility (Figure S4A), largely preserving the shape of the seasonal cycle. Alternatively,275

when using a type II response (Figure 2C) response, decreasing K1/2 delays bloom ini-276

tiation but amplifies its acceleration once initiated, leading to smaller, shorter, sharper277

features and systematically higher CV s. The delayed initiation relative to the type III278

response occurs because type II response disproportionately increases grazing rates a low279

biomass concentrations compared to a type III response. The shorter, sharper bloom du-280

ration occurs because lowering K1/2 in a type II response destabilizes the system (Figure281

S4B), allowing phytoplankton biomass to accumulate exponentially until other stabi-282

lizing factors kick in form the bottom-up (i.e. nutrients, self-shading) and rapidly ter-283

minate the bloom.284

In the Sargasso Sea (Figure 2B, D) the observed evolution of biomass (black line)285

exhibits a much weaker seasonal cycle, with more high frequency variability and an am-286

plitude less than half the size of its mean. It is best recreated using smaller K1/2 val-287

ues and exhibits much more skill when a type III response is used. When using a type288

III response (Figure 2A), highly stable, lower K1/2 damp out any seasonality in bottom-289

up controls and prevent biomass from accumulating. Increasing K1/2 systematically in-290

creasing the CV by allowing a small seasonal cycle to emerge which is not well correlated291

with the observed phenology. On the other hand, when using a type II response, while292

the phenology is nearly identical at high K1/2 values, it diverges substantially at low ones.293

Here, decreasing stability induces unstable predator-prey dynamics which drives higher294

frequency, sub-seasonal oscillations, leading to higher CV s and poor correlations with295

the observed phenology.296

While the high latitudes and gyres clearly require di↵erent K1/2 both perform bet-297

ter when a type III response is used. In the sub-Antarctic, a type II grazing leads to blooms298

that are o↵set (worse CC) and much sharper (higher CV) than what is observed while299

in the Sargasso type II grazing can lead to unnatural, sub-seasonal oscillation that are300

not observed in the remote sensing record. These results further support the use of a type301

III to represent the complex changes in plankton community composition and its rela-302

tive distribution, which must be averaged over a coarse model grid cell.303

4 Discussion304

Of the dominant controls on NPP and subsequent carbon cycling, we have a fairly305

advanced understanding of the global distribution and drivers of light, temperature, nu-306

trients and deep vertical mixing. However, the distribution and drivers of loss rates, par-307
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ticularly to grazing, remain largely a blind spot. We have made initial estimates using308

inverse modelling and discuss their limitations and future directions (4.1) in addition309

to their potential utility to improve BGC and climate models (4.2).310

4.1 Limitations and future directions311

The largest limitation likely stems from the fidelity of the model we have sought312

to optimize. We have worked to control model bias by repeating experiments in an iden-313

tical physical ocean. However, if their is a systematic bias somewhere in the simulated314

seasonal light and nutrient supply, then it is possible that the ‘wrong’ grazing dynam-315

ics could combine with the ‘wrong’ bottom-up controls to produce the correct phenol-316

ogy, leading us to incorrectly infer that those grazing dynamics were optimal. This could317

be the case along the equator where there is a disproportionately large model bias in model318

phytoplankton biomass relative to that of NPP (Figure S5), suggesting phytoplank-319

ton specific growth rates are too low due to some systematic bias in the bottom-up con-320

trols. This may explain why we found slower grazing dynamics (Figure 1B; greener)321

in the equatorial Indian, Atlantic, and Pacific basins than we would have expected from322

the low mean annual phytoplankton biomass (Figure 1A; bluer) observed there. If the323

model is misrepresenting bottom-up controls as too weak, it make sense that slower than324

expected grazing is needed to permit biomass accumulation and match the observed phe-325

nology. Additional biases may stem from the remote sensing products, which interpo-326

late over cloud cover and cannot capture the complete seasonal cycle at high latitudes,327

as well as the exact nature of the link between trophic controls and bloom phenology (Behrenfeld328

et al., 2013; Rohr et al., 2017).Considering these potential biases, it is essential to fur-329

ther refine estimates of the distribution of grazing dynamics with more observationally-330

focused methods.331

4.2 Model Utility332

Despite their limitations, our results demonstrate that grazing dynamics vary largely333

in space and agree qualitatively with our best observational understanding of how zoo-334

plankton species are distributed across the ocean (Everett, n.d.; Heneghan et al., 2020).335

Considering the sensitivity of carbon cycling to grazing (Rohr, n.d.), it is critical for mod-336

els to build in the mechanisms to both recreate this distribution and allow it to respond337

to changing physical and environmental drivers. As warming, stratification, and faster338

wind transform the surface ocean, the ensuing balance of light and nutrients will reshape339

marine ecosystems, likely favouring di↵erent zooplankton species, in di↵erent places, with340

vastly di↵erent grazing dynamics. For instance, if increasing stratification dominates in-341

creasing wind stress leading to shallower summer mixed layers in the Southern Ocean,342

then we may expect a shift toward smaller phytoplankton, which have higher light, but343

lower nutrient, requirements (Pörtner et al., 2019). This shift would be followed by a shift344

in zooplankton which are better adapted to graze on smaller phytoplankton, such mi-345

crozooplankton and salpes. Already a southward shift of salpes into regions previous dom-346

inated by Euphausiids has been observed (Henschke & Pakhomov, 2019; Steinberg & Landry,347

2017). As faster grazers push south the global distribution of net primary, secondary and348

export production will be substantially altered (Rohr, n.d.). This shift must be captured349

in BGC models if Earth system and ecosystem models hope to reduce the uncertainty350

in projections of NPP (Tagliabue et al., 2021), export production (Fu et al., 2016), and351

fisheries catch (Tittensor et al., 2021) which will be required to accurately predict changes352

in the oceans capacity to bu↵er a changing climate and feed a growing population.353

4.2.1 Model Validation354

Given the large uncertainty in future projections of zooplankton biomass (Petrik355

et al., 2022) it is clear that the environmental controls on mean grazing dynamics are356
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not well constrained. There is little convergence in how state-of-the-art BGC represent357

zooplankton. Although some recent BGC models include 10+ plankton groups (Negrete-358

Garćıa et al., 2022; Sommer et al., 2022; Cael et al., 2021), most CMIP6-class models359

used in 100+ year ensemble climate projections only include 1-3 zooplankton and phy-360

toplankton groups (Kearney et al., 2021; Rohr, n.d.). It is thus critical to know if com-361

petition between these limited functional groups is su�cient to drive an emergent dis-362

tribution in mean community grazing dynamics that matches reality. Even with the lim-363

itations discussed above, we believe that diagnostically computing the apparent mean364

grazing dynamcis (i.e. fitting a functional response curve to mean grazing rate vs. to-365

tal prey biomass) and comparing these qualitative distributions to Figure 1 will help366

assess model skill and constrain marine carbon cycling in increasingly under-constrained367

BGC models (Schartau et al., 2017). If the apparent grazing dynamics di↵er dramat-368

ically, or worse, are spatially homogeneous (Law et al., 2017; Zahariev et al., 2008), then369

it should be clear that other spatially heterogeneous bottom-up controls must be over-370

tuned to recreate observed heterogeneity in NPP.371

4.2.2 Model Development372

If explicit competition between limited functional groups is insu�cient to resolve373

the emergent distribution of community averaged grazing dynamics and a su�ciently com-374

plex food web is not compatible with the computational cost of high resolution, fully cou-375

pled projections (Neelin et al., 2010), then it may be possible to parameterize zooplank-376

ton community composition using the relationship inferred in Figure 1C. That is, mod-377

ellers could implicitly represent changes in zooplankton community composition by mod-378

ifying the K1/2 value of a single group as a function of phytoplankton abundance using379

equation 2 (or those in Supplemental Section 2). This would allow modelers to ex-380

plicitly modify the mean grazing dynamics, rather than explicitly resolving each of its381

constitute species, allowing the mean attributes of the zooplankton community to respond382

dynamically to changing environmental conditions without increasing the number of state383

variables the model must carry.384

Underlying this parameterization are the assumptions that a) bulk phytoplankton385

biomass follows community composition, with less (more) productive waters inhabited386

by smaller (larger) phytoplankton (Roy et al., 2013), b) zooplankton community com-387

position is determined by the composition of the prey field (Kiørboe & Hirst, 2014) c)388

di↵erent species of zooplankton graze with systematically di↵erent dynamics (Hansen389

et al., 1997). All three assumptions are generally well supported individually by obser-390

vations and are together consistent with the emergent relationship between observed phy-391

toplankton biomass and the inferred grazing dynamics required to recreated its phenol-392

ogy (Figure 1C). Although there are several key challenges to implementing this rela-393

tionship (see Supplemental Section 5), leveraging it to parameterize functional dif-394

ferences driven by competition could extend well beyond those associated with grazing395

and allow modellers to vary a collection of biogeochemically important attributes asso-396

ciated with distinctive zooplankton communities at a low computation cost (see Sup-397

plemental Section 5).398

5 Conclusions399

These results present a novel, observationally-informed, map of global mean com-400

munity grazing dynamics, which likely di↵er dramatically from the behaviour of indi-401

vidual zooplankton species long measured in laboratories. Further refining the observed402

distribution and drivers of grazing, and how to replicate them in models, will require close403

collaboration with zooplankton ecologists, but presents an exciting new frontier in chem-404

ical oceanography focused on a rigorous understanding of how NPP is controlled from405

the top-down, a perspective often ignored. Moreover, improving the representation of406
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zooplankton, which have for too long been treated simply as closure term, could real-407

ize dramatic improvements in marine BGC models and our predictions of future ocean408

states.409

6 Open Research410
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. . . Doney, S. C. (2013, November). Phytoplankton competition during the490

spring bloom in four plankton functional type models. Biogeosciences, 10 (11),491

6833–6850. (Publisher: Copernicus GmbH) doi: 10.5194/bg-10-6833-2013492

Heneghan, R. F., Everett, J. D., Sykes, P., Batten, S. D., Edwards, M., Takahashi,493

K., . . . Richardson, A. J. (2020, November). A functional size-spectrum494

model of the global marine ecosystem that resolves zooplankton composition.495

Ecological Modelling , 435 , 109265. Retrieved 2021-08-10, from https://496

www.sciencedirect.com/science/article/pii/S0304380020303355 doi:497

10.1016/j.ecolmodel.2020.109265498

Henschke, N., & Pakhomov, E. A. (2019). Latitudinal variations in Salpa thompsoni499

reproductive fitness. Limnology and Oceanography , 64 (2), 575–584. Retrieved500

2022-11-25, from https://onlinelibrary.wiley.com/doi/abs/10.1002/lno501

.11061 ( eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/lno.11061)502

doi: 10.1002/lno.11061503
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Text S1. Distribution and drivers of grazing dynamics using the VIIRS chloro-

phyll record

In Figure 1 we used phytoplankton carbon biomass estimate remotely from the Carbon-

based Productivity Model (Westberry et al., 2008) to compare directly to prognostic

phytoplankton biomass resolved in the simulation. However, estimating carbon biomass

from space using particle back-scattering involves a di↵erent set of assumptions than

traditional estimate of phytoplankton abundance which infer chlorophyll concentrations

from ocean color. To confirm these di↵erences did not influence our results we repeated

the analysis comparing the seasonal cycle of modelled phytoplankton carbon to that of

remotely sensed chlorophyll from VIIRS (Sathyendranath et al., 2019). The results were

largely consistent (Figure S1).

Note, model skill scores appear higher for VIIRS than CbPM (Table S1; last column);

however, model skill was normalized across all runs using chlorophyll (VIIRS) and all run

using carbon (CbPM) independently. Thus, the higher scores for VIIRS do not necessar-

ily mean the modelled seasonal phytoplankton cycle better reflects observed chlorophyll

compared to carbon, but rather that the di↵erence between the model skill achieved with

the optimal K1/2 values compared to sub-optimal K1/2 values is larger when comparing

to observed chlorophyll.

Text S2. Sensitivity of the relationship between phytoplankton abundance and

optimal K1/2 value to the functional response type, gmax value, and indicator

of phytoplankton abundance
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The relationship between mean annual phytoplankton abundance and the K1/2 pa-

rameter required to best recreate its phenology was computed using di↵erent functional

response types (II, III), gmax values (0.5,1,2) and observed indicators for phytoplankton

abundance variables (carbon, chlorophyll) and reported in Table S1. Across all type III

configurations, the relationship was qualitatively consistent. Changing gmax in a type III

response slightly modified the y-intercept (or mean optimal K1/2) but did not substan-

tially influence the slope of the relationship, regardless of if biomass of chlorophyll was

being used as the metric for observed phytoplankton abundance. Although, when using

a type II response was used, the slope of the relationship was much more sensitive to

the value of gmax, indicative of its much stronger influence on grazing rates at low prey

concentrations and thus population dynamics (Rohr et al., 2022). However, regardless of

the gmax value used, the type II response consistently exhibited less skill than the type

III response when averaged globally across all grid-cells, suggesting it is less suited to

represent the mean dynamics in coarse models.

Text S3. Piece-wise linear model Instead of fitting a continuous linear regression

to the relationship between phytoplankton abundance and K1/2 (Figure 1D, S1D) we

now consider a piece-wise linear fit. Here we expand the range of biomes included to the

5-90th percentiles, but still exclude very high and low biomass regimes where the model

does not perform as well as in the open ocean. Looking at the expanded relationship

(Figure S2), there are two clear asymptotes when using CbPM biomass as an indica-

tor of phytoplankton abundance but only one when using VIIRS chlorophyll. It is not

entirely clear why there is no low asymptote for chlorophyll but it may have to do with
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the detection threshold for ocean colour versus backscatter or the fact that at low phy-

toplankton concentrations the particle back scatter signal may no longer be dominate by

phytoplankton.

We then used Bayesian ensemble algorithm for change-point detection and time series

decomposition (Zhao et al., 2019) to identify change-points where the relationship began

to approach an asymptote. We then fit a piece-wise linear model to the data by assuming

a slope of zero across each asymptote beyond the statistically identified change-point and

forcing continuity between the asymptotes. These relationships are plotted in Figure S2.

While they remain qualitatively consistent with the finding that higher K1/2 are required

drive the phenology of higher biomass biomes, they suggest the transition may occur

rather rapidly between two states dominated by slow or rapidly grazing zooplankton.

Collectively, it appears clear that there is an upper and lower bound on realistic K1/2

values: roughly 2-10 mmol/m3 when using a type III response (as recommended) or

roughly 5-15 when using a tpye II response (not recommended).

Text S4. First order stability of the functional response

The shape of the functional response curve for zooplankton grazing (g([P ]) influences the

shape of phytoplankton phenology primarily via its stabilizing or destabilizing influence

on phytoplankton population dynamics (Gentleman & Neuheimer, 2008). The stabilizing

influence of grazing is determined by how phytoplankton specific loss rates to grazing

(i.e. clearance rates; Cl = g([P ])/[P ]) change in response to changing phytoplankton

biomass. If phytoplankton accumulation decreases clearance rates, thereby promoting

further population growth, that is a positive feed back with a destabilizing influence.
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Alternatively, if phytoplankton accumulation increases clearance rates, thereby damping

further population growth, that is a negative feed back with stabilizing influence. The

stabilizing influence of the functional response at a given phytoplankton concentration

can thereby be quantified is thereby determined by the sign of the first derivation of the

clearance rate with respect to the phytoplankton concentration (i.e. dCl
d[P ]). The value of

dCl
d[P ] is determined both by the parameters (i.e. K1/2) the prescribe the shape of the curve

(g([P ]) as well as the prognostic phytoplankton concentration which is variable in space

in time (Rohr et al., 2022).

To capture a mean sense of the stabilizing influence of the functional response across

a complete model run and many di↵erent phytoplankton concentrations, we define the

first order stability as the value of dCl
d[P ] at the mean [P ] of a given run. The annually-

averaged first order stability of our experiments was consistently, necessarily, negative

(destabilizing) when a type II response was employed (Figure S3B) and positive (sta-

bilizing) when a type III response was employed (Figure S3A). In both cases, large

K1/2 values stretch out the response curve, leading to the depression and linearization

of the functional response at low (but common) prey concentrations, slow and steady

clearance rates, and very little influence on the stability of the system. Decreasing K1/2 in

the type II formulations monotonically decreases the first order stability by both directly

altering the shape of the functional response curve and indirectly decreasing the prog-

nostic phytoplankton population via increased grazing pressure. Decreasing K1/2 in the

type III formulations monotonically increases the first order stability of the system. This

occurs because increasing Grazing Pressure keeps the annually-averaged phytoplankton
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concentration belowK1/2, where the first order stability increases as K1/2 decreases. Note,

however, that model configurations with a very low gmax or very strong bottom-up growth

conditions could buoy phytoplankton populations above K1/2, such that decreasing K1/2

decreases the first stability of the system, even with a type III response.

Text S5. Challenges and advantages of implementation in a BGC model

First and foremost, the best implementation of this parameterization (4.3.2) will re-

quire better constraining the relationship between phytoplankton biomass and K1/2 in

addition to the strength and co-variability of other drivers of zooplankton bio-geogrpahy

such as temperature (Brandão et al., 2021) or the relative distribution of prey in mod-

els with multiple phytoplankton groups. Using the former may expedite the increase in

grazing rates associated with traditional metabolic temperature limitation (Laufkötter et

al., 2015) as warmer water also favors more e�cient grazing zooplankton species as well

(Richardson, 2008). Using the later would largely obviate the assumption that the relative

distribution phytoplankton size co-varies with the bulk concentration.

The second major challenge will be determining the space and time scales over which

to assume that specific grazing rates should change due to the influence of food scarcity

on individual zooplankton versus the influence of zooplankton community composition on

mean grazing dynamics. That is, while the value of K1/2 determines the instantaneous

response of zooplankton grazing rates to food scarcity, it should take longer for K1/2

itself to evolve. This is because K1/2 reflects the mean physiological characteristics of the

entire zooplankton community and can only change at the rate with which community

composition can evolve. This timescale likely varies globally and as a function of other
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environmental drivers such as temperature (Richardson, 2008). For example, much shorter

time periods are needed in communities dominated by asexually-reproducing zooplankton

such as salps compared to those dominated by zooplankton with complex, multi-year, life

histories, such as euphausiids (Steinberg et al., 2015).

However, getting this right could realize dramatic improvements in BGC models and

our predictions of changes to marine carbon cycling. Extending from the assumption that

a given optimal K1/2 reflects the mean behavior of a particular zooplankton community,

other attributes of that community could be additionally parameterized. For instance,

crustaceans associated with slower grazing (and larger K1/2 values) are typically stronger

swimmers. They tend to vertically migrate on daily and seasonal timescales, allowing them

to actively transport carbon much faster than microzooplantkon (Steinberg & Landry,

2017). This could be represented by increasing the flux of carbon from zooplankton into

the sinking detritus pool (i.e. POC) at low K1/2 values, without explicitly including the

important role of Diel-vertical migration in carbon transport (see (Archibald et al., 2019)).

Other important BGC attributes that vary with zooplankton community composition

include the recalcitrance of their detritus and thus the remineralization rates of what they

contribute to export production, their sensitivity to temperature, their stoichiometry and

carbon content, and their response to seasonal change in the depth of the surface mixed

layer.
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Figure S1. Identical to Figure 1, except using VIIRS chlorophyll instead of CbPM

carbon biomass to track the observed phytoplankton phenology.
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Response 
Type 

gmax
(d-1)

Linear Regression
(middle 60 percentile)

Correlation 
Coefficient

Mean Model 
Skill

K1/2 (mmol C/m3) as a function of Observed Phytoplankton Biomass (CbPM; Figure 1)
Type II 0.5 K1/2 =  15.3[Phyto] – 8.7 0.74 0.57
Type II 1 K1/2 = 21.7 [Phyto] – 13.5 0.81 0.61
Type II 2 K1/2 = 10.4[Phyto] + 0.2 0.56 0.56
Type II Mean K1/2 = 15.8[Phyto] – 7.3 0.83 0.57
Type III 0.5 K1/2 = 13.2[Phyto] – 9.7 0.80 0.75
Type III 1 K1/2 =  15.2[Phyto] – 10.3 0.74 0.74
Type III 2 K1/2 = 17.2[Phyto] – 10.9 0.74 0.73
Type III Mean K1/2 =  15.2[Phyto] – 10.34 0.85 0.74

K1/2 (mmol/m3) as a function of Observed Phytoplankton Chlorophyl (VIIRS; Figure S2)
Type II 0.5 K1/2 = 33.7[Chl] + 3.1 0.65 0.65
Type II 1 K1/2 = 23.1[Chl] + 7.6 0.41 0.64
Type II 2 K1/2 =  2.1[Chl] + 10.4 0.00 0.47
Type II Mean K1/2 = 19.7[Chl] + 7.0 0.50 0.59
Type III 0.5 K1/2 = 22.7[Chl] + 1.3 0.51 0.79
Type III 1 K1/2 = 28.5[Chl] + 2.1 0.56 0.81
Type III 2 K1/2 = 28.5[Chl] + 3.9 0.48 0.85
Type III Mean K1/2 = 26.4[Chl] + 2.5 0.57 0.82

Table S1. The relationship between mean annual phytoplankton abundance and

the K1/2 parameter required to best recreate its phenology. Di↵erent relationships refer

to di↵erent response functions (II,III), gmax values (0.5,1,2) and observed phytoplankton

variables (Carbon, Chlorophyll). Mean model skill refers to the average cost function

score of the optimal K1/2 across all grid cells in a given configuration
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Figure S2. A piece-wise linear model is fit to the relationship between phytoplankton

abundance and the optimal K1/2 required to recreate its seasonal cycle when using A, C)

a type II and B, D) a type III response function and A, B) CbPM carbon and C, D)

VIIRS Chlorophyll to represent phytoplankton abundance

December 5, 2022, 5:21am



X - 14 ROHR ET AL.: INVERSE MODELLING ESTIMATES OF GRAZING
Ty

pe
 II

I
(E

S1
, g

m
ax

=
 1
)

Ty
pe

 II
(E

S2
, g

m
ax

=
 1
)

A

B

First Order Stability

First Order Stability

M
ore Stable   Less Stable

K1/2 = 16 K1/2 = 8 K1/2 = 4 K1/2 = 2 K1/2 = 1 K1/2 = 0.5

Figure S3. Sensitivity of ecosystem stability to K1/2. Global distributions of the mean-

annual first order stability is plotted for all K1/2 values, each with a consistent gmax = 1,

and a A) type III and b) type II functional response.

December 5, 2022, 5:21am



ROHR ET AL.: INVERSE MODELLING ESTIMATES OF GRAZING X - 15

Re
m

ot
e 

Se
ns

in
g

Coefficient of Variation
M

od
el 

Re
su

lts
Ty

pe
 II

   
   

 T
yp

e 
III

10-1

100

100

10-1

100

10-1

A B

C

D

Figure S4. Sensitivity of the strength of the phytoplankton seasonal cycle to K1/2.

A, B) The global distribution of observed coe�cients of variation, computed from the

seasonal phytoplankton A) biomass and B) chlorophyll cycles is plotted above the C, D)

the distribution of simulated coe�cients of variation for all all K1/2 values, each with a

consistent gmax = 1, and a C) type III and D) type II functional response.
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Figure S5. The mean annual model bias is plotted for the A) mixed layer depth

(MLD) relative to HYCOM reanalysis, A) Phytoplankton biomass relative to CbPM and

C) NPP relative to NPP.
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