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Abstract16

Resampling-based weather generators simulate new time series of weather variables by17

reordering the observed values such that the statistics of the simulated data are consis-18

tent with the observed ones. These generators are fully data-driven, easy to implement,19

and capable of reproducing the dynamics among weather variables. However, although20

the simulated time series is new, the weather fields produced at arbitrary time steps are21

replicas of those found in observations, limiting the spatial variability of simulations and22

preventing the generation of extreme weather fields beyond the range of observed val-23

ues. To address these limitations, we propose the integration of the Direct Sampling al-24

gorithm—a data-driven method for producing simulations—into resampling-based weather25

generators. By incorporating Direct Sampling as a post-processing step on the outputs26

of the weather generator, we enhance the spatial variability of the generated weather fields27

and enable the generation of extreme weather fields. We introduce an approach for gen-28

erating out-of-sample extreme weather fields using Direct Sampling. This method involves29

utilizing a set of control points in conjunction with Direct Sampling, where the values30

of these control points are informed by return period analysis. The proposed approach31

is validated using precipitation, temperature, and cloud cover weather fields in a region32

of northwest India. The experimental results confirm that Direct Sampling enhances the33

spatial variability of the weather fields and facilitates the generation of out-of-sample pre-34

cipitation fields that accurately adhere to the spatial statistics provided by return pre-35

cipitation level maps, as well as the observed precipitation weather field employed in the36

analysis.37

Plain Language Summary38

Weather generators (WG) are tools for generating artificial weather data. Appli-39

cations use WG outputs for several tasks, including risk, uncertainty, and climate change40

analysis. WGs based on ”resampling ” conforms to a type of WGs that is easy to im-41

plement, understand and produce data with properties resembling historical data. How-42

ever, although those WGs generate new artificial time series, those series are sorted ver-43

sions of historical weather fields (i.e., weather data values at the spatial domain) Fur-44

thermore, those WGs can’t generate weather fields with out-of-sample data values, i.e.,45

extreme weather. In this work, we research the applicability of the Direct Sampling al-46

gorithm for creating variations of the simulated weather fields by the WG, and for gen-47

erating artificial precipitation fields with extreme values. We found that Direct Sampling48

post-processing of weather generator outputs is a simple approach to improve the vari-49

ations of weather fields and for generating extreme precipitation fields conditioned on50

information provided by an extreme precipitation analysis. The methods exposed in our51

work show a way to improve the design of those WGs that can benefit several applica-52

tions like the ones searching the generation of hypothetical extreme weather fields, or53

seeking better uncertainty quantification or estimates in risk analysis tasks.54

1 Introduction55

Stochastic weather generators are tools for generating synthetic data (a.k.a statis-56

tical simulations) of weather variables such as temperature, precipitation, humidity, at-57

mospheric pressure, and wind speed at particular locations and also at daily, hourly or58

finer temporal scales. Those simulations need to be statistically equivalent to observed59

data – they should reflect the weather persistence, variability and reproduce the spatio-60

temporal dynamics and correlation structures among the different meteorological vari-61

ables (Ailliot et al., 2015). Figure 1 illustrates how a weather generator works, they are62

trained using available weather data from the specific area of interest, and, optionally,63

they can be conditioned on projections and control variables. The output of the weather64

generator consists of time series data that exhibit statistical coherence with the weather65
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Figure 1. Weather generator pipeline: Weather generators use historical weather data to

learn the proper underlying distribution to generate synthetic weather data statistically equiva-

lent to observed weather data. Ideally, they can create samples conditioned on weather projec-

tions and alter their behavior due to the use of control variables.

data used in the training phase. They were first conceptualized by (Richardson, 1981)66

and have since become widely used to produce long surrogate time series and downscale67

future climate projections for climate impact assessments (Kilsby et al., 2007). For ex-68

ample, in hydrology, weather generators are used to create precipitation time series re-69

quired to estimate flood risk or evaluate the sensitivity of the hydrological regime to cli-70

mate change (Peleg et al., 2017). Other applications include future energy consumption71

impact analysis (Kolokotroni et al., 2012) and crop models (Brisson et al., 2009). Stochas-72

tic weather generators are low-cost computational tools — the data generation process73

is computationally cheap compared to climate models, which require solving complex phys-74

ical equations (Peleg et al., 2017). Moreover, they are proper tools to explore uncertainty75

in climate (Peleg et al., 2019).76

Stochastic weather generator types — Ailliot et al. (2015) considers there to77

be three types of stochastic weather generators: i) single-site refers to the ones that only78

synthesize data for a single weather station or location; ii) multisite are those that syn-79

thesize data for multiple stations or locations; iii) gridded are those weather generators80

that produce the so-called weather fields, essentially filling the gaps within the region81

of interest with simulated data. All three types can be univariate – e.g., they synthesize82

only precipitation values, or multivariate – they jointly synthesize several weather vari-83

ables. Furthermore, by considering the methodological procedure behind their construc-84

tion, (Ailliot et al., 2015) suggests four categories of weather generators: resampling meth-85

ods, Box-Jenkins methodology, point process models, and hierarchical models. In this86

line, we can also group them into parametric, nonparametric, and semiparametric weather87

generators.88

Parametric weather generators are those that rely on theoretical probability dis-89

tributions to model the joint distribution of weather variables — for instance, precip-90

itation is usually modeled by an exponential or gamma distribution (Todorovic & Wool-91

hiser, 1975) and extreme rainfall by mixtures of gamma distributions (Kenabatho et al.,92

2012) or Generalized Pareto distribution (Lennartsson et al., 2008). Usually, the sam-93

pling process of synthetic weather data is conditioned upon a sequence of weather states94

sampled from a temporal occurrence model, and its variability within a region is mod-95

eled by a spatial model (Richardson, 1981; D. Wilks, 1998; Lee et al., 2010; Chen et al.,96

2012; Kim et al., 2012; Carey-Smith et al., 2014; Allard & Bourotte, 2015).97

Nonparametric weather generators are fully data-driven and do not employ para-98

metric probability distributions to specify the full joint probability distribution of weather99

variables. Popular methodologies for this include the use of empirical distributions (Semenov100
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et al., 1998), neural networks (Trigo & Palutikof, 1999), and kernel density estimators101

(Rajagopalan et al., 1997). Further, semiparametric weather generators are those approaches102

based on parametric and nonparametric techniques for constructing weather generators.103

These methods improve persistence modeling issues found in nonparametric models (Apipattanavis104

et al., 2007; Steinschneider & Brown, 2013). They also include quantile mapping to en-105

force long-term distributional shifts in weather variables hypothesized by climate change106

scenarios, and explore more complex temporal occurrence and statistical models for im-107

proving weather generation (Steinschneider et al., 2019).108

Weather generators based on resampling methods — Resampling method-109

ologies are powerful and simpler strategies for generating synthetic weather data that110

capture the observed statistical properties of weather data like correlation structures among111

variables, weather persistence, and spatio-temporal variability (Rajagopalan & Lall, 1999;112

Buishand & Brandsma, 2001). They are usually used to construct nonparametric weather113

generators, or embedded within semiparametric weather generators. The resampling meth-114

ods’ main advantage is that the resampling process is performed jointly for all the vari-115

ables and all the sites, which guarantees the spatial coherence of the synthetic weather116

data. So, as quoted by (D. S. Wilks & Wilby, 1999) — “they can capture deviations from117

theoretical probability distributions for the individual variables, and nonlinearities in the118

relationships among variables”. In contrast, parametric weather generators have an in-119

herent design complexity in assuming, choosing, and fitting parametric models within120

the model pipeline process, limiting their applicability to only small temporal and spa-121

tial scales (Wilcox et al., 2021).122

Although weather generators based on resampling can generate new weather data123

time series, the spatial weather fields they produce are replicas or calibrated versions of124

the observed historical data. Hence, the scope of the spatial variability of the synthetic125

time series is limited to the resampling algorithm and the historical weather data. That126

is an issue for the synthetic weather fields generation task. Furthermore, it is impossi-127

ble to generate hypothetical weather fields with extreme events without relying on scal-128

ing factors applied to the observed ones. Additionally, resampling methodologies strongly129

depend on the quantity and quality of available data.130

1.1 Contributions131

We propose to overcome the spatial variability and the out-sample extreme event132

generation limitations of weather generators based on resampling by using the Direct Sam-133

pling — which is a Multi-point Geostatistics algorithm capable of generating sets of sim-134

ulations based on the patterns of a training image and conditioning data (Mariethoz et135

al., 2010) — as a postprocessing step on the weather generator outputs. We consider weather136

generators that produce new time series of weather fields, and they are multivariate weather137

generators, i.e., for a given time, they produce a set of weather fields, such that each weather138

field corresponds to a weather variable. Although the proposed methodology can work139

with any weather generator based on resampling, we showcase our experimental anal-140

ysis using a weather generator implementation based on the works from (Rajagopalan141

& Lall, 1999; Apipattanavis et al., 2007; Steinschneider & Brown, 2013). Thus, the pa-142

per’s contributions are:143

• The use of the Direct Sampling algorithm to improve the spatial variability of mul-144

tivariate weather generators based on resampling145

• Generation of weather fields with extreme events from the weather generator out-146

puts using Direct Sampling with control points informed by a return period anal-147

ysis.148

• Experimental validation using a set of statistical and connectivity metrics and a149

weather dataset with precipitation, temperature and cloud-cover weather fields150

for a region in northwest India151
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2 The weather generator and Direct Sampling algorithms152

This section introduces the weather generator based on resampling used in the ex-153

periments and the Direct Sampling algorithm from Multi-point Geostatistics.154

2.1 The weather generator155

This work employs an implementation of the multisite and multivariable weather156

generator presented in (Steinschneider & Brown, 2013). The weather generator begins157

by estimating the area-averaged total annual precipitation for a target year, which serves158

as a reference for simulating weather values at various sites in a given region. Depend-159

ing on the target year (historical or future year), the area-averaged total annual precip-160

itation can be calculated using historical observations or through the use of forecaster161

models such as WARM (Kwon et al., 2007; Steinschneider & Brown, 2013) or ARIMA162

(via the weathergen R package). The estimated area-averaged total annual precipitation163

for the target year is then used to construct a bootstrapped sample, which contains the164

one hundred most similar years to the target year in terms of their area-averaged total165

annual precipitation. The bootstrapping algorithm employs the empirical distribution166

of weighted Euclidean distances between the estimated area-averaged total annual pre-167

cipitation of the target year and the area-averaged total annual precipitation from the168

bootstrapped sample. The weights for the distances are computed using the kernel pro-169

posed by (Lall & Sharma, 1996).170

The weather generator next step is to use the one hundred bootstrapped years to171

train twelve first-order homogeneous Markov chains with three states — dry, wet, and172

extreme — i.e., a Markov Chain per month. For that purpose, the weather generator pre-173

viously labeled the area-averaged daily precipitation signal from the one hundred boot-174

strapped years with those three states based on user-provided threshold values, for in-175

stance, the label ’dry’ is given to precipitation values less than 0.01 mm/day, ’wet’ to176

values greater than 0.01 mm/day but less than the 90th percentile of monthly precip-177

itation values, and ’extreme’ otherwise. Thus, the weather generator simulates a state178

sequence for a year sampling from the twelve Markov chains. The weather generator’s179

next stage is to estimate the resampling dates for the one-year state sequence. This is180

achieved using a 1-lag K-nearest neighbors (KNN) bootstrap algorithm. The algorithm181

assigns a date to a state st based on the empirical distribution of weighted distances be-182

tween the weather values corresponding to the date already assigned to state st−1 and183

all the weather values in the training dataset that correspond to the first state within184

a similar state sequence st′−1, st′ , where t′ is an index within an α-day window within185

the training data. Finally, the weather generator uses the resampling dates from the pre-186

vious step to assign the weather values from the historical training data to the simula-187

tion.188

2.2 Direct Sampling algorithm189

Direct Sampling is an algorithm from Multi-point Geostatistics — an area that fo-190

cuses on stochastic modeling based on training images instead of using traditional Ran-191

dom Function Theory (Mariethoz et al., 2010; Mariethoz & Caers, 2014). The main use192

of Direct Sampling is to provide statistically coherent simulations with a structure mim-193

icking the one provided by a training image, whose main role in applications is to inform194

and include physical reality in stochastic modeling. Some Direct Sampling and Multi-195

point Geostatistics applications on the weather domain are on conditional stochastic rain-196

fall (Wojcik et al., 2009), downscaling (Jha et al., 2013, 2015), resampling extremes (Opitz197

et al., 2021), rainfall series generation (Benoit & Mariethoz, 2017; Oriani et al., 2014,198

2018) and conditional weather field generation (Oriani et al., 2017).199
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The Direct Sampling algorithm starts by using a user-provided training image as200

the source of patterns for creating simulation. The training image is represented by a201

two-dimensional matrix W, where the matrix indices correspond directly to the spatial202

coordinates of the data. To construct a new image that is similar in structure to the train-203

ing image, the algorithm uses a two-dimensional empty matrix S as a simulation grid.204

Importantly, the size of S does not need to be the same as that of W, enabling the gen-205

eration of images of varying sizes. Moreover, the algorithm can incorporate condition-206

ing data by using a two-dimensional matrix Ĉ to store user-provided values at specific207

locations that the simulation must obey. The conditioning data matrix Ĉ is empty ev-208

erywhere except for the locations with conditioning data. A data event for a location209

x in the simulation grid S is defined as the set of n locations around x where simulated210

point values have already been assigned We denote this set as dn(x, L) = {Z(x+h1), . . . , Z(x+211

hn)}, where L represents a set of lag vectors {h1, . . . ,hn} that define a neighborhood212

around x, and Z(x) is the simulated value for location x. A data event for a location213

y within the training image W also uses the set of lag vectors L already computed from214

S but in W, i.e., dn(y, L) = {Z(y + h1), . . . , Z(y + hn)}. The Direct Sampling algo-215

rithm uses a distance function to compare the data events of the training image and the216

simulation grid, i.e., D(dn(x, L), dn(y, L)). Additionally, the algorithm employs a thresh-217

old value th on the distances as a criterion for assigning values to the simulation grid.218

The Direct Sampling algorithm is executed in the following steps:219

1. Define the necessary input matrices, W and Ĉ, and set the values of the param-220

eters n, D, and the threshold th.221

2. Initialize the simulation grid, S, with the conditional data point values at the same222

locations provided by Ĉ, and set empty values elsewhere.223

3. Randomly select a location x with empty value from S, and compute the corre-224

sponding data event dn(x, L) and the set of lag vectors L.225

4. Randomly select a location y from W, and compute the corresponding data event226

dn(y, L).227

5. If the distance between the two data events, D(dn(x, L), dn(y, L)), is less than or228

equal to the threshold th, assign the value of y from W to the location x in S.229

If there are more locations x with empty values to explore in S proceed to step230

3 otherwise the algorithm ends.231

6. If D(dn(x, L), dn(y, L)) is greater than th, store the pair {D(dn(x, L), dn(y, L)),y}232

in a list. If there are more locations y to explore in W, go to step 4. Otherwise,233

choose in the list the value of y with the shortest data event distance and assign234

it to the location x in S.235

An interesting property of this algorithm is that the pattern matching between the236

TI and SG data events looks for a very diverse set of structures at different scales — it237

scrutinizes for a myriad of patterns of different sizes without using predefined templates.238

Also, it allows the use of continuous and discrete variables, co-simulation, conditioning239

points, multiple variables, and parallel algorithms. Furthermore, the quality of the sim-240

ulations depends on the quality of the TI and the parameter settings such as the distance241

between data events, threshold distance value, and data event size. All of that will re-242

quire a first round of sensitivity analysis to calibrate the algorithm with the best set of243

parameters. Unfortunately, there is a positive correlation between the best parameter244

configuration and a high computational cost, however, some solutions based on GPU and245

parallel implementations exist (Huang et al., 2013; Cui et al., 2021). In this paper, we246

distributed Direct Sampling algorithm instances among several CPU cores working in247

parallel. We described this approach in the Supplemental Material.248
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Figure 2. Post-processing the weather field outputs from the weather generator with the

direct sampling algorithm for spatial variability improvement.

3 Using Direct Sampling within the weather generator249

This section proposes a strategy to couple the Direct Sampling algorithm within250

weather generators based on resampling for two tasks: 1) spatial variability improvement251

and 2) extreme weather scenarios generation.252

3.1 Improving spatial variability253

Resampling-based weather generators are limited in their ability to generate weather254

fields with spatial variability that differs from the historical training set. To overcome255

this issue, we propose to use the Direct Sampling algorithm as a post-processing step of256

the weather generator outputs to produce new weather field variations and hence increase257

the weather generator spatial variability. In this sense, the Direct Sampling procedure258

considers each weather field produced by the weather generator at time t as a training259

image. An important aspect to take into account is that the Direct Sampling post-processing260

procedure needs to consistently keep the original statistical properties and connectiv-261

ity structures of the original weather fields. Furthermore, the post-processed weather field’s262

time series must keep the correlated interplay dynamics among weather variables and263

coherently retain the temporal aspect modeled by the weather generator. This aspect264

is easily solved by using an appropriate set of conditioning points through the time and265

space dimensions to constraint the Direct Sampling outputs.266

Figure 2 shows the Direct Sampling post-processing of the weather fields produced267

from the weather generator at time t. The Direct Sampling procedure uses a unique set268

of randomly located conditional points within the spatial domain in analysis. The lo-269

cations are shared for all the weather fields and all t = 1, . . . , T , but the values of the270

conditional data are taken from each respective training image (i.e., each synthetic weather271

field produced from the weather generator). The reason behind this is to guarantee sta-272

tistical coherence among all the simulated weather fields variables by Direct Sampling273

at time t. It should be noted that each weather field generated by the weather gener-274

ator is not only used as a training image, but also as a source of conditioning data to275

restrict simulations to adhere to specified values or patterns at selected locations. This276

approach allows for the implicit integration of the effects of topography to some extent.277

Also, instead of using a multivariable version of Direct Sampling, i.e. simulating several278

variables at once, we opt for the univariate version, we chose this approach due to its sim-279

plicity. Formally, let W be a matrix representing a weather field produced by the weather280

generator. Let S be the matrix representing the simulation grid. Also, let I be an in-281

dex set with random locations in the spatial domain of interest. Thus for a weather field282

W produced by the weather generator for a weather variable v ∈ V at time t, construct283

a conditional data matrix Ĉ, such that {Ĉi = Wi}i∈I and {Ĉi = φ}i/∈I , where φ de-284
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Figure 3. The extreme precipitation weather field generation pipeline: the weather generator

produces a statistically consistent time series of precipitation weather fields, then, an extreme

generation procedure produces an extreme precipitation weather field from a simulated target

weather field.

notes the null element. Using that information, run the Direct Sampling algorithm con-285

sidering W as the training image, and conditional data matrix Ĉ to produce a simula-286

tion S. Repeat the procedure for all the weather fields per weather variable v ∈ V (i.e.,287

precipitation, temperature, humidity, etc.) and all times t. Observe that, in hypothe-288

sis, the new weather field S provides a variation with statistical and structural proper-289

ties similar to W.290

3.2 Generation of weather fields with extreme events291

An important issue of weather generators based on resampling is the inability to292

generate extreme weather fields outside the range of historical extremes In the case of293

extreme precipitation, we propose a method to generate out-of-sample extreme precip-294

itation weather fields. This approach involves using Direct Sampling on a target weather295

field, conditioned on a return level map and control points. Notably, this procedure elim-296

inates the need for quantile mapping and offers greater flexibility in producing extreme297

precipitation events within user-defined regions of interest. In Figure 3, we present a pipeline298

depicting the generation of weather fields with extreme precipitation values. The extreme299

generator selects a target weather field from the simulations provided by the weather gen-300

erator and applies the aforementioned procedure to produce extreme precipitation val-301

ues, taking into account the information provided by a return precipitation level map.302

To ensure completeness, we also generate extreme precipitations using quantile mappings303

on Direct Sampling simulations, which are described in Supplemental Material.304

3.2.1 Direct Sampling on a target weather field conditioned on a return305

level map and control points306

Generating extreme precipitation weather values in arbitrary areas of interest can307

provide valuable information for downstream applications, such as flood risk analysis,308

streamflow models, disaster management, and risk assessment. To achieve this, stake-309

holders can define the regions of interest in advance and use simulated extreme precip-310

itation values correlated with the return period analysis to inform downstream applica-311

tions. This method could enable stakeholders to better understand and manage the po-312

tential impact of extreme weather events on their communities, enhancing their resilience313

to future natural disasters. One approach to generate extreme weather fields is to con-314

dition the Direct Sampling on a set of control points defining the locations for generat-315

ing extreme weather values. In this method, the control points’ values are defined from316

the return level map values associated with a given return period. This approach avoids317

the need for quantile mapping and the assumption of parametric distributions, provid-318

ing the additional benefit of using control points and return level maps to condition the319
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generation of extreme precipitation weather values in arbitrary areas of interest. We pro-320

pose the following procedure:321

1. Identify a target weather field W′ in Wt, (t = 1, . . . , T ).322

2. Set the weather field W′ as a training image.323

3. Set the conditioning data matrix Ĉ to the weather values of random locations within324

the region of interest that we do not want to generate extreme precipitation, i.e.,325

{Ĉi = W′
i}i∈Î and {Ĉi = φ}i/∈Î , where Î is an index set of random locations326

in the spatial domain of interest.327

4. Set the control points data matrix C to (out-of-sample) extreme weather values328

at locations where we want to generate extreme precipitation events. i.e., {Ci =329

fi}i∈I and {Ci = φ}i/∈I , where f is a random process depending on a provided330

return precipitation level map M and a specific location, that is, fi = f(i,M)331

and I is an index set of locations in the spatial domain of interest where we want332

to generate extreme weather. We call all the points Ci 6= φ as control points.333

5. Assign to the simulation grid S all the points in the conditioning and the control334

points data matrices, i.e, {Si = Ĉi}i∈Î and {Si = Ci}i∈I335

6. Run the Direct Sampling algorithm with Training Image W′ and Simulation grid336

S, and appropriate parameters as usual but if in the process of simulating a lo-337

cation x in the grid S, a value is found in the data event belonging to the simu-338

lation grid greater than the maximum value found in the training image, i.e., max dn(x, L) >339

max W′ , do the following update: Sx = W′
y − dn(y, L) + dn(x, L), where W′

y340

is a random point in the training image located at y, the overline notation denotes341

de average and dn(y, L) and dn(x, L) are the data events of the training image W′
342

and simulation grid S, respectively.343

Observe that the main purpose of conditioning data matrix Ĉ is to guarantee spa-344

tial coherence and honor some values of the training image data. Additionally, this con-345

ditioning enables the implicit incorporation of topographical effects to a certain extent346

within the simulations. Also, the locations in Ĉ and C can be selected by users or by347

analyzing some precipitation statistics within the region of interest. The update for Sx348

defined in step 6, was mentioned in (Mariethoz et al., 2010) in the context of non-stationary349

distances. Figure 4 depicts the proposed pipeline using a 100-year return precipitation350

level map and a target precipitation weather field (training image) from the weather gen-351

erator. The region of interest is the rectangular yellow area, which defines the location352

of the control points where Direct Sampling will generate extreme precipitation values.353

On another hand, the conditioning points are randomly located outside the region of in-354

terest (yellow area) with values taken from the training image. The generated precip-355

itation weather field with extreme values is shown on the right.356

3.2.2 Potential applications of synthetic extreme weather generation357

Extreme rainfall events can have devastating consequences on communities and in-358

frastructure, particularly in areas prone to flooding. The use of extreme rainfall gener-359

ation can simulate the effects of heavy precipitation and assist in developing effective mit-360

igation strategies. In hydrological modeling, for instance, extreme rainfall generation can361

be used to predict the potential impacts of extreme precipitation events on streamflow362

(Oliveira et al., 2021), water quality (Exum et al., 2018), and ecosystem health (Wang363

et al., 2018). It can also be used to improve the design of water resources systems, such364

as reservoirs and irrigation systems, by simulating the effects of extreme rainfall on the365

systems’ performance (Samuels et al., 2009; Woldemichael et al., 2012). Additionally,366

extreme rainfall generation can be applied in disaster risk reduction planning by iden-367

tifying vulnerable areas and developing effective mitigation strategies (Revi, 2008). In368

the field of urban planning, the use of extreme rainfall generation can assist in design-369

ing resilient stormwater management systems, improving drainage infrastructure, and370
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Figure 4. Example workflow for generation of an extreme precipitation event using Direct

Sampling conditioned on a return precipitation level map via control points. The algorithm

selects a target weather field as a training image and receives two external inputs: a return pre-

cipitation level map and a set of control points within a region of interest. The control points

couple the locations in the target weather field with values from the return precipitation level

map. Further, a set of conditioning points are used as a way to hold the non-stationarity and

connectivity properties from the original target weather field. Direct Sampling uses such informa-

tion to generate a simulation of an extreme precipitation weather field.

enhancing the overall resilience of urban areas to extreme weather events (Zhou et al.,371

2013).372
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Figure 5. Map of India with case study highlighted.

4 Experimental Evaluation373

4.1 Dataset and region of interest374

The case study chosen is a region in northwest India, located at 16.2◦ N, 73.9◦ E,375

22.2◦ N, 79.9◦ E, which contains portions of Maharashtra, Telangana, Madhya Pradesh,376

and Karnataka states (see Figure 5). The total area comprises around 360 000 km2 and377

contains 3 600 latitude and longitude pairs. In this work, we use the daily IMERG dataset378

(Huffman et al., 2019) and the ERA5 (single levels) (Hersbach et al., 2018). The IMERG-379

F V06 (IMERG Final Precipitation) is a run intended for research, which provides global380

precipitation estimates at the daily interval and at 0.1◦ spatial resolution (0.1◦ × 0.1◦,381

corresponding to approximately to 10km × 10km). The ERA5 (single levels) is a fifth-382

generation ECMWF reanalysis product with a global range, which provides many at-383

mospheric variables at the hourly interval and 0.25◦ spatial resolution (atmosphere). The384

weather variables we used were precipitation from IMERG-F, air temperature measured385

at 2 meters above the ground from ERA5, and total cloud cover data from ERA5. To386

align the datasets in temporal and spatial dimensions, we aggregated the ERA5 hourly387

temperature and cloud cover to daily values by adding them up and performed a near-388

est neighbor interpolation for downscaling from 0.25◦ × 0.25◦ to 0.1◦ × 0.1◦. The final389

dataset covers 21 years (2001-2021) with three daily weather variables: precipitation, tem-390

perature, and total cloud cover.391

4.2 Metrics392

We used a series of quantitative metrics to validate how well the simulations are393

reproducing the structural and statistical properties of the training images. We employed394

the following metrics to quantify the reproduction of statistical properties:395

• Quantile-quantile plot between the pixel values of the training image and the sim-396

ulation397
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• Comparison between the empirical cumulative distribution functions (eCDF) be-398

tween the pixel values of the training image and the simulation399

• Comparison between variograms (denoted by γ) estimated from the training im-400

age and the simulation.401

Figure 6. The quantile-quantile, eCDF, and Variogram metrics show how the simulation pre-

serves some statistical properties of the training image: the distribution of pixel values and the

variation of the spatial dependence.

Figure 6 shows from left to right a training image (a precipitation weather field W402

produced by the weather generator), the conditioning points C, the simulation grid S403

and the quantile-quantile, eCDF, and Variogram plots. For this particular simulation,404

those metrics agree that the simulation preserves the statistical properties of the train-405

ing image’s pixel values.406

We used the following metrics to quantify the reproduction of connectivity prop-407

erties:408

• Two-point probability function (Renard & Allard, 2013; Torquato et al., 1988;409

Torquato & Haslach Jr, 2002) — This function assumes that the input is a binary410

image I, which is a matrix with zeros and ones. It measures the probability that411

two pixels located at x and x+h contain the value one, given a lag vector h. That412

is, S2(h) = P{I(x) = 1, I(x + h) = 1}. If ||h|| = 0, then S2(h) is simply the413

probability that a pixel contains the value one, which equals the fraction of pix-414

els in the image that have the value one, i.e., S2(h) = E{I(x = 1)} = ϕ. On415

the other hand, if the distance between the two pixels located at x and x+h is416

very large (i.e., ||h|| → ∞), then they become statistically independent. In this417

case, the two pixels have the same probability ϕ of containing the value one, thus418

S2(h) = ϕ2.419

• Two-Point Connectivity Function (Renard & Allard, 2013; Torquato et al.,420

1988; Torquato & Haslach Jr, 2002) — The two-point connectivity function is de-421

signed to analyze images consisting of clusters of connected pixels. Such images422

are represented as matrices, with positive integer values indicating cluster regions,423

and zero values denoting areas without a cluster. Using a lag vector h, the two-424

point connectivity function determines the probability that two pixels at x and425

x + h belong to the same cluster,that is C2(h) = P{C(x) = C(x + h) 6= 0}. If426

||h|| = 0, then C2(h) is equivalent to the probability of pixels in the image within427

a cluster, represented by ϕ. Conversely, when the distance between the two pix-428

els is large (i.e., ||h|| → ∞), the two pixels are not connected and C2(h) = 0.429

Figure 7, shows the two-point probability and connectivity functions in the first430

and second row respectively, for the training image and the simulation from Figure 6.431

In the case of the two-point probability function S2, the input to the procedure is two432

binary images, one for the training image (Binary TI) and another one for the simula-433

tion (Binary Sim), where all the points of interest are labeled as one (yellow area) and434

zero otherwise. We constructed those binary images to analyze if the simulation is re-435

producing the connectivity properties of the training image in regions with high precip-436
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Figure 7. Probability and connectivity metrics for the training image and a simulation. The

first row, from left to right, displays a binary image of the training image (Binary TI) and its

corresponding probability function S2(TI), as well as a binary image from the simulation (Binary

Sim) and its probability function S2(Sim). These binary images mask areas with high precipi-

tation values, and the difference between S2(TI) and S2(Sim) is presented, alongside the profile

average of the S2 values for both training and simulation images in the X-axis, Y-axis, XY-axis,

and YX-axis. The second row, from left to right, displays the clusters of high precipitation values

for the training image (clusters TI) and its connectivity function C2(TI), as well as the cluster

image for the simulation (cluster Sim) and its connectivity function C2(Sim). In addition, the

difference between C2(TI) and C2(Sim) is shown, along with the profile average of the C2 val-

ues. Notably, this example demonstrates a high level of agreement between the probability and

connectivity metrics for both the simulation and training images.

itation values, thus, the yellow areas correspond to the places where the precipitation437

values exceed the 90th percentile of pixel values. With such information, we estimated438

the two-probability functions: S2(TI) and S2(Sim), for the training image and the sim-439

ulation, respectively. Notation ∆x and ∆y refers to the components of the lag vector h.440

In this case, those components vary from 0 to 15 pixels, which corresponds to 0.1◦ (10km441

approximately). We also show the difference : S2(TI)−S2(Sim). Furthermore, we show442

for completeness the profile average of each two-probability function, which we computed443

by selecting the S2 values in the X-axis, Y-axis, XY-axis, and YX-axis, starting from the444

center coordinates, and averaging it out. The x-axis label ∆ refers to the common vari-445

ation in directions X-axis, Y-axis, XY-axis, and YX-axis.446

The input for the connectivity function C2 shown in the second row of Figure 7 is447

two binary images describing the region of interest for the training image and the sim-448

ulation likewise we mentioned before. The region of interest of both binary images is clus-449

terized (Cluster TI and Cluster Sim). Using that information we estimated the C2 func-450

tion for the training image (C2(TI)) and the simulation (S2(Sim)). The figure also shows451

the difference image: C2(TI)− S2(Sim) and the profile average.452

In this paper, we utilize the two-point probability and connectivity functions to as-453

sess the fidelity of simulations in reproducing the connectivity properties across differ-454

ent precipitation levels. Specifically, we examine high precipitation values (greater than455

the 90th percentile of pixel values), middle precipitation values (pixel values between the456

10th and 90th percentiles), and lower precipitation values (below the 10th percentile of457

pixel values) observed in the data. As an illustration, Figure 8 presents the metrics ob-458

tained from one hundred simulations compared to the training image depicted in Fig-459

ure 6. The first row shows the training image, the mean of the simulations, and the stan-460

dard deviation image of the simulations. The second row displays the QQ-plot, eCDF,461
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and variogram of simulations (gray lines) and the training image (blue line). The third462

row shows the profile averages of the connectivity metric for the lower, middle, and higher463

precipitation values. Finally, the fifth row shows the probability metrics for the lower,464

middle, and higher precipitation values.465

In the case of measuring the quality of simulation weather fields with extreme pre-466

cipitation values outside the range of the training image, a reference image is impera-467

tive for comparison purposes. However it is extreme difficult to have a reference weather468

field to make comparisons. Even in the case of a reference weather field is available, it469

must be coherent with the training image used, as each extreme weather field generated470

is a function of the training image and the return level map. In such scenarios, relying471

on metrics is useful for informing the shift of precipitation value distribution and the vari-472

ation of connectivity properties. For instance, higher values can be expected within the473

region of interest, while the connectivity properties should be maintained in regions with474

low precipitation values outside the region of interest. Therefore, while it may be dif-475

ficult to obtain a reference weather field, utilizing appropriate metrics can provide mean-476

ingful insights in the process of extreme event generation.477

4.3 Spatial variability enhancement of simulated daily weather fields478

This section shows the experimental validation of using Direct Sampling to improve479

the spatial variability of weather generators based on resampling as we described in Sec-480

tion 3.1. As the quality of Direct Sampling simulations depend on its parameter choices481

we did a sensitivity analysis using precipitation, temperature and cloud cover weather482

fields from the data set described in Section 4.1.483

4.3.1 Sensitivity analysis484

The quality of Direct Sampling simulations depend on several parameter choices:485

1) the distance function D between data events with threshold th to assign a value to486

the simulation grid — the lower the threshold, the higher the quality of the simulation;487

2) the number of neighbors n that define the data events size — higher values could lead488

to poor simulation quality because the pattern in the simulation grid could not have a489

similar pattern in the training image (in this experiment is particularly true because we490

assume that the simulation grid is always the same size as the training image). On an-491

other hand, small values for n could lead to a narrow coverage of the structure of the492

patterns that the Direct Sampling is looking for.; 3) the number of conditioning points493

— in this experiment we set the conditioning points to be random locations from the train-494

ing image, thus higher values could produce simulations looking very close to the train-495

ing image and lower values would break such similarity; 4) a parameter f that describes496

the fraction of the training image that Direct Sampling uses for performing the pattern497

matching between the data events — a value close to 1 implies more computational cost498

but more pattern matching evaluations between the data events. On the contrary, a value499

close to 0 decreases the computational time at the expense of the simulation quality. To500

avoid an extensive parameter search, in the following experiment we fixed f = 1, i.e.,501

we used the whole training image for the pattern matching search between the data events.502

While increasing the parameter f to a value of 1 and decreasing th towards 0 can lead503

to a higher probability of copying data from the same location of the training image into504

the same location of the simulation grid, resulting in lower variability, the use of con-505

trol points as conditioning data, which varies for each realization, serves as a means to506

reintroduce variability. This approach allows us to maintain correlations among weather507

variables at specific times in the simulations and consider the effects of topography, all508

while balancing the need for variability in our results. We used a euclidean distance func-509

tion for D with small threshold value of th = 0.001. Observe that with a small value510

for th we tradeoff computational time vs quality, since small values for th increase the511

quality of the simulations but increment the computational cost. Furthermore, we fixed512
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Figure 8. The statistical and connectivity metrics validate the quality of the simulations. The

figure depicts the average and standard deviation images of one hundred simulations and a com-

parison between the simulation metrics and the training image metrics. The first row presents

the training image, along with the mean and standard deviation images of the simulations. In

the second row, the QQ-plot, eCDF, and variogram of the simulations (gray lines) are contrasted

against the training image (blue line). The third row displays the profile averages of the connec-

tivity metric, computed for the lower, middle, and higher precipitation values. Finally, the fifth

row illustrates the probability metrics for these same precipitation levels.

the value of conditioning points to one hundred which roughly corresponds to 3% of the513

training image locations. Therefore, we constrain the sensitivity analysis only to the val-514

ues of the n parameter.515

For this experiment, we randomly selected one hundred precipitation, temperature,516

and cloud cover weather fields from the dataset satisfying the criteria that they do not517

have constant information, i.e., avoiding dry days in precipitation or no clouds in cloud518

cover weather fields — we set such weather fields as training images. Then, we used Di-519

rect Sampling to produce one hundred simulations per weather field, totalizing ten thou-520

sand simulations per each of the three weather variables. For each training image, we521

computed the curves produced by the metrics: QQ-plot, eCDF, Variogram, S2 and C2522

and we did the same for its respective one hundred simulations. For instance, Figure 8,523
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Figure 9. Sensitivity analysis for the Direct Sampling parameter N using several metrics for

simulated precipitation weather fields. Each box plot represents a distribution of mean squared

errors between the simulations and the training image metrics.

shows the case of one precipitation weather field that we used as a training image, the524

mean and the standard deviation images from the one hundred simulations, the curves525

produced by the metrics: QQ-plot, eCDF, Variogram, and the profile averages for the526

connectivity metrics at three different quantile intervals.527

Figure 9 shows the results of a sensitivity analysis of Direct Sampling simulations528

of precipitation weather fields as a function of the n parameter (x-axis) and the metrics529

discussed so far. Each box plot represents the empirical distribution of the mean square530

errors (MSEs) computed between the curves (produced by the metrics) of the simula-531

tions and the training images. Thus, each box plot represents the empirical distribution532

of ten thousand MSE values. The MSE for the connectivity metrics S2 and C2 was es-533

timated between the pixel values from images S2(TI) and S2(Sim), and C2(TI) and C2(Sim)534

(see Figure 7). We observed that the best value n in common for all the statistical met-535

rics (QQ-plot, eCDF and Variogram) is when n = 16 or n = 8. In the case of the S2536

and C2 connectivity metrics, the structure and connectivity properties of low precipi-537
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Figure 10. Precipitation, temperature, and cloud cover time series produced by the weather

generator and the post-processed weather fields by the Direct Sampling algorithm labeled as

Simulation. Temperature and cloud cover simulations are denoised because their original training

images are pixelated and tend to generate artifacts

tation values — precipitation below the 10th percentile of the distribution of pixel val-538

ues of the training image — is well reproduced by the simulations because the very small539

MSE values. In this sense, a value of n = 16 is good for reproducing the structure and540

connectivity properties of middle precipitation values ( above the 10th percentile but less541

than the 90th percentile of the distribution of pixel values of the training image ), and542

n = 8 or n = 4 for reproducing the structure and connectivity properties of high pre-543

cipitation values (above the 90th percentile of the distribution of pixel values of the train-544

ing image). A similar sensitivity analysis reveals that good choices for temperature are545

when n = 4 and for cloud cover n = 16.546

4.3.2 Results on daily precipitation, temperature and cloud cover gen-547

eration548

In this experiment, we used the weather generator to simulate precipitation, tem-549

perature, and cloud-cover weather field time series. Then, we applied Direct Sampling550

on those weather fields to generate variations of those weather variables. Figure 10 shows551
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Figure 11. Cross-correlation results between each pair of variables.

seven consecutive days of weather fields produced by the weather generator. The rows552

labeled as precipitation, temperature and cloud-cover show the time series of weather fields553

produced by the weather generator, which are the training images used by Direct Sam-554

pling. The rows labeled as simulation show the simulations produced by the Direct Sam-555

pling. Based on the sensitivity analysis, we used N = 16 for precipitation and cloud-556

cover and N = 4 for temperature with one hundred randomly located conditioning points,557

such that the same locations are shared among all the weather variables at time t. More-558

over, the temperature and cloud-cover weather fields are low-quality pixelated images559

with dominant low-frequency components. Therefore, Direct Sampling will produce sim-560

ulations with some pixelation and noise artifacts. We applied a denoising process as sug-561

gested in the Direct Sampling literature (Meerschman et al., 2013). In this case, we used562

the information of the four neighbors around each pixel to determine if that pixel is a563

potential noise. Simulations results in Figure 10 shows the denoised results.564

We estimated cross-correlation maps between each pair of weather field variables:565

precipitation vs. temperature, precipitation vs. total cloud cover, and temperature vs.566

total cloud cover, to measure how well the simulations honored the multivariate depen-567

dency among the variables. To this end, we sampled one hundred days from the histor-568

ical data and selected the respective precipitation, temperature, and total cloud cover569

weather fields. For each day, we computed a cross-correlation map for each pair of ob-570

served weather field variables using Gi,j =
∑k

u=−k
∑k

v=−k Hu,vWi+u,j+v, where the571

pair H and W represent the combinations precipitation vs. temperature, or precipita-572

tion vs. total cloud cover, or temperature vs. total cloud cover. Also, the H and W are573

the centering matrix versions of the original weather fields. Figure 11 shows the distri-574

bution of the values of the cross-correlation maps for the observed weather fields as a575

blue box-plot. We also computed cross-correlation maps from the simulations provided576

by the Direct Sampling. In this case, for each day, we generated one hundred simulations577

of the three weather variables, and we computed the correlation maps as before. Fig-578

ure 11 shows the distribution of the values of the cross-correlation maps for the simu-579

lations. Each box plot in this case has the distribution of ten thousand cross-correlation580

map values. From the results we observed that the distribution of the cross-correlation581

values for precipitation vs temperature is quite similar, and for the case of precipitation582

vs total cloud cover and temperature vs total cloud cover are within the expected range583

of the distribution of the observed ones.584

4.4 Generation of precipitation weather fields with extreme events585

In this experiment, we generated precipitation weather fields with extreme events586

using the approach described in Section 3.2. For this, we used the IMERG precipitation587

dataset as described in 4.1 to train the weather generator. We also estimated the return588

precipitation level maps for 100, 250, and 500-year return period events. Figure 12 shows589
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Figure 12. Distribution of the extreme daily precipitation grouped by month in the region

under analysis, for the period 2001-2020.

the empirical distribution of daily precipitation values above the 99.9th percentile and590

grouped by month for the period 2001-2020 — observe that historical extreme precip-591

itation values surpass the 400 mm/day for July and August months, which correspond592

to the Moonson period in central India.593

4.4.1 Return precipitation level map estimation594

The return period is a common risk measure used in the climate domain to assess595

the probability of extreme events and potential failures (Brunner et al., 2016; Vogel &596

Castellarin, 2017). However, empirical estimation of events with long return periods can597

be difficult due to limited data. To address this, we utilized Extreme Value Theory (De Haan598

& Ferreira, 2007) to generate return level maps for 100, 250, and 500-year return peri-599

ods based on only 20 years of data. Our approach used a block-maxima sampling method600

collecting the most extreme precipitation events of each year and then using these sam-601

ples to calibrate the parameters of a Generalized Extreme Value distribution (GEV) with602

the Maximum Likelihood method . The resulting return precipitation level maps are pre-603

sented in Figure 13.

Figure 13. Return precipitation level maps for 100, 250 and 500 years of return periods.

604

–19–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 14. Extreme precipitation generation using the Direct Sampling and control points lo-

cated in the yellow area of the ROI, conditioned on a 100, 250 and 500-year return precipitation

level maps. Each control point’s value is uniformly sampled from an interval that is defined by

the maximum precipitation value in the image and the value at the location of the control point

on the return precipitation level map

4.4.2 Conditioning the Direct Sampling on a return precipitation level605

map and control points606

In this section, we show the use of the Direct Sampling conditioned on control points607

and return level maps as described in Section 3.2.1 to produce extreme precipitation weather608

fields. Figures 14 and 15 show the generation of extreme precipitation weather fields: the609

first-left column of images are the target weather fields produced by the weather gen-610

erator based in some criteria, in this experiment, we arbitrarily selected those figures.611

Each row of Figures 14 and 15 contain the results of conditioning the Direct Sampling612

on the three precipitation level maps — 100, 250, and 500 -year return precipitation lev-613

els — depicted in Figure 13. The yellow areas in the second, fourth, and sixth columns614

of images depict the ROIs: a rectangle, two rectangles, and a more complex shape es-615

timated by selecting the areas from the original target image with more than 90th per-616

centile of precipitation values. Each ROI contains a set of control points, in practice, users617

can define arbitrary locations for those control points within the ROI. In this experiment,618

the control points were randomly located. Observe that the value that each control point619

could take is defined by the random process f (Section 3.2.1). For instance, Figure 14620

shows the case where the control point values are estimated by defining a random vari-621

able fi uniformly distributed with limits given by the maximum value presented in the622

training image, and the return precipitation level map value for the location i of the con-623

trol point. On the other hand, Figure 15 shows the case where we define fi to be the pre-624

cipitation value at the same location within the return level precipitation map, i.e., fi =625

Mi. The third, fifth, and seventh columns from Figures 14 and 15 show the generated626

precipitation weather fields with extreme precipitation values correlated with the infor-627

mation provided by the return precipitation level map within the ROI. The color bars628

on the right side of the plot inform the precipitation values in mm/day, where its max-629

imum value is given by the 95th percentile of the whole return precipitation level map630

in analysis.631

Notice that the statistical and structural properties of the resulting simulation in632

the region outside the ROI will be correlated with those in the training image because633
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Figure 15. Extreme precipitation generation using the Direct Sampling and control points

located in the yellow area of the ROI, conditioned on a 100, 250 and 500-year return precipita-

tion level maps. Each control point value is the value at the control point location in the return

precipitation level map.

of the use of the conditioning points. To analyze how the extreme generation alters the634

statistical and connectivity metrics of the original training image, we show in Figure 16635

the results of comparing the statistical and connectivity properties from one hundred sim-636

ulations of extreme precipitation weather field generation for the case where each con-637

trol point value is the value at the control point location in the return precipitation level638

map, vs. the statistical and connectivity properties from the original training image. In639

this case, we used as a training image a precipitation weather field that contains a max-640

imum precipitation value of 409.9 mm/day (depicted in Figure 16), and an ROI defined641

by the rectangle shown in the second column of Figure 15. Also, we used the return pre-642

cipitation level map corresponding to 500-year RP shown in Figure 13. This return pre-643

cipitation level map contains, within the ROI, maximum and average precipitation val-644

ues of 1029, 5 mm/day and 340 mm/day respectively.645

The first row of Figure 16 shows the mean and standard deviation images of one646

hundred simulations. It is possible to observe that — on average — Direct Sampling gen-647

erates higher values within the ROI, and it generates lower values outside the ROI, also648

the variability of values is lower outside the ROI than within the ROI. The QQ-plot and649

the eCDF metrics show how the distribution of precipitation values is shifted upwards650

to match the maximum precipitation value within the ROI location in the return pre-651

cipitation level map (1029, 5 mm/day). The variogram reflects the increase in variabil-652

ity as a function of a lag, due to generated extreme precipitation values. The connec-653

tivity metrics C2 and S2 show an increase in the connectivity metric values for high pre-654

cipitation values, i.e., the probability of having a path between two random points within655

the area of high precipitation is bigger, and there is a decrease in the probability of con-656

nectivity of low precipitation values, which makes sense because the algorithm is increas-657

ing the precipitation values within the ROI. The connectivity metrics also show that the658

connectivity properties of the middle precipitation values are well preserved by the sim-659

ulations.660

To provide a contrast between the proposed extreme weather generation approach661

and a more traditional method such as quantile mappings, we also employed the latter662
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Figure 16. Analysis of the extreme precipitation fields generated with Direct Sampling using

statistical and connectivity metrics.

on the results of Direct Sampling simulations to generate extremes. This is described in663

the Supplemental Material for completeness.664

5 Conclusions665

Weather generators based on resampling are powerful tools for generating new time666

series of weather data such that the simulated weather data has similar statistics to the667

original one. Those weather generators are easy to implement, do not rely on paramet-668

ric distributions, and are fully data-driven. They will always generate new time series669

by assembling copies of weather fields found in the original dataset in such a way that670

it is possible to reproduce the monthly, seasonal, or annual statistics found in the ob-671

servations. They perfectly reproduce the interplay dynamics among weather variables672

in the spatial domain, because of the resampling process. However, the spatial variabil-673

ity is constrained to the choices made by its resampling strategy. Furthermore, the out-674

of-sample extreme weather field generation is no longer possible because the resampling675

is limited to the observations by definition. In this work, we show how those issues can676

be addressed by including the Direct Sampling algorithm as part of those weather gen-677
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erators. Direct Sampling is an algorithmic approach based on pattern matching for pro-678

ducing simulations from a training image with similar statistical properties. Such an al-679

gorithm is conceptually simple to understand and implement, and it can be conditioned680

on a set of conditioning points in such a way that the simulations respect the informa-681

tion provided by those points. We propose to improve the spatial variability of the sim-682

ulations provided by weather generators based on resampling by post-processing with683

the Direct Sampling algorithm, each simulated weather field produced by the weather684

generator. To keep the coherence among the interplay dynamics of weather fields, we share685

the locations of the random conditioning points among all the weather fields at each timestep.686

We also propose to use Direct Sampling jointly with return period analysis for gener-687

ating out-of-sample extreme weather fields in specific locations. We conducted a series688

of experiments using precipitation, temperature and cloud-cover weather data to demon-689

strate the spatial variability enhancement and precipitation data for generating extreme690

precipitation events in a region in north-west India . Our experimental results show that691

the presented approach can be useful in practice for improving the spatial variability and692

out-of-sample weather field generation of weather generators based on resampling. Fu-693

ture work will include extreme generation in a multivariate setting, the use of physics694

as a validation metric, and the analysis of the relationship between the sampling frequency695

of control points within the training image and the spatial distribution of extremes.696
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Appendix A Open Research703

The weather data used for the experiments described in the study are 1) the IMERG704

dataset (Huffman et al., 2019) available at NASA Earthdata via https://doi.org/10705

.5067/GPM/IMERGDF/DAY/06 This dataset is intended for public access and use. No li-706

cense information was provided (All NASA-produced data from the GPM mission is made707

freely available for the public to use) ; and 2) the ERA5 (Hersbach et al., 2018) data set708

available at Copernicus via https://doi.org/10.24381/cds.adbb2d47 with license avail-709

able at https://apps.ecmwf.int/datasets/licences/copernicus/. We used Python710

version 3.9.13 (van Rossum, 1995) with license available at https://docs.python.org/711

3/license.html for a Python implementation of the weather generator https://github712

.com/IBM/IBMWeatherGen/, and for a Python implementation of the Direct Sampling713

routine at https://wp.unil.ch/gaia/mps/ds-matlab/. There is also an open-source714

implementation of the Direct Sampling algorithm called QuickSampling (Gravey & Ma-715

riethoz, 2020), which is known for its fast performance. We used Matplotlib 3.5.1 with716

license at https://matplotlib.org/stable/users/project/license.html and Seaborn717

0.11.2 with license at https://github.com/mwaskom/seaborn/blob/master/LICENSE718

.md for creating the Figures. Statistical analysis were carried out with Statsmodels 0.13.2719

with license at https://www.statsmodels.org/ and connectivity metric analysis with720

GooseEYE https://gooseeye.readthedocs.io/ with license available at https://github721

.com/tdegeus/GooseEYE/blob/main/LICENSE.722
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