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Abstract

The combined utilization of spatiotemporal clustering and deep learning neural network models were designed to evaluate the
applicability of the multi-year and multi-sites precipitation 8180 forecasting method based on the precipitation isotope data of
10 stations in Germany from 1988 to 2012. In the overall forecasting, the performance of single-site multi-year forecasting is in
the order of the Bi-directional Long Short-Term Memory (Bi-LSTM), CNN-Bi-LSTM, and the Convolutional Neural Network
(CNN), with CNN-Bi-LSTM being the optimal model for multi-site multi-year forecasts. The seasonal forecasting does not
demonstrate a significant improvement compared to the overall forecasting. For forecasting based on spatiotemporal clustering,
cluster 1 improved accuracy, and cluster 2 improved error reduction and variance consistency. Nevertheless, the accuracy of
forecasts depends solely on the amount of input data when the proportion of forecasting increases to a certain level. Overall, the
seasonal forecasting is more appropriate for improving forecasting within a specific season, while spatiotemporal clustering can
improve forecasting accuracy to some degree. In addition, optimal solutions exist for the type and number of model clusters.
In terms of model types, CNN-Bi-LSTM generally has better forecasting performance than CNN and Bi-LSTM.
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Key Points:

e Deep learning can predict precipitation isotope distributions over multi-
site and multi-year.

e CNN-Bi-LSTM has better prediction results than CNN and Bi-LSTM.

e Clustering first and then prediction can improve the prediction accuracy
to some extent.

Abstract

The combined utilization of spatiotemporal clustering and deep learning neu-
ral network models were designed to evaluate the applicability of the multi-year
and multi-sites precipitation 8O forecasting method based on the precipitation
isotope data of 10 stations in Germany from 1988 to 2012. In the overall fore-
casting, the performance of single-site multi-year forecasting is in the order of
the Bi-directional Long Short-Term Memory (Bi-LSTM), CNN-Bi-LSTM, and
the Convolutional Neural Network (CNN), with CNN-Bi-LSTM being the op-
timal model for multi-site multi-year forecasts. The seasonal forecasting does
not demonstrate a significant improvement compared to the overall forecasting.
For forecasting based on spatiotemporal clustering, cluster 1 improved accuracy,
and cluster 2 improved error reduction and variance consistency. Nevertheless,
the accuracy of forecasts depends solely on the amount of input data when the
proportion of forecasting increases to a certain level. Overall, the seasonal fore-
casting is more appropriate for improving forecasting within a specific season,
while spatiotemporal clustering can improve forecasting accuracy to some de-
gree. In addition, optimal solutions exist for the type and number of model
clusters. In terms of model types, CNN-Bi-LSTM generally has better forecast-
ing performance than CNN and Bi-LSTM.

Plain Language Summary

The joint prediction model of spatio-temporal clustering and deep learning pro-
vides a new approach for precipitation isotope prediction.

1 Introduction
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The stable hydrogen and oxygen isotopes in water molecules are ideal tracers
because their behavior and changes reflect the origin of natural water bodies
and the hydrological and geochemical processes they undergo [Gower, 1967]. As
a result of isotopic fractionation, rainfall exhibits distinct spatial and tempo-
ral distributions of 0. There are two reasons for the different spatial and
temporal distributions of precipitation '8O: First, the regional environmental
background, that is, the source and nature of the precipitation air mass and the
entire process from the generation to the transport to the occurrence of the pre-
cipitation event. The second is the local geographical factors, including various
meteorological elements during precipitation (precipitation, temperature, hu-
midity, etc.) and the local latitude, altitude, etc. [Guo et al., 2019]. These two
factors’ interaction and combined influence result in the spatial and temporal
distributions of precipitation '2O.

The spatial and temporal distributions of precipitation isotopes can reveal
changes in hydrometeorological processes at local and larger scales [Craig, 1961;
Klaus and McDonnell, 2013; J. Klaus et al., 2015]. Currently, precipitation iso-
tope data have been used for estimating regional recharge processes [Koeniger et
al., 2016], infiltration and mixing processes [Christine Stumpp and Maloszewski,
2010; Zhao et al., 2013], plant water uptake processes [Gaines et al., 2016;
Koeniger et al., 2010], evaporation and soil water transfers [Gonfiantini et
al., 2018], and the mutual transformation of surface water and atmospheric
water processes [Y @Q Li et al., 2021; Yang et al., 2018]. The above studies
require the knowledge of the isotopic composition of modern atmospheric
precipitation at one or more locations. Globally, however, only a few hundred
sites have been able to determine stable isotopic compositions of precipitation
over an extended period. For some specific applications, direct measurements
of local precipitation over one or several years can be used to estimate their
average isotopic composition. However, direct measurements are not desirable
for studies conducted at the regional or global level. Overall, these issues
demonstrate the need for methods to estimate 0 using available data.

Based on the information from measured stations, three types of methods are
used to study the spatial and temporal distributions of atmospheric precipita-
tion '20: one is a statistical method, including autoregressive integrated moving
average (ARIMA) [Julian Klaus et al., 2015] and multiple linear regression [Zhu
and Burzykowski, 2013]. The model simulates the spatial or temporal patterns
of precipitation 8O through establishing a relationship between topography,
location, and meteorological factors; the second method is numerical, the most
common of which is spatial interpolation. The model uses a variety of mathe-
matical modeling methods to fit the regional precipitation 20O composition, in-
cluding contour method, trend surface method, Tyson polygon method, inverse
distance weighting method [X Liu et al., 2015], kriging interpolation method
[J Li et al., 2014] and sample method, etc.; the third method is the integrated
method, which combines a statistical model with spatial interpolation, such as
a BW regression model [Bowen and Wilkinson, 2002; Bowen and Revenaugh,
2003]. However, these methods do not adequately account for the effects of



precipitation 0 ’s temporal variation on its spatial distribution. As of right
now, there is no model that can predict the spatial and temporal distribution
of precipitation 20 simultaneously.

Deep learning is a powerful machine learning method that has been widely uti-
lized in various fields related to hydrology. For example, in comparison with the
traditional Support Vector Regression (SVR) model, the CNN-based groundwa-
ter potential map forecasting model performs better [Panahi et al., 2020]; The
Long-Short-Term Memory model (LSTM) has greater potential for predicting
rainfall runoff than the traditional Sacramento Soil Moisture Accounting Model
(SAC-SMA) [Kratzert et al., 2018; Xiang et al., 2020]; In addition, the Bi-LSTM
based forecasting model is more accurate than LSTM and gated recursive unit
(GRU) models in predicting daily precipitation data [Latifoglu, 2022]. Despite
the promise of deep learning to improve the predictive power of models, individ-
ual networks cannot address more complex problems with the same accuracy.
Many researchers have investigated the combination of multiple deep learning
networks [Belayneh et al., 2014; H Liu et al., 2013; Mohammadi and Mehdizadeh,
2020]. The widely popular CNN-LSTM combines the advantages of CNN and
LSTM. The CNN can extract features from grid data effectively, and the LSTM
can take advantage of time-series data to extract useful features. For example,
a CNN-LSTM model for predicting multi-hour, multi-location air quality in-
dices in Beijing utilizes an LSTM to analyze the features extracted by the CNN
[Yan et al., 2021]. In comparison with CNN and LSTM, the CNN-LSTM hy-
brid model significantly reduced forecasting error for short-term water quality
variables [Barzegar et al., 2020]. Moreover, the joint forecasting of daily pre-
cipitation data based on instantaneous frequency features and Bi-LSTM has a
higher forecasting accuracy than single LSTM, gated recursive unit (GRU) and
Bi-LSTM models [Latifoglu, 2022]. There are, however, no data regarding the
spatial and temporal distribution characteristics of hydrological processes prior
to their establishment for these combined models.

Cluster analysis is a common method used for analyzing internal patterns within
an unordered dataset by dividing the data into a number of similar categories
[Gower, 1967]. In this manner, training samples for a model can be provided
that are highly similar, which reduces training time and increases generalization
ability [Cui et al., 2019]. A study of the Tibetan Plateau by fuzzy clustering
combined with Regionalized Cluster-based Water Isotope Prediction (RCWIP)
and Online Isotopes in Precipitation Calculator (OIPC) shows that the forecast-
ing accuracy varies by region [Shi et al., 2020]. Nevertheless, a change in the
timing of precipitation isotopes can also affect the precipitation isotope forecast-
ing. Research on precipitation isotope forecasting based on spatial and temporal
clustering is limited.

The objective of this study is to develop multi-year multi-site deep learning
models (CNN, Bi-LSTM, CNN-Bi-LSTM) based on spatiotemporal clustering
for month-by-month precipitation ¥O forecasting. This entails (1) character-
izing the spatiotemporal distribution of precipitation '80; (2) developing and



comparing the overall forecasting based on CNN, Bi-LSTM, and CNN-Bi-LSTM
models; (3) combining CNN, Bi-LSTM, and CNN-Bi-LSTM models with spa-
tiotemporal clustering and comparing them with the overall forecasting; and (4)
applying the proposed models to month-by-month precipitation 20O forecast-
ing. Based on the precipitation isotope data in Germany, this study combines
spatiotemporal clustering analysis with deep learning to examine the spatiotem-
poral distribution characteristics of precipitation 8O and their impact on fore-
casting.

2 Materials and Methods
2.1 Overall framework

The objective of this study is to develop multi-year multi-site deep learning
models (CNN, Bi-LSTM, CNN-Bi-LSTM) based on spatiotemporal clustering
for month-by-month precipitation 20 forecasting. Following the spatiotem-
poral analysis of German precipitation '20, all data are clustered by either
spatial or temporal dimension. The forecasting model for precipitation 20
based on total data and data from different spatiotemporal clusters were devel-
oped. Furthermore, different models were evaluated and compared regarding
their forecasting performance.

2.2 Spatiotemporal analysis and clustering

On the temporal scale, the mean and standard deviation of 0 were calculated
at various time scales, and the temporal variation characteristics of 80 in
Germany were examined on a seasonal and monthly scale. On the integrated
spatial and temporal scales, K-means ++ clustering was employed to analyze
the spatial and temporal distribution characteristics of 80 in precipitation at
multiple sites in Germany on a month-by-month basis.

The K-means ++ clustering algorithm consists of five steps [Takashi Onoda,
2010]: (1) randomly select a sample point ¢; 1 from the sample set X as the 1st
cluster center; (2) calculate the distance d(z) from the other sample points x to
the nearest cluster center; (3) with probability % to select a new sample
point ¢, to be added to the set of cluster centroids, where the larger the distance
value d(z), the higher the probability of being selected; (4) repeat steps (2) and
(3) to select k cluster centers; (5) perform k-means operations based on these k
cluster centers.

Based on the spatial and temporal distribution characteristics of precipitation
180 in Germany, the dataset was divided into different clusters. On the spatial
scale, four clusters were obtained according to the seasons. On the integrated
spatial and temporal scales, the 10 gauging stations were divided into multi-
ple classes by K-means ++ clustering. Since the size of the convolution ker-
nel is mostly 3x3 or above, the number of stations in each cluster should be
more than 3 to complete the convolution process. In this regard, CNN-based,
Bi-LSTM-based, and CNN-Bi-LSTM-based forecasting models were developed
using seasonal and spatiotemporal data.



2.3 CNN

CNN is a neural network: an algorithm for recognizing data patterns, with a
main structure consisting of an input layer, a convolutional layer, a pooling layer,
a fully connected layer, and an output layer[Alzubaidi et al., 2021; Kattenborn
et al., 2021; Wu et al., 2020]. By using convolutional kernels on the convolution
layer and down sampling on the pooling layer, the potential features of the data
are extracted and mapped to the output signal (Fig. 1a).

The convolutional layer is the core building block of a CNN, consisting of learn-
able kernels or filters that extend to the entire depth of the input. In this layer,
each cell receives a small neighborhood from the previous layer of input, and dur-
ing signal forward pass, each filter is convolved with the input of the generated
graph. When multiple filters from these feature maps are combined, a convo-
lution layer is formed. In addition, the generated weight vector feature maps
are shared, which greatly reduces the complexity of the model. The formula for
calculating each element in the feature map is as follows:

I?,‘;t = Jeov <an:0 Z::O wm,n‘rirJlrm,jJrn + b) (2)

Where x‘j‘;t is the output value in row ¢ and column j of the feature map;
T jim 15 the value in row i and column j of the input matrix; f,.(-) is
the selected activation function; w,, ,, is the weight in row m and column n for
the convolution kernel; and b is the bias of the convolution kernel. In general,
multiple kernels are used for convolution operations on the input matrix.

On this basis, by downsampling the previous feature mapping, the pooling layer
reduces its length and width, and thus improves its accuracy. Due to CNN’s
good feature extraction capabilities, m variables (precipitation %0, precipita-
tion, temperature, longitude, latitude, and elevation) of each type for n stations
were expanded to obtain a matrix of m rows and n columns. Multiple channels
were used to input data for c types (precipitation *O, meteorological elements,
spatial and temporal properties). By transforming each time slice in the input,
the time distribution layer can provide more information about the historical
time step of the data and its long-term characteristics. Thus, the time distribu-
tion layer was chosen to wrap the data for the past t months. In this case, the
input to the CNN is a four-dimensional array of dimensions t x m x n x ¢ (12
x 6 x 10 x 3). Following convolution and pooling, a one-dimensional array was
constructed from the extracted features. Lastly, a full output concatenation
layer generated the precipitation 80 forecasting for t stations for the next t
months.

2.4 Bi-LSTM

The Recurrent Neural Network (RNN) is a class of neural networks used to
process sequential data. In essence, it is the weight sharing between neural net-
works in temporal order (CNN is equivalent to weight sharing in a spatial order)
[LeCun et al., 2015]. The RNN can learn the nonlinear features of sequences



with high efficiency since it has characteristics of memorability and parame-
ter sharing. However, the traditional RNN implicit layer has a simple internal
structure, and the network does not filter the input of the current moment from
the input of the previous moment, preventing key data information from being
transmitted, causing large bias in forecasting results [Hochreiter, 2011].

As a variant of RNN, LSTM adds input gates, output gates, and forgetting
gates to the implicit layer, as well as memory storage units. Fig. 1b illustrates
the internal structure of the implicit layer of a typical LSTM network. The
functional relationship between the variables is as follows:

i, =0 (Wya, + Wby + Wyeg +b;) (3)
fi=0 Wz, + Wych, 1+ Wee, | + bf) (4)

¢ = frepy + i tanh (W, + Wy g +b,) (5)
0, =0 (W ,z, + Wy h, 1 + W, +b,) (6)

h, = o, tanh (¢,) (7)

Where: i, f, ¢, o denotes the input gate, forgetting gate, cell state, and output
gate, respectively; b denotes the corresponding bias term; W denotes the weight
matrix between the layer and each gate; is the sigmoid activation function; tanh
is the hyperbolic tangent activation function.

As the output of one-way LSTM next moment forecasting is jointly influenced
by the inputs from multiple past moments, it may result in a loss of useful
information when extracting data features. Bi-LSTM, a DNN model, is based
on a combination of LSTM and LSTM backwards, which is an advanced variant
of the standard LSTM model [Shahid et al., 2020]. By combining forward and
backward instantaneous inputs, Bi-LSTM provides more accurate forecasting
results [Herndndez-Pérez et al., 2020].

Considering the capability of Bi-LSTM to handle time series data, the m X c
variables of n stations in the past t months are expanded into a two-dimensional
array of t X v (v =m x n X c¢), i.e., 12 x 180 (180 = 6 x 10 x 3) dimensions,
and these variables are added to the network as inputs. Moreover, the fully
connected output layer generated the precipitation '®0 for n stations in the
next t” months.

2.5 CNN-Bi-LSTM

The CNN can learn the dependencies in the data, but its ability to capture the
dependencies decreases as the input sequence lengthens. In contrast, the Bi-
LSTM model can capture long-term dependencies between sequences, making
them complementary.

In this study, CNN-Bi-LSTM is composed of several processes. The m x ¢
variables of n sites in the past t months were used as input data. As with CNN,
the input dimensions were t X m X n X ¢, i.e., 12 x 6 x 10 x 3. To extract
features from the input data, the input, convolutional, and pooling layers of



CNN were retained. The obtained features were tiled into a one-dimensional
array and fed into the Bi-LSTM layer as time series to analyze their time series
characteristics. Lastly, the output layer and the fully connected layer were used
to calculate precipitation 80O for n stations in the following t’ months. The
CNN-Bi-LSTM model’s internal structure is shown in Fig. 1c.
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(a) Structure of Convolutional Neural Network.
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(b) The memory cell of LSTM.
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(c) Schematic diagram of CNN-Bi-LSTM forecasting model.
Fig. 1 Structure of CNN, Bi-LSTM, and CNN- Bi-LSTM.

It is worth noting that, without any processing, raw data have a different order
of magnitude from each other, and too large a difference can cause network
forecasting errors, so input data are normalized and processed data are restricted
to 0 to 1 [White and Carty, 2010]. To normalize the training data, we use
minmax normalization, namely:

X = X—mm (8)

mar—min

Where: max represents the maximum value in the training sample; min repre-
sents the minimum value in the training sample X represents the original data;
X’ represents the normalized data; X’ represents the normalized data.

2.6 Performance evaluation indices

In this paper, root mean squared error (RMSE), mean absolute error (MAE),
correlation coefficient (R), and coefficient of determination (R?) were used to
evaluate the precipitation '®O time variables forecasting model. The root mean
square error is the difference between the predicted (test) value and the actual
(true) value open root sign. The mathematical expression of RMSE is given
in Equation (9). The mean absolute error is the average of the absolute error
between the predicted and true values, and the mathematical expression of
MAE is shown in Equation (10). The smaller the value of MAE, the closer the
predicted value is to the true value, i.e., the better the forecasting is [Chun et
al., 2016].



RMSE = \/% Eivzl ( test , — real t)2 (9)
MAE = % Zi\il | test , — real ,| (10)
Where N denotes the number of samples.

The correlation coefficient reveals the degree, direction, and importance of the
relationship between the time series data observed by the proposed model and
the predicted data. The mathematical expression of R is given in Equation (11).
The larger the correlation coefficient, the stronger the relationship between the
two variables.

R= ﬁ Zj\il (Xobserved,z‘*#x) <Yestin1ated ,i*ﬂy) (11)

ox Ty

Where X perved ,; 18 the observed time series data, py is the average, and oy is
the standard deviation of the observed time series data; Y, imateq i 1S €stimated

data, py is the average, and o, is the standard deviation of the estimated data.

Comparison of regression model forecasting error with Y = sample point av-
erage is performed via the coefficient of determination R2. The mathematical
expression of R? is given in Equation (12). A larger R? indicates a better fit of
the data.

N

2
R2 — 1 _ Zizl [ﬁubserved,i7Yestimate2d,i] (12)
Zizl [Xobserved,iiu’x}

3 Data

Due to its extensive isotope records, Germany was selected as the study area.
For this study, monthly precipitation isotope ( 20), precipitation (P), temper-
ature (T), latitude, longitude, and elevation data for 10 stations between 1988
and 2012 were selected as input variables for the forecasting model. The region,
where the data were gauged, is situated between 5° and 15°E, 47° and 55°N in
Germany. Fig. 2 illustrates the sites where the data were collected. The dataset
was obtained from the third version of the WISER database updated in October
2017 (https://nucleus.iaea.org/wiser).All isotope data are expressed in per mil
(%o) relative to the Vienna Standard Mean Ocean Water standard sample:

(1)
The elevation data were derived from the GTOPO1 digital elevation model

(doi:10.7289/V5C8276M) of the U.S. Geological Survey, which provides 1 arc
second spatial resolution.
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Fig. 2 Location of the study site.
With less than 5% missing data for each site, the data from all sites were retained
despite the variable quality of the data. For some variables, however, average
data from other sites were used since individual site data were missing at a
particular time. At a particular point in time, if all site data for a variable were
missing, the average data for each site during that time period was used to fill
in the gaps.
Table 1
Investigated the precipitation isotope distribution monitoring sites in Germany.
Monitoring station Latitude (°N) Longitude (°E) Altitude (m) District Group
1001A 52.4672 13.4019 48 Berlin GNIP
1002A 52.2914 10.4464 81 Niedersachsen GNIP
1003A 53.8713 8.7058 5 Niedersachsen GNIP
1004A 47.4828 11.0622 719 Bayern GNIP
1005A 50.3119 11.8758 565 Bayern GNIP
1006 A 47.6772 9.19 443 Baden-Wiirttemberg ~ GNIP
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Monitoring station Latitude (°N) Longitude (°E) Altitude (m) District Group
1007A 49.0422 12.1019 365 Bayern GNIP
1008A 48.8281 9.2 314 Baden-Wiirttemberg ~ GNIP
1009A 49.7478 6.6581 265 Rheinland-Pfalz GNIP
1010A 50.4972 9.9428 921 Hessen GNIP
4 Results

4.1 Spatiotemporal distribution characteristics of the precipitation %O

On the temporal scale, variations in precipitation '#O have been analyzed at
the annual, seasonal, and monthly levels (Fig. 3). From 1988 to 2012, the
monthly average precipitation 20 in Germany was -25.2%o. In terms of sea-
sonal differences, the average precipitation '*0 during the year decreased in
the order of summer, spring, autumn, and winter. Monthly average precipita-
tion 80 in summer (-18.6+14.05%0) was significantly higher than the overall
average, and monthly average precipitation 180 in winter (-30.4423.17%0) was
significantly lower than the overall average. From 1988 to 2012, the monthly
average precipitation %0 variation ranged from -21.21%0 to -0.78%0. With an
inverted U-shaped variation, precipitation '#O was lower at the beginning and
end of the year, and higher in the middle. The average precipitation 20 is
highest in July (-6.1944.61%0) and is more stable. The mean precipitation *O
is lower and more discrete in January and December. Temperature and precip-
itation amount influence precipitation isotope distribution, which accounts for
these changes. In summer, rainfall is frequent, and heavy isotope 20 falls with
raindrops during a rainstorm, while light isotopes are enriched in the clouds
[Gower, 1967]. In addition, the high temperatures in summer and the strong
evaporation will cause secondary fractionation of isotopes as raindrops fall, en-
riching the underlying surface with heavy isotopes [Barnes and Allison, 1983].
By contrast, in winter, rainfall reduces the enrichment of heavy isotope 20
in clouds. Additionally, low temperatures in winter cause less secondary frac-
tionation of isotopes as raindrops fall, resulting in fewer heavy isotope 2O to
fall.
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Fig. 3 Temporal distribution characteristics of the precipitation '80.

On the integrated spatial and temporal scales, this study used the K-means
++ method to classify the data from 10 isotope gauging stations in Germany
from 1988-2012 into two categories (Fig. 4). As shown in the figure, different
categories of stations have similar precipitation 80, temperature distributions,
and precipitation distributions that differ. It may be because precipitation
180 distribution in Germany is largely determined by temperature. Rainfall
has little effect on precipitation !0 distribution when the temperature and
water vapor sources are the same [C. Stumpp et al., 2014]. Additionally, the
same precipitation '®0 may also be obtained for the same rainfall amount and
different temperatures within the same category. It may be because the effect of
temperature on precipitation 80 is negligible when extreme rainfall conditions
are present or when rainfall and regional environmental background influence
precipitation more than temperature.

In general, temperature effects are the underlying cause for the different distri-
butions of precipitation #O in German regions.
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Fig. 4 Spatiotemporal distribution characteristics of the precipitation 20.
4.2 Overall precipitation 8O forecasting model using deep learning

A comparison of the accuracy of three precipitation 8O forecasting models
based on multiple sites (10 sites) for multiple years (1988 to 2012) is shown in
Fig. 5. Each 0.1 training ratio in the figure represents precipitation 20O data
for one site from 1988 to 2012. For the forecasting of multi-year precipitation
180 at the single-site (i.e., 0.9 training ratio), the predicted RMSE, MAE are
arranged in ascending order of Bi-LSTM, CNN-Bi-LSTM, and CNN, while the
predicted R? and R are arranged in successive order of Bi-LSTM, CNN-Bi-
LSTM, and CNN. Compared with CNN and CNN-Bi-LSTM, the RMSE of Bi-
LSTM decreased by 37.84% and 7.57%; MAE decreased by 40.9% and 7.51%;
R? increased by 7.69% and 2.95%; and R grew by 3.77% and 1.45%, respectively.
The lower RMSE, MAE and higher R?, R reflected the lower error and higher fit
of Bi-LSTM in single-site, multi-year precipitation %O forecasting. Therefore,
Bi-LSTM is considered as the optimal model for multi-year precipitation %O
forecasting at the next station.

For the forecasting of multi-year precipitation 20 at multi-site, CNN-Bi-LSTM
has the lowest RMSE, MAE and highest R?, R at 4, 5 sites (i.e., 0.6, 0.5
training ratio). Compared with CNN and Bi-LSTM, the RMSE of CNN-Bi-
LSTM is reduced by 5.72%~18.97% and 11.59%~12.5%, respectively; MAE de-
creased by 7.74%~21.89% and 11.77%~14.44%, respectively; R? increased by
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12.36%~27.29% and 5.95%~20.3%, respectively; R grew by 6.01%~12.82% and
2.92%~9.69, respectively. The forecasting of Bi-LSTM at 3 sites (i.e., 0.7 train-
ing ratio) has the lowest RMSE, MAE and the highest R?, R. At 3 sites (i.e.,
0.7 training ratio), Bi-LSTM has the best forecasting. Compared with CNN
and CNN-Bi-LSTM, the RMSE of Bi-LSTM decreased by 11.47%, 8.53%; MAE
decreased by 11.08%, 7.92%; R? increased by 33.1%, 8.48%; R grew by 15.38%,
4.16%, respectively. In addition, CNN-Bi-LSTM still has the lowest RMSE and
MAE for forecasting at 2 sites (i.e., 0.8 training ratio). In comparison with CNN
and Bi-LSTM, CNN-Bi-LSTM’s RMSE is reduced by 84.13%, 6.64%, and MAE
is reduced by 112.44%, 8.25%. Comparatively, it has a lower R? and R, which
is 9.01% lower and 4.42% lower, respectively, than CNN. Combining the four
metrics, CNN-Bi-LSTM is the best model for the forecasting of 2 sites. In terms
of the total combined error, the CNN-Bi-LSTM reduced the RMSE by 29.68%
and 6%, and the MAE by 38.76% and 7%, respectively, when compared with
the CNN and Bi-LSTM. In terms of model forecasting stability, the average
deviations of RMSE for CNN, Bi-LSTM, and CNN-Bi-LSTM is 0.75, 0.16, and
0.1, respectively; and the average deviations of MAE is 0.77, 0.14, and 0.08,
respectively. Thus, CNN-Bi-LSTM is the most suitable model for predicting
precipitation 20 at multi-site over multi-year.
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Fig. 5 Overall precipitation 2O forecasting.

4.3 Seasonal forecasting

Training ratio

Since the precipitation 8O varies seasonally, all data were divided into four
clusters by season. Fig. 6 and Table 2 illustrate the differences between the
seasonal and overall forecasting models using the three neural networks. The
trend of the seasonal model predictive power is typically like that of the overall
predictive model. The overall predictive power of the models is in descending

order of CNN-Bi-LSTM, Bi-LSTM, and CNN.

Table 2

The calculation of model.

Sum Season all  Spring Summer Autumn  Winter
RMSE 68.17 66.29 69.59 62.33 83.37
MAE  53.77 52.95 55.95 50.41 69.07

P 204859.02  44300.58 66858.11 49384.34 44316.00
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Sum Season all  Spring Summer Autumn  Winter

T 27088.82  6670.03  12977.99 6754.42  686.38
180 -25218.01  -6016.53 -4757.87 -6664.33 -7779.29

40 -
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Overall Spring Summer Autumn Winter

RMSE fortraining ratio
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Fig. 6 Seasonal '80 forecasting.

The variation of precipitation %0 in different seasons can have different effects
on forecasting accuracy. In terms of forecasting errors, the RMSE ([2.68,5.9]),
MAE ([2.1,4.75]) in spring and RMSE ([3.45,5.59]), MAE ([2.7,4.69]) in au-
tumn both lower than the overall level ([3.53,5.95]), ([2.8,4.81]). In contrast,
RMSE ([3.24,12.25]), MAE ([2.28,11.79]) in summer and RMSE ([2.88,8.65]),
MAE ([2.39,7.95]) in winter are higher than the overall level. Accordingly, sea-
sonal classification may not always be effective in improving forecasting accu-
racy. The reason for this is that most of the highest temperatures (47.91%
of the year) and most precipitation (32.64% of the year) occurred during the
summer months. With higher temperatures during rainfall, more 0 will be
lost through evaporation. Once the temperature rises to some critical point,
precipitation will produce secondary evaporation and isotopic fractionation will
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be enhanced, so less *O will be retained [Araguds-Araguds et al., 1998; Tian
et al., 2001]; Winter is the season with the lowest temperatures occured (2.53%
of the year) and the lowest precipitation occured (21.63% of the year). With
lower temperatures during rainfall, less 20 will be lost through evaporation.
Once temperatures drop below 0°C, precipitation will convert into ice and iso-
tope fractionation will be stopped, so more 80 will retained [Lee et al., 2007;
Z Liu et al., 2010]. Notably, the R? (]0,0.5]), R (]0.07,0.71]) in spring, R?
([0,0.57]), R ([0.06,0.76]) in summer, R? ([0.05,0.55]), R ([0.22,0.74]) in autumn
and R? ([0.08,0.68]), R ([0.28,0.82]) in winter are all lower than the overall level
([0.42,0.65]), ([0.65,0.81]). The distribution of forecasting across seasons does
not show any specific pattern, and the degree of fit seems to depend only on the
degree of dispersion between the data and the strength of the model.

In comparing the forecasting performance of different seasonal models, the
CNN-Bi-LSTM has lower RMSE ([2.68,5.82]) and MAE ([2.1,4.76]) than the
CNN’s RMSE ([3.76,12.25]) and MAE ([3.76,12.25]) and the Bi-LSTM’s RMSE
([3.45,8.65]) and MAE ([3.45,8.65]) respectively; however, its R? ([0.07,0.68]])
and R([0.27,0.82]) are higher than the CNN’s R? ([0,0.56]) and R ([0.06,0.75])
and the Bi-LSTM’s R? ([0,0.55]) and R ([0.07,0.74]) respectively. Overall, the
RMSE of CNN-Bi-LSTM is reduced by 36.84% and 19.38%, respectively; the
MAE is reduced by 42.44% and 23.56%, respectively, compared with CNN and
Bi-LSTM. Further, the average deviations of RMSE for CNN, Bi-LSTM and
CNN-Bi-LSTM models is 1.28, 0.87, and 0.57, respectively; the average devia-
tions of MAE are 1.23, 0.83, and 0.53, respectively; the average deviations of
R? are 0.13, 0.13, and 0.12, respectively; and the average deviations of R is 0.15,
0.14, and 0.12, respectively. The lower average deviations reflect the higher
forecasting stability of CNN-Bi-LSTM. In summary, CNN-Bi-LSTM is the best
model for predicting precipitation %O in different seasons.

4.4 Spatial and temporal clustering-based integrated forecasting

Based on the K-means ++ clustering results, data from 10 stations were divided
into two categories (Fig. 5). They have similar precipitation *O and tempera-
ture distributions, but the first group has less precipitation distribution and the
second group has more precipitation distribution. On the basis of the clustered
data, three models were developed. As seen in Table 3 and Fig. 7, the results
are as follows:

Table 3

The calculation of model.

Sum Overall Cluster 1  Cluster 2

RMSE 33.70 30.71 30.26
MAE  27.08 24.29 23.83
P 204859.02 98473.06  106385.9679
T 27088.82  8043.43 19045.39611
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Fig. 7 K-means +-+ clustering-based %0 forecasting.

For the same cluster, different forecasting models with different training ratios
perform differently. The accuracy of cluster 1 and cluster 2 forecasting is ranked
in descending order of CNN-Bi-LSTM, Bi-LSTM, and CNN for the multi-year
forecasting aspect of the single-site (i.e., 0.9 training ratio). Compared with
CNN and Bi-LSTM, the RMSE of CNN-Bi-LSTM decreased by 9.37%~10.78%
and 0.94%~5.77%, respectively; MAE decreased by 3.93%~16.52% and
5.13%~8.06%; R? improved by 7.94%~23.68% and 1.11%~7.58%, respectively;
R improved by 3.89%~11.21% and 0.56%~3.71%, respectively. For multi-site,
multi-year forecasting, cluster 1, cluster 2, and the overall forecasting show
similar forecasting patterns. The forecasting accuracies of the models are all
in descending order of CNN-Bi-LSTM, Bi-LSTM, CNN. Compared with CNN
and Bi-LSTM, the RMSE of CNN-Bi-LSTM was reduced by 19.45% and 0.65%
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in cluster 1 and 6.05% and 2.47% in cluster 2, respectively, compared to the
overall; the MSE was reduced by 23.61% and 1.69% in cluster 1 and 5.76% and
3.41% in cluster 2, respectively, compared to the overall.

Similarly, the forecasting performance of the same model varies according to the
cluster. For single-site, multi-year forecasting, the RMSE and MAE of CNN,
Bi-LSTM, and CNN-Bi-LSTM are lower in cluster 1 than in cluster 2 (RMSE
decreased by 23.73%, 16.57%, and 22.15%, respectively, and MAE decreased by
9.14%, 19.06%, and 22.36%, respectively); Bi-LSTM and CNN-Bi-LSTM have
higher R? and R than cluster 2 (R? increased by 0.48% and 6.9%, and R grew
by 0.24% and 3.38%, respectively), and CNN has lower R? and R than cluster
2 (R? decreased by 7.19% and R decreased by 3.54%). Forecasting accuracy of
all models was ranked in descending order by cluster 1, cluster 2, and overall.
For cluster 1, the variability of RMSE, MAE, R?, and R increased with an in-
crease in the number of predicted sites and time. As compared to cluster 2, the
average deviations of RMSE, MAE, R2, and R for cluster 1 increased by 1.71,
1.46, 1.11, and 1.32, respectively. With the 0.7, 0.8 training ratio forecasting,
cluster 2 has a lower RMSE, MAE than cluster 1 and the overall RMSE, MAE;
in the 0.6 training ratio forecasting, cluster 1 has a lower RMSE, MAE than
cluster 2 and overall; it is evident from the 0.5 training ratio forecasting that
the overall RMSE, MAE is lower than that of cluster s 1 and 2 RMSE, MAE;,
respectively. Thus, in single-site, multi-year forecasting, cluster 1 forecasting
demonstrate some advantage in improving forecasting accuracy; cluster 2 fore-
casting improve the ability to reduce error and increase variance consistency,
which are usually better than the cluster 1 forecasting and overall forecasting;
once the proportion of forecasting reaches a certain threshold, the accuracy of
forecasting is determined only by the amount of input data.

The difference in forecasting accuracy between different models in the same
cluster is due to the different predictive abilities of the models themselves. But
the reasons for the differences in forecasting accuracy of the same model in
different cluster s may be diverse. The range of variation in precipitation in
cluster 1 is [0.1,350.1] and in cluster 2 is [0.2,212.6], and the large fluctuating
values may cause forecasting models to underestimate highs or overestimate lows.
Moreover, the proximity of the additional forecasting sites to the training sites
affects the spatial correlation of precipitation '#0, and the worse the correlation,
the greater the impact of spatial variability characteristics on the forecasting
difficulty of each cluster.

4.5 Optimal model

Compared with the overall forecasting, the seasonal forecasting does not show
a significant improvement. In the context of single- and multi-site, multi-year
precipitation 80 forecasting, K-means 4+ classification based on different fea-
tures is capable of significantly reducing RMSE and MAE. Forecasting based
on seasonality or spatiotemporal clustering do not improve the model’s R?, and
the degree of fit seems to depend only on the degree of dispersion between the
data and the strength of the model. In terms of model types, Bi-LSTM and
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CNN-Bi-LSTM are the optimal models for single-site, multi-year forecasting and
multi-site, multi-year forecasting, respectively. Consequently, CNN-Bi-LSTM
is considered as the optimal forecasting model for all German stations.

To further illustrate the performance differences between model types, see Fig.
8. Fig. 8 compares the accuracy of one-year forecasting for CNN, Bi-LSTM, and
CNN-Bi-LSTM models at site 1002A. For forecasting one year in the future, the
Bi-LSTM model has the highest accuracy. Compared with CNN and CNN-Bi-
LSTM, Bi-LSTM has 8.79% and 2.82% lower RMSE, 13.13% and 2.33% lower
MAE, 172% and 99.38% higher R?, and 65.13% and 41.21% higher R, respec-
tively. For forecasting two years in the future, CNN has the highest accuracy
and the greatest forecasting. Compared with Bi-LSTM and CNN-Bi-LSTM, the
RMSE of CNN is reduced by 28.78% and 2.77%, and the MAE is reduced by
49.79% and 17.24%, respectively. For forecasting more than two years in the
future, the CNN-Bi-LSTM model provides significantly higher accuracy than
both CNN and Bi-LSTM models.
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Fig. 8 Comparison of precipitation 20 forecasting models for station 1002A.
5 Discussion
5.1 Enhancing clustering methods

To further validate the optimization of K-means ++ clustering for precipitation

180 forecasting, we categorized the same data from Section 4.4 into three classes
(Fig. 9a), built the model, and carried out multi-step forecasting. Fig. 9b
illustrates the comparison results of different clusters.

For single-site, multi-year forecasting, clusters 3-1 and 3-3 exhibit similar fore-
casting patterns. For clusters 3-1 and 3-3, the RMSE ([1.72,1.77]), (]1.54,1.85])
are significantly lower than the overall ([1.7,2.35]); MAE ([1.26,1.38]), ([1.21,1.5])
are lower than the overall ([1.34,1.88]); R? (]0.5,0.55]), ([0.36, 0.46]) are higher
than the overall ([0.38, 0.41]); R([0.7, 0.74]), ([0.6, 0.68]) are higher than the
overall ([0.62, 0.64]). Comparatively, cluster 3-2 has higher RMSE ([2,2.24]),
MAE ([1.58,1.78]) and lower R? ([0.39,0.46], R ([0.63,0.68]) values than the
overall. In terms of forecasting accuracy, clusters 3-1 and 3-2 have CNN-Bi-
LSTM, CNN, and Bi-LSTM in order; cluster 3-3 has Bi-LSTM, CNN-Bi-LSTM,
and CNN.

For multi-site, multi-year forecasting, clusters 3-1, 3-2, 3-3, and the overall
forecasting have different forecasting patterns according to the training ratio.
For cluster 3-1, the most accurate forecasting results were obtained at the 0.8
training ratio; for the overall forecasting, the most accurate results were obtained
at the 0.7 training ratio; and for cluster 3-3, the most accurate forecasting results
were obtained at the 0.6 and 0.5 training ratios. In addition, compared with the
average deviation of 0.96, 0.95 for the overall forecasting RMSE and MAE, the
average deviation of 0.32, 0.24 for clustering 3-1 RMSE and MAE, 0.22, 0.15 for
clustering 3-2 RMSE and MAE, and 0.15, 0.1 for clustering 3-3 RMSE and MAE
are lower, and the clustered model has a higher degree of stability. Regarding
the type of model, CNN-Bi-LSTM is the optimal model for clusters 3-1, 3-2, and
3-3 as well as the overall forecasting. The results suggest that clustering does
not always improve the accuracy of precipitation #O models and that optimal
clustering results exist for precipitation 8O forecasting models.

In future research, it may be worthwhile to investigate how best to cluster
precipitation 80 forecasting models for different regions and how different
clusters may affect precipitation %O forecasting results.
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(b) K-means ++ clustering-based %0 forecasting.

Fig. 9 Joint forecasting results of K-means ++ clustering and CNN, Bi-LSTM
and CNN- Bi-LSTM models.

5.2 Improving precipitation '®O forecasting

In this study, three deep learning methods and one spatiotemporal clustering
method (K-means ++) were used to develop and compare precipitation *0
forecasting models. The results show that CNN-Bi-LSTM performs better in
multi-site forecasting; seasonal clustering-based forecasting is more suitable for
season-specific forecasting; and K-means ++ clustering-based forecasting can
significantly improve forecasting accuracy. For a single site, the Bi-LSTM is
more suitable for ultra-short-term forecasting, the CNN is more suitable for
short-term forecasting, and the CNN- B-LSTM is more suitable for medium-
and long-term forecasting. Based on the results of this study, deep learning has
proven to be an effective tool for handling big data, especially when the data
is geographically and temporally distributed. In some cases, spatial-temporal
clustering and models enhance the performance of spatial-temporal data fore-
casting.

Although clustering based on K-means++ has significantly improved precip-
itation 'O forecasting accuracy, some factors remain unaccounted for. For
example, to ensure the applicability of the model, we only use meteorological
and geographical parameters in this study that have the greatest influence on
the spatial and temporal distribution of precipitation '#0 and are the easiest
to obtain as the input variables. However, characteristic parameters such as
vegetation cover and slope can also have an impact on the spatial and tempo-
ral distribution of precipitation 80 (Clark and Fritz, 1997), and it is unclear
whether adding these parameters to the model forecasting would further enhance
model accuracy. Furthermore, K-means ++ is only applicable to forecasting
models with two main control parameters. How would increasing the control
parameters of the model affect the forecasting results, and if there are better
clustering methods available. Also, whether there are other models that are
suitable for precipitation 80 forecasting in addition to CNN, Bi-LSTM, and
CNN-Bi-LSTM. In the following studies, these questions deserve to be explored
further.

6 Conclusions

On the basis of a spatiotemporal clustering analysis of precipitation 80 in
Germany from 1988 to 2012, CNN, Bi-LSTM and CNN-Bi-LSTM multiyear,
single-site, and multisite forecasting models have been developed and their per-
formance compared in this study. The main findings are as follows:

1. On the temporal scale, there were obvious seasonal differences in precipi-
tation 80, in the order of summer, spring, autumn and winter, with an
inverted U-shaped variation on the annual, seasonal, and monthly scales.
Four-season forecasting models were developed based on data clustering.
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On the integrated spatial and temporal scales, different monitoring sites
have similar precipitation 'O and temperature distributions, while pre-
cipitation distributions differ. Temperature effects are the underlying
cause for the different distributions of precipitation 180. A spatiotem-
poral clustering forecasting model based on two clusters was established
by the K-means ++ method.

. Using the entire dataset, the overall forecasting performance in single-
site, multi-year forecasting is ranked in descending order of Bi-LSTM,
CNN-Bi-LSTM, and CNN. For multi-site, multi-year forecasting, CNN-
Bi-LSTM performs best with training ratios of 0.5, 0.6, and 0.8, but Bi-
LSTM performs better at 0.7. In light of the small relative errors between
CNN-Bi-LSTM and Bi-LSTM prediction values, the integrated CNN-Bi-
LSTM-based forecasting model is considered to be the optimal forecasting
model for each German region by combining the overall errors and forecast
stability.

. In comparison with the overall forecasting, the seasonal forecasting does
not demonstrate a significant improvement in performance. The distribu-
tion of forecasting across seasons does not show any specific pattern, and
the degree of fit seems to depend only on the degree of dispersion between
the data and the strength of the model. Overall, the seasonal forecasting
method is better suited for improving forecasting for a particular season.
As a matter of model type, CNN-Bi-LSTM model tends to perform better
than CNN and Bi-LSTM models.

. After using K-means ++ clustering, the forecasting of cluster 1 shows some
advantages in improving the prediction accuracy at the training ratio of
0.6 to 0.9, while the forecasting of cluster 2 improves the ability to reduce
errors and improve variance consistency. And at the training ratio of 0.5,
the overall forecasting outperformed cluster 1 and cluster 2. Thus, once
the proportion of forecasting reaches a certain threshold, the accuracy of
forecasting is determined only by the amount of input data. In terms of
model type, CNN-Bi-LSTM model generally performs better than CNN
and Bi-LSTM models.

Combining the above findings and additional studies, we found that the K-
means ++ clustering followed by CNN-Bi-LSTM forecasting is the best model
for forecasting precipitation %0 in Germany. It is important to note that the
number and type of clusters may have a significant impact on the prediction
results.
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