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Abstract

A study was conducted in none tilled coffee agroforestry fields of Eastern Uganda to understand the effects of application

of inorganic fertilizers on soil nutrient loss in form of gas for mitigation of unsustainable agricultural practices. This study

specifically i) assessed the effect of application of inorganic fertilizers on greenhouse gas emissions, ii) determined their effect

on microbial carbon, nitrogen and phosphorus and iii) determined their effect on leaf litter decomposition under Albizzia-

coffee growing systems of the Mount Elgon. Soil gas emissions were measured with the static chamber method for twelve

months in a field experiment with five different fertilizer treatments. The effect of treatments was separated using ANOVA in

Genstat discovery version 13. Microbial carbon, nitrogen and phosphorus was separated using Mann-Whitney U test. Results

showed that annual emissions ranged from 19.6 to 26.1 (t C/ha/yr), 3.5 to 9 (Kg N/ha/yr) and 6.9 to 9.2 (Kg C/ha/yr)

for carbon dioxide, nitrous oxide and methane respectively. Significant effects on soil emissions only occurred for nitrous

oxide (P=0.017), microbial carbon (p=0.001) and microbial phosphorus (p<0.001) for the study period. The mixture of NPK

fertilizers presented the lowest carbon dioxide loss and application of TSP presented the lowest nitrous oxide emission from

soil. This study underscores the need for establishment of long-term experiments across several agro-ecological zones to confirm

farmers’ perceptions of their soil fertility levels and ascertain the contribution of farm practices towards the retention of nutrients

in the soil with minimal emission, to inform decisions of small holder farmers, policy and development partners for sustainable

production.
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Effect of Inorganic Fertilizer Application on Green House Gas Emissions and
Microbial Activity under Coffee Agroforestry in Eastern Uganda

• The application of inorganic fertilizers increased annual soil nitrogen losses
in form of soil N2O emissions.

• Peaks of N2O emissions were observed immediately after application of
inorganic fertilizers but levelled afterwards.

• The application of inorganic fertilizers increased microbial carbon and
microbial phosphorus in soil after one year.

• The application of inorganic fertilizers did not affect leaf litter decompo-
sition rates.

• The mixture of NPK fertilizers released the lowest nutrients (CO2 emis-
sions) and TSP application released the lowest nitrogen (N2O emissions)
from soil.

Effect of Inorganic Fertilizer Application on Green House Gas Emissions and
Microbial Activity Under Coffee Agroforestry in Eastern Uganda

Abstract

A study was conducted in none tilled coffee agroforestry fields of Eastern Uganda
to understand the effects of application of inorganic fertilizers on soil nutrient
loss in form of gas for mitigation of unsustainable agricultural practices. This
study specifically i) assessed the effect of application of inorganic fertilizers on
greenhouse gas emissions, ii) determined their effect on microbial carbon, nitro-
gen and phosphorus and iii) determined their effect on leaf litter decomposition
under Albizzia-coffee growing systems of the Mount Elgon. Soil gas emissions
were measured with the static chamber method for twelve months in a field
experiment with five different fertilizer treatments. The effect of treatments
was separated using ANOVA in Genstat discovery version 13. Microbial carbon,
nitrogen and phosphorus was separated using Mann-Whitney U test. Results
showed that annual emissions ranged from 19.6 to 26.1 (t C/ha/yr), 3.5 to 9
(Kg N/ha/yr) and 6.9 to 9.2 (Kg C/ha/yr) for carbon dioxide, nitrous oxide
and methane respectively. Significant effects on soil emissions only occurred for
nitrous oxide (P=0.017), microbial carbon (p=0.001) and microbial phosphorus
(p<0.001) for the study period. The mixture of NPK fertilizers presented the
lowest carbon dioxide loss and application of TSP presented the lowest nitrous
oxide emission from soil. This study underscores the need for establishment of
long-term experiments across several agro-ecological zones to confirm farmers’
perceptions of their soil fertility levels and ascertain the contribution of farm
practices towards the retention of nutrients in the soil with minimal emission,
to inform decisions of small holder farmers, policy and development partners for
sustainable production.

Key words: Inorganic fertilizers, agroforestry, carbon dioxide, methane, ni-
trous oxide, Coffea arabica, East African highlands
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Introduction

The need to increase agricultural production to satisfy the demand associated
with population growth has resulted into horizontal expansion of cultivation
even on marginal lands in SSA (Bekunda and Woomer, 1996; Kopittke et al.,
2019). Subsequently, greenhouse gases (GHG) emission (Rosenzweig et al.,
2020) and other forms of environmental degradation (FAO, 2002) including soil
fertility decline (Kopittke et al., 2019) have increased. In the effort to boost
soil productivity, in order to feed the growing population, various soil fertility
management practices have been promoted across Africa including fertilization
(Liniger et al., 2011). However, this is likely to increase the greenhouse gas emis-
sions(GHG) from agricultural land in SSA (Nisbet et al., 2014; Musafiri et al.,
2020). It is therefore imperative to identify soil fertility management technolo-
gies that increase food production and play a fundamental role in GHG fluxes
control since only a few integrated studies have tried to quantify gas released
or to characterize the mechanisms involved in their release.

Carbon dioxide is the most important GHG, however, methane (CH4) and
nitrous oxide (N2O) emissions also play a substantial role in global warming
(Smith et al., 2018). The net soil CO2 emissions are produced by soil respira-
tion (aerobic and anaerobic microbial and roots respiration) and decomposition
of organic matter (Oorts et al., 2007; Sun et al., 2019; Almagro et al., 2021). Net
methane fluxes are the balance between two contending microbial processes that
are methane production by methanogens, and methane oxidation by methan-
otrophs under anaerobic and aerobic conditions, respectively (Knief, 2019). Net
soil N2O fluxes occur as a result of heterotrophic and autotrophic nitrification,
chemo-denitrification, nitrifier- denitrification, and co-denitrification (Gander et
al., 2012; Butterbach-Bahl et al., 2013). The strength of these GHG emissions is
affected by soil properties (soil organic carbon, soil nitrogen, texture, pH), land
cover changes, vegetation type, environmental factors (soil temperature, soil
moisture, drought, precipitation) and farm management practices (crop residue
application, tillage, manure, agroforestry, fertilizer use) (Luo et al. 2010; Powl-
son et al. 2011; Tongwane et al., 2016; Pelster et al., 2017; Wang et al., 2019;
Dimitriou et al. 2021). Soil organic carbon (SOC) accumulation generally oc-
curs in areas of low decomposition that thrives under low temperature, acid
parent materials and anaerobic conditions. It enhances both unstable and sta-
ble macro aggregate formation (Denef et al., 2013) vital for carbon sequestration
(Six et al, 2004; Plante & McGill, 2002).

Also, increasing soil N content generally leads to higher soil respiration facilitat-
ing higher net ecosystem exchange, if carbon is not limiting (Niu et al., 2010;
Peng et al., 2011). According to Pilegaard et al. (2006), N2O emissions are
negatively correlated with the C/N-ratio (with N2O emissions being lowest at
C/N-ratios �30 and highest at a C/N-value of 11 (Christiansen et al., 2012).
Acidic soil conditions lead to lower soil emissions, with an optimal pH-value
for methanogenesis (CH4 production) that lies between pH 4 and 7 (Dalal and
Allen, 2008). Carbon dioxide emissions are observed to be highest at neutral pH-
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values (Čuhel et al., 2011). Methane emissions decrease only under acidic soil
conditions while nitrification increases with higher pH-values, since the equilib-
rium between NH3 and NO3 shifts to ammonia (Nugroho et al., 2007). However,
no significant correlations are found between N2O emissions and pH-value (Pi-
legaard et al., 2006). Saiz et al. (2006) found that young trees have higher
respiration compared to old ones. Soil respiration decreases with stand age,
caused by a lower fine root biomass. They added that in old forest ecosystems,
the decrease levels out with stand age since lower root respiration rates are
partly compensated for by higher microbial respiration due to higher organic
inputs.

An increase of soil temperature leads to higher emissions and to higher soil res-
piration rates as a positive feedback response of increased microbial metabolism.
Soil temperature and soil moisture explain 86% of the variations of N2O emis-
sions (Schindlbacher et al., 2004). Methane emissions are additionally forced
by increasing soil respiration rates with increasing soil temperatures, leading to
decreasing O2 concentrations in the soil (Butterbach-Bahl et al., 2013). The
positive temperature effect may be overlain by soil water stress, since water is
needed as a transport medium for nutrients required by microbes (Fowler et al.,
2013). CO2 emissions increase exponentially with temperature (Ludwig et al.,
2001; Tang et al., 2003). Soil moisture is the single most important soil param-
eter for soil gas emissions, since it controls microbial activity and all related
processes. Nitrifying bacteria require oxygen residing in soil pores. Therefore,
soils with less water-filled pore space (WFPS) have higher emissions by nitri-
fication, with a maximum at 20% WFPS (Ludwig et al., 2001). Nitrification
yields a higher potential for NO production than for N2O production (Fowler
et al., 2013). In contrast, CH4 and N2O producing bacteria require anaerobic
conditions. N2O production is optimal around 60% WFPS and lowest when
WFPS is below 30% (Gao et al., 2014). Even an increase of WFPS above 80%
can still lead to an exponential increase of N2O emissions (Keller and Rein-
ers,1994). CH4 production requires strictly anaerobic conditions and correlates
positively with soil moisture (Gao et al., 2014; Smith et al., 2003). Long periods
of drought can significantly reduce soil emissions and soils may then turn into a
net sink for N2O (Goldberg and Gebauer, 2009). Soils with a high proportion of
large pores retain less water and therefore foster the emission of gases produced
under aerobic conditions (van der Weerden et al., 2010). Soils with dominant
fine pores support the formation of CH4 and N2O produced under anaerobic
conditions (Dutaur and Verchot, 2007; Gu et al., 2013).

Soil texture and structure also influence GHGs indirectly through soil moisture.
Higher CO2 emissions are encountered with fine textured soils, especially com-
pared to sandy soils during warm dry periods (Dilustro et al., 2005). Stable soil
aggregates (concretions, crusts) lead to lower soil emissions since C and N are
less available for soil microbes (Wu et al., 2012). Precipitation after extended
dry periods causes the pulsing or Birch effect (Birch, 1958). Emissions increase
within some minutes or hours after the onset of precipitation and return to
background levels within a few days (Sponseller, 2007; Lado-Monserrat et al.,
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2014). This is driven by the renewed mineralization and the availability of easily
decomposable material (Borken and Matzner, 2009) for the metabolism of reac-
tivated microbes (Ludwig et al., 2001). The Birch effect decreases with higher
frequencies of wet–dry cycles (Borken and Matzner,2009).

Also, tillage practices influence particulate organic matter fraction (Hussain
et al., 1999, Liu et al., 2014). Generally, the rate of SOC storage under no
tillage is relatively higher compared to conventional tillage (Johnson et al., 2005),
particularly for the top soil. Several authors (Curtin et al., 2000; Al-Kaisi and
Yin, 2005; Bauer et al., 2006; Ussiri and Lal, 2009) have reported higher soil CO2
emissions under conventional tillage compared to no-tillage. This is because no-
tillage reduces the diffusion and content of air-filled pores in the soil, by which
soil CO2 emissions are very low or non-existing (Bilandzija et al., 2016).

Agroforestry systems have similarly been seen as one of the promising manage-
ment practices to increase soil C stocks, reduce soil degradation and mitigate
greenhouse gas emissions (e.g., Frouz et al., 2013; Ehrenbergerová et al., 2016;
Dollinger and Jose, 2018; Justine et al., 2019; Solis et al., 2020). Nitrogen fixing
leguminous trees (such as Albizzia sp., Inga sp and Erythrina sp) have been com-
monly used to bring N and organic matter to the system in addition to other
benefits (Vaast et al., 2008; Verchot et al., 2008). However, suspicion on N
fixing leguminous species to increase soil N2O emissions (Rochette and Janzen
2005; Verchot et al., 2008) and reduce the soil CH4 sink (Palm et al., 2002) is a
growing concern in the sustainable development framework. For example, stud-
ies such as Verchot et al. (2008) and Hergoulouch et al. (2008) showed shaded
coffee increased N2O emissions by 34.8% compared to coffee monocrop. Such
conflicting results compel us to question the response of soil microbial activity
and production of GHGs to fertilization, since little is known about the how the
type of the fertilizers applied affect soil emissions of CH4, CO2, and N2O and
the decomposition rate in agricultural systems (Amos et al., 2005; Mosier et al.,
2006; Sainju et al., 2008).

Various scholars (e.g. Bouwman et al., 2002a&b; Phillips, 2007; Phillips et al.,
2009) further found that the effects of fertilization on GHG fluxes at the soil
surface tend to occur within the initial 8 to 10 weeks following N application.
Since N2O and CO2 emissions tend to increase and CH4 uptake tends to decline
during the first few weeks following fertilization, it is generally accepted that
GHG emissions tend to increase with additions of N (Bouwman et al., 2002;
Mosier et al., 2006; Sainju et al., 2008). Also, the N-fertilization tends to in-
crease CO2 emissions (Raposo et al., 2020). Effects of Fertilizer N, P and K
addition on fluxes of GHGs, however, are not consistent across studies. Some-
times fertilization of arable soil does not affect the strength of soil as a source
of N2O (Amos et al., 2005) and CO2 (Amos et al., 2005) or the strength of the
soil as a sink for CH4 (Koga et al., 2017). CO2 released from soil to the atmo-
sphere, referred to as soil respiration, is a combined activity of roots, micro and
macro organisms decomposing litter and organic matter in soil (heterotrophic
respiration) (Högberg et al., 2020; Hanson et al., 2003) and is influenced by tem-
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perature. Nevertheless, inorganic farming is reported to sequester less carbon
than organic farming (Gattinger et al., 2012).

This information is very important particularly in the coffee-based farming sys-
tems where farmers have resorted to increased application of inorganic fertilizers
to enhance coffee production. Coffee being one of the highest contributor to
GDP in Uganda (De Beenhouwer et al., 2016), it is important to identify best
management practices which sustain its production and protect soil, water and
air quality under fertilized shaded conditions. This study therefore i) assessed
the effect of inorganic fertilizer application on greenhouse gas emission, ii) deter-
mined the effect of fertilizer application on microbial CNP and iii) determined
the effect of leaf litter decomposition under Albizzia-coffee growing systems of
the Mount Elgon.

Materials and Methods

Header 2

Description of the study area
This study was conducted in Manafwa District, on Mount Elgon of Eastern
Uganda. Mount Elgon lies on the border of eastern Uganda and western Kenya.
Manafwa district is bordered by Bududa District to the north, Kenya to the
east and south, Tororo District to the south-west, and Mbale District to the
west (Figure 1). It has an elevation of 1,354 metres.
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Figure 1: The study site around Mount Elgon, in Eastern Uganda showing
Manafwa and neighboring districts

The landscape of Manafwa mainly constitutes smallholder farms (< 4 acres) with
intensive and mixed coffee (C. arabica) agricultural systems and is characterized
by a relatively high population density of approximately 250–300 inhabitants
per km2 (Gram et al., 2018). Coffee productivity in this district has been
reported to have greatly declined below its potential due to low soil fertility
and poor land and coffee tree management practices (Wang et al., 2015). The
geographical location, climate conditions, topography, geology, soils, vegetation
and population are well described in Sebuliba et al. (2021).

Manafwa district was selected because it offered adequate land for setting up the
experiment under a homogenous environment (similar slope, vegetation, climate,
age of coffee) and with minimum likelihood of mud or landslides events occurring
on the site. The farmers in the identified experimental site were willing to host
the experiment.
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Header 3

Experimental design, treatment and replication

The magnitude of the effect of application of inorganic fertilizers on actual
fertility of soil followed soil fertility measurement in two ways; 1) by what the
farmers were saying; and 2) the experiment to understand and verify farmers’
perceptions of the levels of fertility for their soil. The on-farm experiment was
established on three independent farmer fields to ascertain the ability of soil
to retain nutrients or facilitate escape of nutrients for coffee use through the
inorganic fertilizer application. The loss of fertility of the soil was measured from
the magnitude of gases lost from the soil in order to identify which treatment
contributed more to rejuvenating the soil by minimizing nutrient loss by gas.
Gas emission was inversely proportional to soil fertility; in that the higher the
gas emitted, the lower the fertility of soil.

The experimental design was a completely randomized since coffee farmer’s fields
were relatively similar and showing more uniform characteristics. The assump-
tions were that; there was either no or minimal use of inorganic fertilizers, trees
ages were above 5 years even up to 20 years, Albizzia coriaria (commonly known
as mugavu) dominated the coffee fields, they had a similar soil type (ferralsol),
same gentle slope, same climate (between 1000 to 1300mm of rain) within Man-
afwa. The experiment was carried out in Manafwa because its farmers rarely
apply inorganic fertilizers in their coffee fields, with a moderate altitude re-
sulting into moderate fertility levels and drier requiring rejuvenation from the
application of inorganic fertilizers.

Four treatments (50P, 250N, 250K, 250N-50P-250K) Kg ha−1 yr−1 and a con-
trol) were considered and replicated four times. A total of 20 field plots, of 20m-
by-20m size, was laid out randomly on the experimental farmer sites. Plots were
located on same landscape positions, soil type, slope and within 300m radius
from each other to ensure homogeneity of the experimental site. The proper-
ties of the experimental site in terms of texture (sandy loam), pH, soil organic
matter (SOM), soil organic carbon (SOC), Total nitrogen (TN), Available phos-
phorus (Av. P), extractable potassium (K) and sodium (Na) are shown in Table
1. Urea, Tri-Super phosphate (TSP) and Muriate of Potash (MOP), NH4NO3
and NaH2PO4 solutions were annually applied to each plot at the beginning
(August) of the short rain season.

Table 1: Initial selected soil characteristics of the farmer fields used for the
experiment (N=3)

Soil depth (cm) pH N Av P K Na SOC SOM Textural class
pH units % mg/kg cmol/kg cmol/kg % %

0-15 6.42 0.19 13.86 0.68 0.10 1.90 3.27 Sandy loam
15-30 6.36 0.13 9.12 0.53 0.11 1.41 2.42 Sandy loam
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Each of the experimental plots was sub-divided into four cells/grids (10 × 10
m). Each cell was also considered as a replicate and permanent chamber bases
were installed. Chamber covers were placed on the bases and gas samples were
collected 4 times at (10) minute intervals for determination of the trace soil gas
fluxes (Collier et al., 2014). Soil gas fluxes (CO2, CH4 and N2O) were measured
monthly for twelve months.

The samples were stored in pre-evacuated glass containers with Teflon-coated
stopcocks and taken to University of Gottingen for CO2, CH4 and N2O con-
centrations determination. Samples were analyzed using a gas chromatograph
(Shimadzu GC-14B; Columbia, MD, USA) equipped with a flame ionization de-
tector (FID), an electron capture detector (ECD) and an auto sampler (Koehler
et al., 2009, 2012; Corre et al., 2014). The detection limits of this instrument
were 50 ppm for CO2, 43 ppb for N2O and 45 ppb for CH4. Annual and seasonal
soil CO2, CH4 and N2O fluxes were calculated as a sum of the twelve-monthly
fluxes and the respective monthly fluxes for each gas; respectively. Relative
change to the control for monthly fluxes was also computed using;

𝑅 = (𝐹𝑘 − 𝐹𝑐) 100
𝐹𝑐

where R is the relative change of the flux in the given month for the treatment
K, Fk is the flux of a given month for the treatment K, Fc is the flux for the
same month for the control.

Determination of leaf litter decomposition rate

Leaf litter of Albizzia coriaria was collected using the litterbag trapping method
by placing traps on the floor of each plot at the beginning of MAM 2020. About
40 to 60g of collected leaf litter was placed in litter bags and buried in the soil
at 10cm depth (Zhou et al., 2008). Each plot received about 10 litter bags
evenly distributed. Every three months, a litterbag was collected randomly,
gently cleaned and leaf litter gently weighed using adhoc methods as described
by Okalebo et al. (2002).

Incubation

A 72 hours’ soils incubation was carried out in 50 ml plastic beakers with
drainage holes at the bottom, lined with a glass filter and filled with field-moist
soil (approximately 6 g dry weight) to allow inoculation (Okalebo et al., 2002).
A 16o C growth chamber containing 1 L glass Mason Ball jars was used for stor-
age and transportation of soil to the laboratory under field capacity conditions
with sporadic additions of de-ionized water (Davis et al., 2005).

Extractable and Microbial C, N, P

The chloroform fumigation–extraction method (CFEM) on sieved, undried splits
of each sample was considered in measuring microbial C, N and P within a week
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of collection. A darkened vacuum desiccator fitted with fumigated soils was ex-
posed to chloroform for 36–48h. Extraction of approximately 6 g fumigated
or unfumigated (control) soil was done with Brays solution for extractable P
(Bray and Kurtz, 1945), using 50 ml or 75 ml extractant while 0.5 M K2SO4 was
used for C and N (Brookes et al., 1985; Vance et al., 1987; Beck et al., 1997).
Beforehand filtering, solutions of soil were shaken for 1h followed by refrigera-
tion overnight. Extracts were analyzed for total N by Kjeldahl-digestion and
total P by an Alpkem analyzer. A Shimadzu TOC-5050A was used to measure
extracted carbon content. Unfumigated soils (control) measure represented the
extractable C, N and P while microbial C, N, and P were calculated as the
difference between the amount of unfumigated and fumigated soils.

Data Analysis

The effect of treatments on CO2, N2O and CH4 fluxes (annual, seasonal and
monthly) and leaf litter decomposition rate was separated using ANOVA in
Genstat discovery version 13. The microbial C, N and P were separated using
Mann-Whitney U test. The least significant difference (lsd) for P < 0.05 was
considered for this study.

Results and Discussion

Effect of inorganic fertilizers on annual fluxes of GHG under Albizzia
shaded coffee in Manafwa District

Figure 2 shows the annual fluxes of CO2, N2O and CH4. CO2 emissions ranged
from 19.6 to 26.1 (t C/ha/yr). N2O emissions ranged from 3.5 to 9 (Kg N/ha/yr)
and CH4 emissions ranged from 6.9 to 9.2 (Kg C/ha/yr). Fertilizer applications
had significant effect only on N2O (P=0.017; One-way ANOVA) emissions. The
effect of the application of NPK on emissions was significantly lower than that
of the control and P but similar to that of K and N applications (P<0.05). The
average annual emission of CO2 was 22.8 t C/ha/yr while that of CH4 was 8.34
Kg C/ha/yr.

[CHART]

Figure 2: Annual GHG emissions from the different fertilizer applications

Effect of inorganic fertilizers on seasonal fluxes of GHG under Albizzia shaded
coffee

Figure 3 presents the seasonal GHG emissions. GHG emissions varied with sea-
son (P<0.001; One-way ANOVA) except for CO2. SON (September, October,
November) and DJF (December, January, February) had significantly higher
values than MAM (March, April, May) and JJA (June, July, August) for CH4
emissions (Figure 3a) while only SON was significantly higher than the rest of
the seasons for N2O emissions (Figure 3b). There was no significant seasonal ef-
fect for CO2 emissions with a mean of 5.68 t C/ha/yr (Figure 3c). The monthly
values for CH4 emissions ranged from 1.38 to 2.88 Kg C/ha/yr for the control,
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0.93 to 3.34 Kg C/ha/yr for K applications, 0.93 to 2.84 Kg C/ha/yr for N
applications, 1.07 to 3.3 Kg C/ha/yr for NPK applications and 1.4 to 2.64 Kg
C/ha/yr for P applications. The monthly values for N2O ((Figure 3b) emissions
ranged from 0.44 to 1.19 Kg N/ha/yr for the control, 0.61 to 2.36 Kg N/ha/yr
for K applications, 0.71 to 1.96 Kg N/ha/yr for N applications, 0.63 to 5 Kg
N/ha/yr for NPK applications and 0.45 to 1.07 Kg N/ha/yr for P applications.
For C02 emissions (Figure 3c), monthly values ranged emissions ranged from
0.44 to 7.27 t C/ha/yr for the control, 0.61 to 6.63 t C/ha/yr for K applica-
tions, 0.71 to 7.22 t C/ha/yr for N applications, 0.63 to 5.24 t C/ha/yr for NPK
applications and 0.45 to 6.93 t C/ha/yr for P applications.

@ >p(- 0) * @ [CHART]

[CHART]

[CHART]

Figure 3: Seasonal GHG emissions from the different fertilizer applications in
Mount Elgon

Effect of inorganic fertilizers on monthly fluxes of GHG under Albizzia
shaded coffee

Figure 4 depicts the monthly GHG emissions. GHG emissions varied with month
(P<0.001; One-way ANOVA) for N2O and CH4 and at P=0.014 for CO2. The
monthly values for N2O emissions ranged from 0.14 to 0.62 Kg N/ha/yr for the
control, 0.11 to 1.78 Kg N/ha/yr for K applications, 0.2 to 1.05 Kg N/ha/yr for
N applications, 0.11 to 2.5 Kg N/ha/yr for NPK applications and 0.09 to 0.58
Kg N/ha/yr for P applications.

[CHART]

[CHART]

[CHART]

Figure 4: Monthly GHG emissions under different fertilizer applications in
Mount Elgon

The monthly values for CH4 emissions ranged from 0.2 to 1.1 Kg C/ha/yr for
the control, 0.22 to 1.7 Kg C/ha/yr for K applications, 0.22 to 1.41 Kg C/ha/yr
for N applications, 0.2 to 1.54 Kg C/ha/yr for NPK applications and 0.23 to 1.09
Kg C/ha/yr for P applications. For N2O, October emissions were significantly
higher than the rest of the months. September, March and December emissions
had similar emissions but higher than May, June, July, August and November
emissions. For CO2 emissions, monthly values of emissions ranged from 0.88 to
3.48 t C/ha/yr for the control, 1.14 to 4.05 t C/ha/yr for K applications, 1.21 to
3.86 t C/ha/yr for N applications, 1.12 to 2.11 t C/ha/yr for NPK applications
and 1.02 to 3.38 t C/ha/yr for P applications.
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For CH4, the months of December, November and February had significantly
higher emission values compared to October, September, August, June, July,
May and April emissions. Likewise, February, January, March, May, November
and December had similar emission values. For CO2, October emissions were
significantly higher than those of April and February but similar to March, May,
June, July, August, September, November and December emissions. Also, April
emissions were significantly lower than those of March, May, July and August.
Peaks in CH4 were observed June, October and November for the control; July,
December and February for P applications and May, November and February
for NPK, K and N applications. Peaks in N2O emissions were observed in
May, October and December for the control; October and December for P ap-
plications; May, September, October, and December for NPK; May, October,
January and March for application of K and N. Peaks in CO2 emissions were
observed May, August, October, January and March for the N, P, K applica-
tions; May, August and November for the control; May, October and December
for NPK applications.

For CH4, the months of December, November and February had significantly
higher emission values compared to October, September, August, June, July,
May and April emissions. Likewise, February, January, March, May, November
and December had similar emission values. For CO2, October emissions were
significantly higher than those of April and February but similar to March,
May, June, July, August, September, November and December emissions. Also,
April emissions were significantly lower than those of March, May, July and
August. Peaks in CH4 were observed in the months of June, October and
November for the control; July, December and February for P applications and
May, November and February for NPK, K and N applications. Peaks in N2O
emissions were observed in May, October and December for the control; October
and December for P applications; May, September, October, and December for
NPK; May, October, January and March for application of K and N. Peaks in
CO2 emissions were observed May, August, October, January and March for
the applications of N, P & K; May, August and November for the control; May,
October and December for NPK applications.

Relative change of fluxes of GHG under Albizzia shaded coffee

Figure 5 shows the relative change of GHG emissions. The Emissions from
other treatments were higher than the control in the months of July, November,
December, February and March for CH4. Emissions from applications of N, P, K
and the mixture were higher than the control in September, October, February
and March for N2O. CO2 emissions from other treatments were higher than
the control in April, July, October, January, February and March. For CH4
and CO2, the emissions from the control exceeded those where fertilizers were
applied in June, August, September and January and November respectively.
The relative change for CH4 emissions ranged from -60 to 82% for application
of K, -74 to 133% for application of N, -46 to 99% for application of NPK, -70
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to 407% for application of P. The relative change for N2O emissions ranged
from -35 to 493% for application of K, -12 to 163% for application of N, -44.9 to
558% for application of NPK, -54 to 153% for application of P. Also, the relative
change for CO2 emissions ranged from -63 to 106% for application of K, -58 to
108% for application of N, -62 to 28% for application of NPK, -69 to 153% for
application of P.

[CHART]

[CHART]

[CHART]

Figure 5: Relative change in the monthly GHG fluxes under different fertilizer
applications in Mount Elgon

Effect of inorganic fertilizers on microbial carbon, nitrogen and phos-
phorus

Table 2 shows the microbial C, N and P under different treatments. Microbial C
ranged from 0.022 to 0.028, microbial P ranged from 0.006 to 0.009 while micro-
bial N ranged from 0.017 to 0.050. Statistical analysis shows that no treatment
effect was detected (P<005; One-way ANOVA). The average microbial C, N
and P were 0.024, 0.029 and 0.007 respectively.

Table 2 Effect of fertilizer application on microbial C, N and P

@ >p(- 6) * >p(- 6) * >p(- 6) * >p(- 6) * @ Nutrient application &
Microbial C & Microbial P & Microbial N
Urea-N &

0.022

&

0.006

&

0.028

TSP- P &

0.028

&

0.007

&

0.028
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Muriate of Potash-K &

0.022

&

0.007

&

0.050

NPK &

0.026

&

0.007

&

0.017

Control &

0.022

&

0.009

&

0.021

Mean &

0.024

&

0.007

&

0.028

Table 3 shows the change in microbial Carbon, Nitrogen and Phosphorus after
one year of experimentation. Significant changes were observed for microbial
C (p=0.001; One-way ANOVA) and microbial P (p<0.001; One-way ANOVA)
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while no changes in microbial N were seen after one year of nutrient application
(Appendix 1). The relative change in Microbial C was 66.7% and 1200% for
microbial P.

Table 3 Change in microbial Carbon, Nitrogen and Phosphorus after one year
of experimentation

@ >p(- 6) * >p(- 6) * >p(- 6) * >p(- 6) * @ Period & Microbial C &
Microbial P & Microbial N
Start of experiment &

0.018+0.002

&

0.001+0.002

&

0.037+0.009

End of experiment &

0.030+0.002

&

0.013+0.002

&

0.020+0.007

Effect of inorganic fertilizers on decomposition rates

The decomposition rates of Albizzia leaves varied from 0.064 to 0.079 (Figure
6). However, no statistical difference was found between treatments (Mann
Whitney U test). The average decomposition rate was 0.072 per day.

[CHART]

Figure 6: Leaf litter decomposition rate under different fertilizer treatments in
Mount Elgon

Discussion
Effect of fertilizer application on GHG emission in the CAF, Mount
Elgon
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Fertilizer applications increased N2O emissions corroborating Owino et al (2020)
findings on smallholder rice paddy fields in Anyiko Wetland of Kenya. GHG
emissions in the different fertilized shaded coffee of this study are comparable
to the values observed by other scholars under coffee in the region for N2O
and CH4 (eg. Capa et al., 2015; Hergoualc’h et al., 2008; Verchot et al., 2006)
except for CO2 emissions whose values are almost triple the values observed
by Hergoualc’h et al (2008) in monoculture coffee systems of Costa Rica and
four times that of Urzedo et al. (2013) under reforestation conditions in Brazil.
Verchot et al. (2006) found N2O emissions of approximately 7 kg N/ha/year
in 3-year-old coffee plantations fertilized with 100 kg N/ha/year in southern
Sumatra, India. The relatively higher magnitude of CO2 and N2O emissions
could also be attributed to no till conditions (Bilandžija et al., 2016).

The implementation of no-tillage can increase soil GHG emissions due to the
maintenance of higher water content and fewer air filled pore spaces in the soil
surface layer that also favors greater soil biological activity (Bilandžija et al.,
2016). In fact, Linn and Doran (1984) reported 3.4- and 9.4-times greater CO2
and N2O production from surface no till soils as compared to plowed soils at
sites in Illinois, Kentucky, Minnesota and Nebraska. The low N20 emissions
under P application is in line with Sundareshwar et al. (2003) report. It at-
tributed the reduction of soil N2O emissions to stimulated N immobilization.
Mori et al. (2013) also reported that P application reduced N2O emissions un-
der Acacia mangium plantation due to the enhancement of root uptake of soil
N and water. Zhang et al. (2014) also observed that P applications with N
together significantly decreased N2O emission. The relatively high amount of N
in the studied soils then explains N2O emissions reduction with P application
observed in this study.

More so, Capa et al. (2015) also found that N2O emissions increased with the
fertilizer application. Largely, the small variation in the observed emissions
compared to other locations is attributed to, in addition to no till, other envi-
ronmental and agricultural factors such as the uniform soil water content, avail-
ability of mineral nutrients in the soil, soil temperature, and climatic conditions
(Hergoualc’h et al. 2008; Butterfly et al., 2010; Rigon et al., 2018; Hiel et al.,
2018). Besides, Kostyanovsky et al (2019) observed that emissions of CO2 only
increased with an increase in moisture and temperature but decreased under
fertilizer application. Accordingly, the lack of a difference in CO2 emissions
per season in this study indicates little variation in temperature and soil water
content for those seasons (Rigon et al., 2018; Kostyanovsky et al., 2019) that
minimized the photosynthetic activity by plants and microbial activity.

Also, the increased N2O, CH4 and CO2 emissions observed upon soil rewetting
in the wet months after the long dry spell is in collaboration with other studies
carried out in East Africa and other regions (Vilain et al., 2010; Ortiz-Gonzalo
et al., 2018; Macharia et al., 2020; Musafiri et al., 2020). The pulse of the emis-
sion following a rainfall event at the onset of the season could be attributed to
the Birch effect (increased decomposition and mineralization of organic matter),
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since soil rewetting or high water content activates micro-organisms activity and
enhances substrates supply and mineralization increasing emissions (Jarvis et
al., 2007; Butterfly et al., 2010; Musafiri et al., 2020) and contribution root res-
piration associated with plant growth especially for the increment in CO2. But
also, in addition to high water holding capacity, the moderate textured soils in
the study area supported the higher emissions (Hiel et al., 2018). However, low
soil moisture associated with high soil temperatures in the severe dry spell could
have restricted the flow of GHG particularly CO2, possibly due to moderate soil
microbial activity (Rigon et al., 2018).

Furthermore, the highest N2O emissions in October following fertilizer appli-
cation corroborated observations of other authors (Hergoualc’h et al. 2008;
Koehler et al. 2009), who reported that N2O emissions are mainly produced
within a few days after the addition of mineral fertilizers. Also, the relatively
higher N2O fluxes could be also attributed to the no till conditions because of
the higher level of labile organic matter (Kostyanovsky et al., 2019). Moreover,
the low average soil C/N ratio of 10 also favored high emissions supporting find-
ings of Gunderson et al. (2012) who reported that highest emissions occurred
at the C/N ratio of 11.

Contrary to observations of Gu et al. (2013) that higher emissions were observed
under fine textured soils, this study observed this in the sandy loam textured
soils. Even an increase of soil water content or WFPS above 80% due to heavy
rains especially in the last months of the experiments could have supported an
exponential increase of N2O emissions (Wu et al., 2021; Dencső et al., 2020)

Effect of inorganic fertilizer application on leaf litter decomposition
rate in the CAF, Mount Elgon

The average pure shade tree (Albizia coriaria) leaf litter decomposition rate
(k) of 0.072 is comparable to findings of Cissé et al. (2021) for pure D. mi-
crocarpum (k = 0.075 week−1) and V. paradoxa (k = 0.071 week−1) leaf lit-
ters. These rates were slower compared to a mixture of shade tree leaf litters.
No variation in leaf litter decomposition rate in fertilized shaded coffee supports
reports by Schmitt and Perfecto (2020) who observed faster and easier decom-
position with flower petals compared with leaf litter. This contradicts Chen et
al. (2013) findings that N addition significantly decreased the decomposition
of litter due to N saturation and suppression of microbial P mining within an
old-growth tropical forest of China. Moreover, limited variation in tempera-
ture (mainly dry conditions) and moisture of the soil characterized by flushes
of heavy rains nearing the end of the experiment hardly supported microbial
activity (Zhou et al., 2008; Chen et al., 2020).

Effect of inorganic fertilizer application on Microbial C, N and Pin
the CAF, Mount Elgon

Significant changes were observed for microbial C and microbial P while no
changes in microbial N were seen after one year of nutrient application. The
relative change in Microbial C was 66.7% and 1200% for microbial P. This
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substantiates Su et al. (2014) findings that chemical fertilization significantly
increased soil microbial activity involved in C, N, P and S cycling, especially
for the treatments NK and NPK in paddy rice. Several authors (Crecchio et
al. 2001; Marschner et al. 2001) have however reported that short term fertilizer
experiments had no significant effect on the microbial activity like in long-term
experiments where fertilizer additions significantly affect function, community
structure, and population of soil microorganisms (Cinnadurai et al. 2013; Luo
et al. 2013) for brown soil in China. Besides, this could have been attributed to
the low soil moisture at the beginning of the experiment that decreased micro-
bial activity by reducing diffusion of soluble substrates, microbial mobility and
intracellular water potential (Zhou et al., 2002) prompting a decrease in rates
of organic matter decomposition. Likewise, heavy rains experienced towards
the end of the experiment, could have steered high soil water content reducing
oxygen supply to the microbes favoring inactivity (Schjønning et al., 2011).
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Figure 2: Annual GHG emissions from the different fertilizer applications
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Figure 3. Seasonal GHG emissions from the different fertilizer applications in
Mount Elgon
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Figure 7. Monthly GHG emissions under different fertilizer applications in
Mount Elgon
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Figure 5. Relative change in the monthly GHG fluxes under different fertilizer
applications in Mount Elgon
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Figure 6. Leaf litter decomposition rate under different fertilizer treatments in
Mount Elgon
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