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Abstract

Evaluation of the performance of hydrologic and hydraulic models is a crucial step in the modeling process. Considering the
limitations of single statistical metrics, such as the Nash Sutcliffe efficiency (NSE), the Kling Gupta efficiency (KGE), and the
coefficient of determination (R2), which are widely used in the evaluation of model performance, an evaluation framework that
incorporates multiple criteria and based on the generalized likelihood uncertainty estimation (GLUE) is proposed to demonstrate
the uncertainty in the evaluation criteria and hence to quantify the overall uncertainty of flood models in a comprehensive way.
This framework is applied to the one-dimensional HEC-RAS models of six reaches located in States of Indiana and Texas of
the United States to quantify the uncertainty associated with the channel roughness and upstream flow input. Specifically, the
effects of different prior distributions of the uncertainty sources, multiple high-flow scenarios, and various types of measurement
errors (white noise, positive bias, and negative bias) in observations on the evaluation metrics are investigated by using the
bootstrapping method and Monte Carlo simulations. The results show that the model performances based on the uniform and
normal priors are comparable. The distributions of all the evaluation metrics in the framework are significantly different for
the flood model under different high-flow scenarios, and it further indicates that the metrics are essentially random statistical
variables. Additionally, the white-noise error in observations has the least impact on the metrics, while the positive and
the negative biases would have opposite impacts, which depends on whether the model overestimated or underestimated the

hydrologic variable.
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Introduction

>»Flood & Flood model

* Flooding is one of the most
devastating natural disasters
In the world

 Evaluation of reliability and
accuracy of model predictions
IS a critical iIssue

« How to demonstrate and
guantify the uncertainty In
evaluation metrics?
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Image source: https://www.usatoday.com/picture-gallery/news/weather/2022/06/14/major-flooding-mudslides-yellowstone-national-park/7618177001/

Data source: https://www.weather.gov/hazstat/
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Introduction

* Uncertainty in evaluation criteria for flood models
» Statistical metrics

1 Reliability of prediction
distribution
< S EEEIR O MISE/RMSE, NSE, KGE,
analysis

R2, etc.
Deterministic

pfed'C“O” > Limitations

1 No “perfect” single metric
Qualitative Visual
analysis comparison

1 No broad consensus on
uncertainty quantification
(Choi, 2022; Clark et al., 2021; Knoben et al., 2018; D. Liu, 2020; Rogelis et al., 2016;
Siqueira et al., 2018; Towner et al., 2019)

for flood models



Introduction
» Objectives: quantify uncertainty in evaluation metrics

v’ revisit the statistical meanings of existing metrics and propose an
Integrated evaluation framework

v' investigate the effect of different prior distributions in GLUE
analysis on the uncertainty metrics

v' evaluate the effect of different high-flow scenarios on the
uncertainty metrics

v explore the impact of different types of measurement errors on the
uncertainty metrics



Integrated Evaluation Framework

> Uncertainty coefficients
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(Anscombe, 1973; Nagelkerke, 1991; Nash and Sutcliffe, 1970; Gupta et al., 2009)



Integrated Evaluation Framework
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Integrated Evaluation Framework

— UC2+UC3+UC4,,
Integrated criterion for IUC = -UC1+ (]_ — 0{) . J
uncertainty quantification 3
[Reliability of distributions] %ecuracy of deterministic prediction%
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Integrated evaluation framework for flood models UC4,, =1-R*+|1-Slope|




Integrated Evaluation Framework

« Values of the empirical factor (a) in lUC

90% prediction interval of water

stage distribution

average interval width < 0.3 m
0.3 m < average interval width < 0.9 m
0.9 m < average interval width < 1.2 m
1.2 m < average interval width < 1.8 m

average interval width > 1.8 m

IUC =¢-UCL+(1-a)-

UC2+UC3+UC4,,
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Study Area and Data

Study Stream Channel Average

length channel e

- 0}
(State-No.) (km) width (m) slope (%)
Hart (IN-1) 8.45 16 0.1037
Deep (IN-2) 19.55 48 0.0095
Delaware White
(IN-3) 6.76 64 0.0631
Gibson White
ael ;| (IN-4) 70.38 182 0.0087
— West Fork San
b0l e — Reach Jacinto 56.31 227 0.1624
—— Cross-section (TX_]_)
RPN é :tsafesbi“nfary East Fork San
| Lok | Jacinto 50.11 76 0.0438
West & East Fork San Jacinto (TX-Z)

FEMA model source: https://dnrmaps.dnr.in.gov/appsphp/model/index.php
https://webapps.usgs.gov/infrm/estbfe/

Simulation period: 200 days (summer & fall in 2021) | 8
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Methodology

» Uncertainty quantification based on GLUE
for FEMA models (1D HEC-RAYS)

* Generalized likelihood uncertainty estimation (GLUE)
Incorporates both Monte Carlo sampling and the Bayesian
analysis (Beven and Binley, 1992).

Sampling Multiple
from prior Model results and
distributions ensemble compare to

of and multiple observations
uncertainty model runs based on
sources Likelihood

Estimate
uncertainty
based on
behavioral
outputs



Normal Prior

Methodology VRN

» Uncertainty quantification
based on GLUE for FEMA

Uniform Prior

Density

models (1D HEC-RAS) — L | I
Uncertainty Uncertainty Prior Distribution-1 Prior Distribution-2
Type Source (Uniform) (Normal)
Model Channel
Parameter roughness (n) (8, L) N, G
Upstream flow
Input Data input (Q) U (0.8Q, 1.2Q) N (Q, 0.1Q)
400 (=20X20) model configurations (plan files) in HEC-RAS
1
L( fk | D) — T

 Likelihood function: M (f -y )2 Cut-off threshold: top 75%

t=1 10




Results and Discussion
9> Effect of different prior distrigbutions iIn GLUE

—_— Ohserved | . —_— Obhserved
: ' - = =GLUE mean Normal Prior = = ~GLUE mean
Uniform Prior e [7190% bound
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|
0 50 100 150 200

Days Days
Model Type Mean (U) 90% CI (U) Mean (N) 90% CI (N)
UC1 (%) 57.36 52.00, 63.50] 59.67 54.00, 65.50]
UC2 (%) 22.88 18.72, 27.86] 23.06 18.76, 28.06]
IN-4  UC3 (%) 29.36 25.34, 33.41] 29.22 25.56, 33.47]
UC4 (%) 21.42 19.71, 23.15] 21.58 19.88, 23.35]
IUC (%) 40.55 35.20, 45.01] 39.62 30.95, 45.91]




Results and Discussion
» Evaluation under different high-flow scenarios

Water stage (m)
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Results and Discussion

» Integrated evaluation framework for flood models

N ) .
por U i RMSE Ratio Tof” 2 =
0o ) o
0 1496 016 023 085 100 098 100 o °

10 1492 017 024 084 100 098 100 @

20 1519 018 026 083 100 097 1.00 <2

30 1584 020 027 08 100 097 1.00 O

40 1757 021 029 081 100 097 100 = ] —

50 18.65 023 031 078 1.00 097 1.00

60 1882 025 034 077 100 097 101 0 50 100 150 200

Days
Water stage predictions of TX-1 model

70 19.28 0.29 039 0.76 099 097 1.01
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UC3 (%) UC1 (%)

1UC (%)

Results and Discussion

» Impact of various measurement errors
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Results and Discussion

» Impact of various measurement errors

60

=
N
1

i
o
1

white N0, cirive DI2R  ative b2

o

e

=

Wwhite noisepos'-,twe b"-a:legatwe pias

—
=
=
white NO1S%, xive DIAR  arive D18
=
=

white NO1S%, cixive DIAR  arive D1a®

UC distributions of IN-4 model

Type of

Type

Mean

Relative

Type

Mean

Relative

errors of UC (%) Ch(%z)ge of UC (%) Ch(i/r:)ge
No
errore 5750 |/ 2257 |
WN 57.35 -0.26 22.58 0.04
UcCi1i Ucz2
PB 55.36 -3.72 21.52 -4.65
NB 59.11 2.80 23.69 4.96
No
errors 29.20 / 21.40 /
WN 29.20 0.00 21.40 0.00
UC3 Uuc4
PB 28.39 -2.77 20.97 -2.01
NB 30.03 2.84 21.83 2.01
No
errors 4095 /
WN uC 40.87 -0.20
PB 39.49 -3.57
NB 42.15 2.93 15




Conclusions

* A uniform prior in the GLUE analysis is adequate for the
uncertainty quantification in the absence of solid prior knowledge.

 Evaluation metrics (UCs) are random variables: conditional on a
specific flow scenario; present a statistical distribution.

* White-noise measurement errors have the least impact on UCs.

* The integrated evaluation framework based on GLUE can be
applied to any other hydrologic variables.
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THANK YOU

“No one trusts a model except the man who wrote it;
everyone trusts an observation except the man who
made it.”

— Harlow Shapely

Email: huanl44l@purdue.edu
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