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Abstract

Avalanches and other hazardous mass movements pose a danger to the population and critical infrastructure in alpine areas.

Hence, understanding and continuously monitoring mass movements is crucial to mitigate their risk. We propose to use

Distributed Acoustic Sensing (DAS) to measure strain rate along a fiber-optic cable to characterize ground deformation induced

by avalanches. We recorded 12 snow avalanches of various dimensions at the VallÃ©e de la Sionne test site in Switzerland,

utilizing existing fiber-optic infrastructure and a DAS interrogation unit during the winter 2020/2021. By training a Bayesian

Gaussian Mixture Model, we automatically characterize and classify avalanche-induced ground deformations using physical

properties extracted from the frequency-wavenumber and frequency-velocity domain of the DAS recordings. The resulting

model can estimate the probability of avalanches in the DAS data and is able to differentiate between the avalanche-generated

seismic near-field, the seismo-acoustic far-field and the mass movement propagating on top of the fiber. By analyzing the mass-

movement propagation signals, we are able to identify group velocity packages within an avalanche that propagate faster than

the phase velocity of the avalanche front, indicating complex internal structures. Importantly, we show that the seismo-acoustic

far-field can be detected before the avalanche reaches the fiber-optic array, highlighting DAS as a potential research and early

warning tool for hazardous mass movements.
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Key Points:8

• DAS measurements near the interface between avalanche and the subsurface re-9

veal flow dynamics.10

• Strain rate measurements of seismo-acoustic waves are registered up to 30 s be-11

fore avalanches reach the sensors.12

• Internal group velocities larger than the propagation speed suggest the presence13

of complex internal structures.14
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Abstract15

Avalanches and other hazardous mass movements pose a danger to the population16

and critical infrastructure in alpine areas. Hence, understanding and continuously mon-17

itoring mass movements is crucial to mitigate their risk. We propose to use Distributed18

Acoustic Sensing (DAS) to measure strain rate along a fiber-optic cable to characterize19

ground deformation induced by avalanches. We recorded 12 snow avalanches of various20

dimensions at the Vallée de la Sionne test site in Switzerland, utilizing existing fiber-optic21

infrastructure and a DAS interrogation unit during the winter 2020/2021. By training22

a Bayesian Gaussian Mixture Model, we automatically characterize and classify avalanche-23

induced ground deformations using physical properties extracted from the frequency-wavenumber24

and frequency-velocity domain of the DAS recordings. The resulting model can estimate25

the probability of avalanches in the DAS data and is able to differentiate between the26

avalanche-generated seismic near-field, the seismo-acoustic far-field and the mass move-27

ment propagating on top of the fiber. By analyzing the mass-movement propagation sig-28

nals, we are able to identify group velocity packages within an avalanche that propagate29

faster than the phase velocity of the avalanche front, indicating complex internal struc-30

tures. Importantly, we show that the seismo-acoustic far-field can be detected before the31

avalanche reaches the fiber-optic array, highlighting DAS as a potential research and early32

warning tool for hazardous mass movements.33

Plain Language Summary34

Avalanches and other hazardous mass movements pose a danger to the population35

and critical infrastructure in alpine areas. Therefore it is important to be able to reli-36

ably measure and detect these hazardous events. We show a successful example to mea-37

sure and characterize avalanches recorded with a Distributed Acoustic Sensing (DAS)38

device, that measures deformation along a fiber optic cable. We apply unsupervised ma-39

chine learning to our avalanche recordings, and are able to identify consistent proper-40

ties between 12 avalanches. Ultimately, our results indicate that DAS might be a use-41

ful tool for detecting hazardous mass movements.42

1 Introduction43

1.1 Motivation44

Practically all mountainous regions worldwide are subject to some forms of rock45

falls, snow/rock/ice avalanches, debris flows and sediment-transporting floods. These rapid46

mass movements pose a significant hazard to both the population and infrastructure, with47

billions of dollars in financial damage and thousands of fatalities each year (Emberson48

et al., 2020; Dilley, 2005; Froude & Petley, 2018; Petley, 2012). According to the 202149

Intergovernmental Panel on Climate Change (IPCC) report, the ”magnitude of debris50

flows might increase [...] and the debris-flow season may last longer in a warmer climate”51

(Zhongming et al., 2021). This suggests that global warming will exacerbate the haz-52

ard potential of debris flows and various types of related mass movements. To early de-53

tect destructive events and mitigate their impact, extensive, reliable and high resolution54

monitoring and warning solutions are crucial. Seismic and acoustic instruments are in-55

creasingly popular for mass movement monitoring, since they record signatures of haz-56

ardous events even kilometers away from their occurrence without the need for a direct57

line of sight between source and sensor (Allstadt et al., 2018; Marchetti et al., 2019). The58

combination of unrivaled temporal resolution of seismic records and wide spatial sensi-59

tivity is a pivotal advantage over in situ measurements (Arattano & Marchi, 2008) and60

remote sensing approaches like radar technology (Leinss et al., 2020).61
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Implementation of seismic measurements into operational mass movement warn-62

ing has to fulfill two requirements. First, the seismic sensors have to be placed in var-63

ious locations to maximize coverage of failure-prone terrain. Second, the detection al-64

gorithms have to handle real-time data streams and reliably recognize significant tell-65

tale signals in the presence of environmental and anthropogenic noise.66

Seismic instrumentation has in recent years undergone rapid developments towards67

more portable sensors (Leinss et al., 2020). However, even in densely instrumented coun-68

tries like Switzerland, sensor coverage is still insufficient to encompass significant amounts69

of unstable slopes. In view of snow avalanches, in particular, the typically harsh terrain70

in avalanche-prone regions tends to limit the spatial coverage and temporal resolution71

of most measurements, and of seismic arrays in particular (Pérez- Guillén et al., 2016).72

Furthermore, recent improvements in machine learning algorithms show great promise73

for the automatic recognition of emergent and complicated mass movements seismograms74

(Chmiel et al., 2021). Yet further improvements are necessary to recognize events at sites75

where little or no training data are available and to identify signal characteristics, which76

reveal scientific insights into the dynamic characteristics of mass movements.77

Here we address these open challenges with the applications of Distributed Acous-78

tic Sensing (DAS) for snow avalanche detection and characterization. DAS is a technique79

to measure strain or strain rate along a fiber-optic cable with sub-meter resolution and80

mHz to kHz frequency bandwidth (Lindsey et al., 2020; Paitz et al., 2021). Unused fiber-81

optic infrastructure initially installed for communication purposes can thus be turned82

into countless seismic sensors increasing spatial coverage of seismic measurements. We83

leverage the dense seismic sensing of DAS with unsupervised algorithms to automati-84

cally recognize snow avalanches and their internal properties, offering new perspectives85

for monitoring and alarm systems.86

1.2 Fiber-Optic Sensing in a Natural Hazard Context87

The introduction of distributed fiber-optic sensing systems to geophysics marks a88

milestone. By turning a fiber-optic cable into a high resolution seismic measurement net-89

work, fiber-optic sensing technologies have opened up new possibilities in exploration geo-90

physics and passive seismology (Lindsey & Martin, 2021; Zhan, 2019), especially in dif-91

ficult terrain like glaciers and volcanoes (Klaasen et al., 2021; Walter et al., 2020) or on92

the bottom of the ocean (Lindsey et al., 2019; Williams et al., 2019). For more background93

information on fiber-optic sensing, the reader is referred to Hartog (2017).94

In the context of natural hazards, Brillouin-based distributed fiber-optic sensing95

systems (BOTDA) have been utilized for landslide and deformation monitoring (Iten et96

al., 2008; Minardo et al., 2018), and coherent optical time-domain reflectometry (COTDR)97

was successfully used for ground motion and deformation measurements on landslides98

(Yu et al., 2018). The suitability of optical time-domain reflectometry (OTDR) systems99

like the Silixa iDAS(TM) Distributed Acoustic Sensing unit (used in this study) for the100

recording of acoustic emission precursors in soil in a laboratory setting was also already101

established several years ago (Michlmayr et al., 2017). The study by Walter et al. (2020)102

used a similar DAS system to successfully monitor rockfalls and icequakes on a glacier.103

Early studies by Prokop et al. (2014) explored avalanche monitoring with fiber-optic sens-104

ing systems for avalanche detection and runout distance monitoring.105

2 Experiment Setup and Recorded Avalanches106

We utilizied a Silixa iDAS(TM) v2.4 interrogation unit on an existing fiber-optic107

cable at the Vallée de la Sionne avalanche test site in Switzerland from October 2020 to108

March 2021. A map and a photograph of the test-site are shown in Fig. 1. The test site109

has been operated by the WSL Institute for Snow and Avalanche Research SLF for over110

20 years (Ammann, 1999). Several sensor points within the avalanche paths and runout111

–3–



manuscript submitted to JGR: Earth Surface

zones feature seismic, pressure and radar sensors and are connected via fiber-optic ca-112

bles to a bunker at the valley bottom where data are stored and processed. The length113

of the interrogated fiber was around 800 m, and the interrogator was located in the bunker,114

positioned at the bottom of the path. The fiber crosses the La Sionne creek around 700115

m from the topmost monitoring point. Over the entire array, the (single-mode) fiber is116

installed in a conduit that was excavated to a depth of less than a meter during the con-117

struction of the test site. This protects the fiber against avalanche damages. The sam-118

pling rate of the interrogator was 1 kHz at a spatial sampling of 2 m.119

Figure 1. Test site overview. a) Map view of the Vallée de la Sionne avalanche test site. Map

from SwissTopo (2021). b) Photograph of the test-site area with the approximate fiber position

indicated in red. The DAS interrogation unit was located in the bunker (building in the lower

right corner).

During the data acquisition period, more than 20 DAS recordings of avalanches were120

registered. In this manuscript, we first discuss the key characteristics for one example121

(denoted ”avalanche 3023”). This one was selected since it contains key features while122

still being not too complex. For 12 additional events, the data are visualized in the sup-123

plementary material. The recorded data of the observed avalanches cover large transi-124

tional powder snow avalanches with partial flow regime transitions and depositional regimes125

(avalanches 3009, 3022 and 3023) and smaller avalanches without a clearly distinguish-126

able transition (avalanches 3016, 3020 and 3021). A summary of the measured avalanches127

is given in Tab. B1 in the appendix.128

3 Avalanche Recordings: Phenomenology129

All avalanches considered in this study propagated on top of the fiber-optic cable.130

Therefore, the data contain a superposition of near-field observations of seismo-acoustic131

sources, as well as ground vibrations from sources that can potentially be further away.132

Note that we prefer the term ”seismo-acoustic” over ”seismic” as seismic records of avalanches133

may contain signatures of waves traveling through the air (Heck, Hobiger, et al., 2019).134

For particulate gravity currents like snow avalanches, various theoretical models for seis-135

mogenesis have been recently proposed, which form the basis for the following discus-136
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sion. Nevertheless, air waves such as infrasound may also contain important informa-137

tion about avalanche volumes and dynamics and could influence our DAS records (Allstadt138

et al., 2018; Marchetti et al., 2021).139

For multiphase flows (granular flow in dense flow regimes and turbulent flow in the140

aerial components) such as snow avalanches, different seismic source mechanisms have141

been considered in the past: (1) (quasi-)static deformation as a response to instantaneous142

weight and frictional shear forces (Wenner et al., 2022) and (2) (snow) particle-ground143

impacts (Tsai et al., 2012), (3) turbulent flow (Gimbert et al., 2014) and, by (4) abrupt144

stopping of mass movement due to friction (Tregaskis et al., 2022), and by (5) changes145

in traction due to mass deposition and erosion (Edwards & Gray, 2015). A schematic146

avalanche propagating over our fiber array is shown in Fig. A1 in the appendix.147

3.1 DAS data148

3.1.1 Time-Distance Domain149

The raw data of avalanche 3023 are visualized in Fig. 2. The total duration of the150

avalanche propagating over the array is about two minutes. The ground truth of the avalanche151

is confirmed by measurements of the GEODAR system (Keylock et al., 2014; Köhler,152

McElwaine, & Sovilla, 2018). The extent of the avalanche as measured by the GEODAR153

is highlighted in transparent blue colors in Fig. 2. Different parts of the avalanche can154

be distinguished (where the numbers correspond to the features highlighted in the fig-155

ure): (1) The earlier, faster part of the avalanche between 0.5 and 1.0 minutes time, and156

(2) a slower, later part of the avalanche between 1.0 and 2.5 minutes. What is also vis-157

ible is that (5) there are signals arriving over the entire array before the avalanche front158

moves on top of the cable (at times before 0.75 minutes). Other observable features in-159

clude (4) noisier channels (e.g. at 310 meters), and (3) high amplitude and velocity events160

(nearly horizontal in the plot), spanning about 100 m in distance each. These events could161

be interpreted as (abrupt) stopping events, where parts of the avalanche abruptly de-162

celerate, hence creating a high amplitude strain-change in the subsurface. Other poten-163

tial explanations for these events include snowpack collapses. However the fact that the164

strain-rate amplitudes of the mass-movement is significantly lower after these events makes165

the abrupt stop hypothesis more likely. It must be noted that for distances above 200166

m along the fiber, there is no clear DAS signal visible in the raw and low-frequency data,167

whereas the GEODAR outline still records an avalanche signal there. The low-frequency168

time-offset strain rate data are also visualized in Panel b) of Fig. 2. The two main parts169

of the avalanche (1) and (2), as well as the stopping mechanisms (3) are still visible, and170

the data look less noisy compared to the raw data in Fig. 2a).171

3.1.2 Frequency-Wavenumber Domain172

Since the fiber is approximately straight with equal channel spacing over the en-173

tire array, it is straightforward to analyze the data in the frequency-wavenumber domain.174

The frequency-wavenumber representation of the data is defined as a 2-D Fourier Trans-175

form (over time and over space):176

ϵ̇(f, k) =

∫
x

∫
t

ϵ̇(t, x) e−2πift e−2πikx dt dx, (1)

177

for the strain rate ϵ̇, time t, distance x, frequency f and wavenumber k (the inverse178

of the wavelength). This representation allows for analysis of the frequency and appar-179

ent phase velocity content of the data and can reveal dispersive behavior, i.e. frequency180

dependence of the velocity of individual wave modes.181

–5–
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Figure 2. a) Raw strain rate data of avalanche 3023. The amplitudes are clipped at 0.5% of

the global maximum within the visualized window. b) Bandpass filtered low-frequency strain

rate data of avalanche 3023 (4th order Butterworth bandpass filter from 0.001 to 10 Hz). The

amplitudes are clipped at 7 % of the global maximum within the visualized window. c) Band-

passed high-frequency strain rate data of avalanche 3023 (4th-order Butterworth bandpass filter

from 10 to 100 Hz). The amplitudes are clipped at 0.1 % of the global maximum within the vi-

sualized window. For a) to c), the ground truth of the extent of the avalanche is highlighted in

transparent blue from the measurements of the GEODAR system. d) Frequency-wavenumber

(fk) representation of the raw data from avalanche 3023. The red lines indicate apparent phase

velocities along the array in m/s. Negative wavenumbers indicate energy propagating from the

top to the bottom of the slope (downward), and positive wavenumbers indicate coherent energy

propagating upward. The distance starts at the Northwest end of the cable (uphill) at 0 m and

ranges down to the Southeast end of the cable in the bunker, where the interrogator was located

(Fig. 1).
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The frequency-wavenumber (fk) representation of the raw data of avalanche 3023182

is visualized in Fig. 2d. From the fk representation of the data, a clear separation can183

be observed between high-frequency seismic (10 - 30 Hz) and low-frequency (0.01 to 10184

Hz) signals. The two different parts of the avalanche observed in the raw data are also185

visible in the fk domain (features (1) and (2)) for frequencies below 1 Hz. The fk vi-186

sualization associates these low-frequency (< 1 Hz) downward propagating signals with187

phase velocities of between 5 to 20 m/s (1), and 2 m/s (2). In addition, high-velocity events188

are visible for frequencies between 5 and 30 Hz, propagating both up- and downward at189

speeds of about 650 m/s. Such apparent velocities and the omnidirectional propagation190

suggest that these events are seismic waves generated by the avalanche.191

4 Signal classification192

In order to automatically identify and distinguish between the signals shown in Fig.193

2, we propose the use of unsupervised machine learning algorithms. In the past, unsu-194

pervised algorithms have proven useful in a geophysical context to extract subsets of sig-195

nals with similar properties from large datasets (Martin et al., 2018; Grimm, 2021; Grimm196

& Poli, 2022). In a cryoseismic context, Grimm (2021) extracted different physical classes197

from continuous DAS recordings on a glacier, characterizing crevassing events, stick-slip198

icequakes and background noise in an automated way. Similarly, Grimm and Poli (2022)199

used spatial coherency features of an urban DAS dataset from Grenoble (France) to iden-200

tify spatio-temporally repeating events. Martin et al. (2018) utilized signal features from201

data segments that had been transformed using the continuous wavelet transform and202

minibatch-optimized K-means to find classes of coherent properties of the seismic wave-203

field from DAS data. Here we propose to use unsupervised clustering to identify char-204

acteristic properties of avalanche recordings with DAS. Since the dimensionality of the205

DAS data is too high to perform clustering on raw data, we first extract representative206

features. This is a common first step in applied machine learning workflows, and the cho-207

sen features have to be chosen problem-dependent (Alpaydin, 2020).208

4.1 Feature Extraction209

Automatic and (near) real-time processing for warning applications requires sig-210

nal feature extraction within small time- and space windows. These windows contain ei-211

ther avalanche signals and/or background noise, which includes natural (e.g., earthquake)212

and anthropogenic (e.g., road and air traffic) signals. We set the window sizes to 5 s in213

time and 50 m in space (with adjacent windows overlapping by 3 s and 30 m). The win-214

dow size and overlap was chosen empirically such that coherent signals in time and space215

are detected, while small-scale changes are still captured.216

Our proposed feature extraction algorithm is visualized in Fig. 3. In the first step,217

the raw data are windowed and transformed to the fk domain (see Eq. 3.1.2). In the218

fk domain, the contents of the amplitude spectrum of velocity-frequency bins are an-219

alyzed, resulting in cumulative fk amplitudes Ȧ for each bin, where the dot indicates220

that the cumulative fk amplitudes are associated with a transformation of strain rate221

ϵ̇ rather than strain.222

Ȧ(v1, v2, f1, f2) =
∑
f,k

|ϵ̇(f, k)|; ∀ v =
f

k
∈ {v1, v2} ∩ f ∈ {f1, f2}, (2)

where the local phase velocity v can be described in terms of frequency f and wavenum-223

ber k, following v = f/k. The frequency and velocity bins range from f1 to f2 and from224

v1 to v2, respectively. The above equation maps our data from the fk domain into a dis-225

crete velocity-frequency (vf) domain. In the next step, we find n numbers of local max-226

ima in this domain and extract the corresponding frequency and apparent velocity of these227

maxima, for both positive and negative wavenumbers. This results in n local maxima228
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for positive wavenumbers and negative wavenumbers:229

Mn
+(vn+ , fn+) = max(Ȧ(v, f)); ∀n+ ∈ {1...n} ∩ k > 0 (3)

Mn
−(vn− , fn−) = max(Ȧ(v, f)); ∀n− ∈ {1...n} ∩ k < 0 (4)

For each of these peaks Mn(vn, fn), we compute the ratio R(vn, fn) between the230

cumulative fk amplitudes Ȧ of positive and negative wavenumber, giving us an indica-231

tion of a preferable directionality in propagation:232

Rn
+(vn+ , fn+) =

Ȧ(vn+ , fn+)

Ȧ(−vn+ , fn+)
; ∀n+ ∈ {1...n} ∩ k > 0 (5)

233

Rn
−(vn− , fn−) =

Ȧ(−vn− , fn−)

Ȧ(vn− , fn−)
; ∀n− ∈ {1...n} ∩ k < 0 (6)

In addition to the values of the peaks M
+|−
n (vn, fn) in the vf domain, we extract234

information on the summed amplitude spectrum S, defined as:235

S+ =
∑
f,k

|ϵ̇(f, k)|; ∀ k > 0 (7)

236

S− =
∑
f,k

|ϵ̇(f, k)|; ∀ k < 0 (8)

The last feature we extract is the ratio of cumulative amplitudes between positive and237

negative wavenumbers C within the specific time-space window:238

C =
S+

S− . (9)

For each window, a total of 11 features are extracted per picked peak n as summarized239

in Tab. 1. This reduces the dimensionality for each window from 62500 (2500 samples240

for 25 channels) to 11·n, which is < 0.1% of the dimensionality of the raw data. In our241

case, n was chosen to be 3 in order to capture first, second and third order effects within242

each window. The features encode the apparent phase velocities, frequency content, dom-243

inant propagation direction and total strain rate energy within each window, and hence244

describe physical properties that are potentially important for avalanche characteriza-245

tion and discrimination from other signals like earthquakes.246

4.2 Bayesian Gaussian mixture models: Unsupervised Clustering247

The features in Tab. 1 are used in an unsupervised clustering algorithm to iden-248

tify groups of data with similar properties. We chose a Bayesian Gaussian mixture model249

after evaluating the performance of various clustering algorithms including K-means, mini-250

batch K-means, and affinity propagation (Bishop & Nasrabadi, 2006; Press et al., 2007).251

Bayesian Gaussian mixture models are probabilistic models that fit training data252

onto a finite number of Gaussian distributions, utilizing the Expectation-Maximization253

algorithm (see Bishop and Nasrabadi (2006); Press et al. (2007) for details). This way,254

each feature-set of the training data is associated to a cluster, or class (one of the Gaus-255

sian distributions). Compared to other conventional clustering algorithms like K-Means,256

Gaussian mixture models have the advantage that a trained model can predict a class257

from data that it was not trained with. Furthermore, instead of associating one class to258

a set of features (hard assignment of data points to a cluster), the probability of the data259

for being a part of each subclass is estimated (soft assignment of data points to a class260

from the posterior probabilities for each class) (Bishop & Nasrabadi, 2006), which in our261

–8–
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Table 1. Features extracted in each sub-window of the DAS record that are used for the char-

acterization of the data.

Feature Description

M+(vn+ , fn+) local maxima in the vf domain for positive k
M−(vn− , fn−) local maxima in the vf domain for negative k
vn+ , vn− apparent phase velocity of the local maximum M for pos. (+) and neg. (-) k
fn+ , fn− frequency of the local maximum M for pos. (+) and neg. (-) k
R+(vn+ , fn+) ratio between M+(vn+ , fn+) and corresponding vf amplitudes of neg. k
R−(vn− , fn−) ratio between M−(vn− , fn−) and corresponding vf amplitudes of pos. k
S+ cumulative amplitude spectrum in the fk domain for positive k
S− cumulative amplitude spectrum in the fk domain for negative k
C ratio between S+ and S−

Figure 3. Example of the windowed algorithm proposed to extract signal properties used to

detect and characterize avalanche data. a) In a first step, the data are windowed in both time

and space (indicated by the black rectangle). In our example, the length of the window is 50 m

and 5 s. b) The windowed data are then tapered (in both time and space) and transformed to

the fk domain. The fk domain is then binned into frequency ranges (indicated by the horizontal

blue lines) and velocity ranges (indicated by the magenta diagonal curves). For each bin, the ab-

solute values of the fk amplitudes are then summed and normalized over the number of samples

per bin. The fk domain amplitudes are displayed in dB relative to the maximum fk amplitudes.

c) and d) The output of the bottom left is then arranged by frequency and velocity, and local

maxima are extracted. This results in a number of n (in this example n = 3) extracted peaks,

with corresponding frequency and velocity ranges, as well as summed fk amplitude values. The

process is done for positive wavenumber values and for negative wavenumber values. For each

peak, the ratio of positive to negative fk amplitude is also stored as a feature.

–9–
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case becomes important where low-frequency low-velocity mass movements are within262

the same space time window as high-frequency seismic waves. We use the python pack-263

age scikit-learn (Pedregosa et al., 2011) for the implementation of Bayesian Gaussian mix-264

ture models. Based on trial and error, we decided to set the number of classes to 10, ini-265

tializing the weights, means and covariances with the K-means algorithm, and using a266

Dirichlet process for the weight concentration prior. Increasing the number of classes re-267

sulted in a higher number of ”noise” classes without improving the signal classification.268

Decreasing the number of classes led to inconsistent clustering results for multiple stages269

of training.270

We train the model with 92367 windows from 13 potential avalanche candidates,271

including windows containing environmental and anthropogenic noise, avalanches, and272

earthquake recordings. In total, 246118 feature sets are used as input for the training273

(where for some of the windows, less than 3 feature sets could be extracted). After train-274

ing, the model can be used to estimate the probability of each class for all recorded time275

windows.276

4.3 Clustering Results277

The results of the Bayesian Gaussian mixture model analysis are visualized in Fig.278

4 for avalanche 3023. They show the predicted classes with a probability higher than 0.3279

for each window based on the trained model, together with a Gaussian kernel density280

estimation (Scott, 2015) for each class over both space and time. We can observe that281

both parts of the avalanche are classified within the same class S2 and that class S1 emerges282

30 s before the avalanche propagates over the fiber-optic array. In addition, classes S3283

and S4 are also associated with the avalanche, following the time after class S2 emerges.284

From the comparison of the kernel densities of the clustering result to the normalized285

cumulative GEODAR intensity, we can see a correlation of classes S2 to S4 with the ground286

truth of the GEODAR data.287

5 Discussion: Physical Interpretation of the classes288

Because the only available ground-truth data with spatial extent in the form of GEO-289

DAR data to highlight the physical extent of the avalanches, it is difficult to verify the290

hypotheses presented in this chapter. The provided physical interpretation given in this291

section should be seen as a highly speculative first attempt to illuminate the DAS avalanche292

recordings. Nevertheless, our interpretations are backed up by physical evidence from293

the properties of the different classes.294

Since Bayesian Gaussian mixture models give us a probability distribution of any295

feature set being part of one specific class, we can predict the classes of our data to ex-296

tract apparent phase velocity ranges, frequency content and dominant propagation di-297

rection of the measured signals. The clustering results for all investigated avalanches,298

as well as the mean feature values are visualized in Fig. 5. The results show consistency299

over all events and we show details of the space-time dependent classification of the DAS300

signals for Avalanche 3023 in Fig. 4.301

Fig. 5 shows that whereas the classes denoted as noise N1 to N6 exhibit consistently302

low values in fk amplitudes (features M and S), they can be distinguished from each303

other in terms of apparent phase velocities and frequency ranges. Classes N1 and N2 con-304

sist of windows with dominant frequencies of ≤ 0.5 Hz. The noise classes N5 and N6 con-305

tain mainly frequencies above 5 Hz at apparent phase velocities higher than the ones from306

class N1 to N3 (> 350 m/s).307

Class S3 is associated with the highest overall fk amplitudes at a mean frequency308

of around 16 Hz and a mean velocity of 1075 m/s, propagating both uphill and down-309

hill along the cable (mean C ≈ 1.05). This class can be interpreted as the seismic near-310
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Figure 4. a) Results of the predicted classes with a probability above 0.3 for each window

of the Bayesian Gaussian mixture model clustering for avalanche 3023. The raw strain-rate data

are plotted in the background (see colorbar at the bottom right), whereas the predicted classes

are color-coded for each class. The ground truth of the extent of the avalanche is highlighted in

transparent blue from the measurements of the GEODAR system. Six different ”noise” classes

could be identified which are not visualized here (N1 to N6). These classes most likely capture

environmental and anthropogenic noise, as well as self-noise of the instrumentation. b) Estimated

probability density from a Gaussian kernel density over the samples within each class over time.

The black line indicates the normalized cumulative GEODAR amplitudes for the given window.

c) Estimated probability density from a Gaussian kernel over the samples within each class over

space. The black line indicates the normalized cumulative GEODAR amplitudes for the given

window
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Figure 5. Mean feature values (dots) and 1
2
standard deviation (error bars) for each clus-

tered feature set of avalanche 3023. Black color indicates positive wavenumber-values (downward

propagating energy, superscript +) and red indicates negative wavenumbers (upward propagating

energy, superscript −) along the fiber for avalanche 3023. The purple and light red colors indicate

the features for all the training data that were used in the clustering process.

field, as this class is dominant on channels during the time the avalanche is on top of311

the cable. These values are realistic for seismic waves in sediment layers (Boore & Joyner,312

1997), especially considering that near-field signals consist of multiple seismic phases in-313

cluding P-waves. These are faster than Rayleigh phases, which are the dominant far-field314

response to vertical particle-ground impacts (Sánchez-Sesma et al., 2011).315

Class S2 has a significantly lower mean frequency (3.4 Hz) and apparent velocity316

(238 m/s). This class has the highest mean C value (1.2), meaning that the dominant317

propagation direction of these signals is downhill. The apparent velocities are exception-318

ally low but could be explained by slow Biot’s waves propagating through the pore space319

of snow within the avalanche and/or the underlying substrate (Capelli et al., 2016).320

Based on the apparent velocity content (mean 703 m/s) of class S1, we interpret321

it as the seismo-acoustic far-field generated by the avalanches. This apparent veloc-322

ity is reasonable for surface and S-waves in generic rock sites (Boore & Joyner, 1997).323

The frequency content (mean 9.6 Hz) of this class is comparable to the frequency range324

of seismic waves generated by avalanches observed in the literature (Van Herwijnen &325

Schweizer, 2011). The probability of class S1 increases already 30 s before the avalanche326

arrives at the cable. With the above mean frequency, mean velocity and typical avalanche327

speeds of several meters per second, this likely corresponds to a time when the avalanche328

is several wavelengths away from the cable, which supports our hypothesis of seismic far-329

field waves.330

Class S4 contains frequencies below 1 Hz, which we interpret as quasi-static ground331

deformation in response to the instantaneous avalanche weight and frictional shear forces.332

Waves of such quasi-static ground deformation can result from flow depth, velocity or333

particle concentration perturbations traveling within the avalanche body (Viroulet et al.,334
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2018) and erosion-deposition mechanisms (Edwards & Gray, 2015). This explains the335

apparent phase velocities (< 6 m/s), associated with avalanche motion rather than seis-336

mic energy propagation of classes S1-S3. The motion of the avalanche front and major337

secondary surges induce wavelets with periods of ten seconds or longer (Fig. 2b, for ex-338

ample), which are not resolvable with our 5 second time window sizes. Nevertheless, class339

S4 seems to capture the highest frequencies of these signals. C values of larger than 1.1340

indicate that S4 signals propagate preferentially downhill. Uphill propagation, however,341

is also possible and can be explained by shock wave dispersion (Liu & Mei, 1994).342

So far we have discussed the avalanche signal in terms of dominant classes. How-343

ever, this binary (dominant/non-dominant) characterization is not always justified since344

several classes may reach similar probabilities at the same location in space and time.345

This is particularly apparent for Avalanche 3016, whose DAS signals and kernel densi-346

ties have a simple appearance since the avalanche consists of only one surge (Fig. 6). Dur-347

ing times when Avalanche 3016 covers the cable, further signal details are visible and348

might be interpreted as the avalanche front (1), internal roll waves (2) or erosion-deposition349

waves (3) and stopping phases (4)(Razis et al., 2014; Viroulet et al., 2018; Tregaskis et350

al., 2022), travelling at different and variable speeds (different event move-outs in Fig.351

6). In addition to class S4, classes S2 and S3 can also be expected to characterize these352

internal dynamic processes within the avalanche as like class S4 they dominate during353

times when the avalanche locates above the cable. In fact, for Avalanche 3016, kernel354

densities of classes S2, S3 and S4 increase and decrease parallel to each other and have355

comparable peaks (Fig. 6 panel b)).356

From this figure we can also observe that the avalanche front propagates at a rel-357

atively high apparent group velocity of about 40 m/s (labeled (1)). Internal apparent358

phase velocities of up to 160 m/s are present in the earlier part of the avalanche (2). We359

can also observe the transition from class S2 towards S4 (panel b). This may be related360

to the transition from the erosive and intermittent flow-regime characteristic of the avalanche361

front towards the depositional flow regime at the avalanche tail (3) after around 3 min.362

The internal velocities of up to 160 m/s within the avalanche that are higher than the363

front propagation speed of around 40 m/s suggest that internal phases may be processes364

related to roll-waves activity taking place at the surface of the denser basal layer (Razis365

et al., 2014; Viroulet et al., 2018).366

The above discussion shows that although different classes can be associated with367

characteristic ranges of frequencies and propagation velocities, they combine to describe368

avalanche dynamics. The arrival of the front with its instantaneous increase in local weight369

will induce low-frequency, quasi-static elastic deformation (class S4). This adds to weight370

variations resulting from snow entrainment, which for powder snow avalanches can take371

the form of violent eruptions (Carroll et al., 2012; Sovilla et al., 2006) and other inter-372

nal phases or flow-depth variations like roll waves (Razis et al., 2014; Viroulet et al., 2018)373

to produce further low-frequency signals. At the avalanche front, we also expect the tur-374

bulent and suspended mass movement to couple into the ground (classes 1 and 3). Al-375

though we are not aware of theoretical descriptions of the seismogenesis of turbulent and376

laminar air-snow mixtures, an equivalent mechanism has been proposed for river flow377

(Gimbert et al., 2014). This leads to a mixing of signals from classes 1, 3 and 4. Sim-378

ilarly, temperature-dependent sintering produces macroscopic granules (Steinkogler et379

al., 2015) whose ground impacts generate high-frequency seismic signals (Tsai et al., 2012)380

constituting classes 1 and 3. It is not clear if these mechanisms also generate the slow381

seismic phases of class 2, which is a predominant signal when all avalanches override the382

cable. The existence of a potential Biot phase (Capelli et al., 2016) is possible but not383

the only explanation. The records of the local M 1.2 earthquake from Sanetschpass about384

10 km from our recording site testify to the non-uniqueness of physical class meaning385

(see event 3036 in the supplementary material, occurring on March 03, 2021, 00:38:14386

UTC): The DAS earthquake records lack class S4, which is expected as the earthquake387

–13–



manuscript submitted to JGR: Earth Surface

Figure 6. a) DAS data of avalanche 3016 in the frequency range from 0.001 to 5 Hz for ap-

parent velocities between 1 and 250 m/s (corresponding to the mass-movement class S2). We can

observe that the internal structure of the avalanche is more complex than for avalanche 3023.

The group velocity of the avalanche front (1) is approximately 40 m/s, whereas the phase velocity

inside the avalanche (2) is around 160 m/s. The later part of the avalanche lacks these high-

velocity arrivals, and instead consists of events that decrease from 40 m/s until they stop (3). In

the deposit area, other events (4) also seem to propagate at apparent phase velocities of > 160

m/s downhill. b) Estimated probability density from a Gaussian kernel density over the samples

within each class over time. c) Estimated probability density from a Gaussian kernel over the

samples within each class over space.

does not generate slowly propagating signals corresponding to the quasi-static elastic ground388

deformation induced by an avalanche. On the other hand, the earthquake records are389

predominantly classified into classes S1 and S3. Our interpretation of S3 as near-field390

seismic signals at frequencies resolvable within 5 second time windows is questionable391

since the earthquake located 10 km away from the cable. The absence of class S2 sug-392

gests that this class is indeed characteristic for mass movements, even though an expla-393

nation of its rather slow seismic propagation speeds remains elusive.394
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To summarize, there exist distinct signal classes, which are shared among all of the395

recorded avalanches (classes S1 to S4). Class S1 is interpreted as the seismo-acoustic far-396

field that arrives at the cable before the mass movement itself. Classes S2-S4 are asso-397

ciated with low-frequency, quasi-static ground deformation, near-field ground shaking398

and other yet-to-be-confirmed signals generated as the avalanches override the cable. Al-399

though these interpretations may differ for other seismic sources like earthquakes, the400

signal classification seems to be characteristic for all of our avalanches and could be used401

for automatic detection.402

5.1 Internal avalanche characteristics403

We identified that class S2 is most likely related to the physical properties of the404

mass-movement inside the avalanche. We can use this to further analyse the internal struc-405

ture of the avalanche propagating over the fiber-optic array. Since avalanche 3023 does406

not have a complex internal avalanche structure, but a well separated slow and fast part,407

we will look at a different avalanche. We chose avalanche 3016 for this analysis, since it408

is a single surge avalanche with a complex internal structure. From the clustering anal-409

ysis, we know the frequency and apparent phase-velocity ranges of the mass-movement410

class S2. Hence, we focus on frequencies < 5 Hz and apparent phase velocities < 250411

m/s (only downward propagating). The DAS data of a zoomed-in version of avalanche412

3016 within this frequency and velocity range are displayed in Fig. 6.413

Accordingly, we explain the low apparent phase velocities (< 6 m/s) with the avalanche’s414

bulk mass motion, which may vary between avalanche events or even between surges of415

a single avalanche (Figure 2). Hence, in terms of avalanche processes, the classes S2 and416

S4 could be associated to different flow regimes within the avalanche - where the ear-417

lier class S2 may correspond to the high-energy processes occurring at the front of the418

avalanche, such as entrainment of snow or impacts of the (turbulent) suspensions with419

the ground, and class S4 may be related to the signal generated by the following dense420

basal layer and its deposition (Köhler, McElwaine, & Sovilla, 2018).421

Another observation is, that the presence of some mass movement classes by them-422

selves require additional analysis. A regional M 1.5 earthquake from Sanetschpass (see423

event 3036 in the supplementary material) is predominantly classified into classes S1 and424

S3. The classification of S1 and S3 during the regional earthquake also indicate that ad-425

ditional signals might be included in these classes. The absence of class S2 indicates that426

there is no mass movement present during the earthquake, but this non-uniqueness of427

the classification needs to be kept in mind for potential automatic classifications in the428

future.429

6 Perspectives for Snow Avalanche Monitoring430

DAS enables the distributed measurement of ground deformation in response to431

avalanche flow with high temporal and spatial resolution. There exist specific reasons432

why this could be a game changer for avalanche monitoring and warning applications.433

Our analysis shows that non-supervised classification of DAS recordings containing both434

noise and avalanche signatures is capable of separating the two. Although this method435

has to be applied to longer (multiple months) DAS records to evaluate its accuracy, the436

signal classes shared among all recorded avalanches suggests that automatic detections437

are feasible. The consistent detections of class S1 signals tens of seconds prior to the avalanche438

arrivals at the cable are particularly encouraging: interrogating pre-installed communi-439

cation cables seems to be sensitive enough to detect avalanche seismograms remotely.440

This is important for the more realistic case where fiber-optic infrastructure locates par-441

allel to pass roads or train lines, which are threatened by avalanche hazards in the lat-442

eral slopes and couloirs. For such cases snow avalanches will cross rather than propa-443

gate along fiber optic cables and longitudinal wave propagation as presented here will444
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be reduced. We can nevertheless expect to measure the seismic phases of classes S1, S2445

and S3, which could be used to distinguish between powder snow avalanches contain-446

ing a turbulent flow and pure dense snow avalanches (Köhler, Fischer, et al., 2018). How447

exactly such flow regime distinction manifests itself in the recognition of class S1, S2 and448

S3 signals remains to be seen. It may be necessary to further support classification with449

transition probabilities between states as has been done in previous application of ma-450

chine learning algorithms to avalanche seismograms (Hammer et al., 2017; Heck et al.,451

2018). Finally, we stress the advantage of our Gaussian mixture models allowing for dif-452

ferent states to coexist at the same time rather than identifying one single dominant state.453

Future classification could thus be improved with relative probabilities so that the ”state454

mix” describes different parts and kinds of avalanches.455

Our processing leverages signal coherence over a set of spatially distributed seis-456

mic sensors. Equivalent signal processing has already been used in the past for seismic457

signals of avalanches in the form of array methods (Lacroix & Helmstetter, 2011; Heck,458

Van Herwijnen, et al., 2019). In the present case, the unprecedented amount of seismic459

sensing locations was combined with unsupervised machine learning to automatically clas-460

sify signals. To this, future applications could add waveform features (Chmiel et al., 2021)461

and image processing to further improve classification accuracy (Thrastarson et al., 2021).462

In any case, we do not expect user-defined threshold rules to perform better than our463

machine learning scheme since such methods cannot distinguish between signals with sim-464

ilar seismic amplitudes and frequency content.465

Whereas this study focused on snow avalanches, the proposed DAS observation and466

signal classification could also be applied to other granular media like debris flows, rock-467

ice avalanches and smaller slope failures. Given seismogenesis of water turbulence (Gimbert468

et al., 2014), flood waves could be monitored and detected, as well. Our signals show that469

DAS is able to detect internal avalanche processes, which could be manifestations of roll-470

waves or shock waves. These internal waves are general features of open surface flows471

(Liu & Mei, 1994). Shock waves propagate as flow depth perturbations with larger waves472

traveling faster, which allows them to grow by ”swallowing” smaller waves. The succes-473

sive merging explains pulsing behavior of granular flows and frontal flow depths, which474

are much larger and thus more destructive than expected for steady flow (Zanuttigh &475

Lamberti, 2007; Razis et al., 2014; Viroulet et al., 2018). The detection of internal waves,476

which our DAS measurements provide, could therefore be a tool for better understand-477

ing and predicting maximum flow depths of granular flows and floods.478

7 Challenges479

Since the apparent phase velocity of an event propagating along the fiber is strongly480

dependent on the incidence angle of the event, it needs to be treated as a site- and event-481

specific property. Hence, the transferability of the trained Gaussian mixture model from482

the given test site to other installations might be limited. Nevertheless, the physical in-483

tuition we gained from the analyzed avalanches can be transferred to other sites and ca-484

ble layouts.485

A big challenge for monitoring hazardous alpine mass movements with DAS is the486

existence and access to fiber-optic infrastructure. Whereas the Vallée de la Sionne test487

site had accessible infrastructure existing for decades, sites like this are rare. The dis-488

tribution of existing fibers in rural alpine areas, especially those that are subject to fre-489

quent hazardous mass movements, can be limited. In addition to fiber access, stable long-490

term power access for the interrogation unit can be challenging. If no fiber-optic infras-491

tructure for data transfer exists, real-time monitoring and immediate early warning re-492

quire a stable data transfer from the interrogation unit to the local responsible author-493

ities. In case the fiber-optic infrastructure is required to be installed, the fiber needs to494

be protected against mass movement induced damages. For avalanche monitoring this495

means that the cable needs to be trenched deep enough and be protected against ero-496
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sion processes. We believe that the DAS technology can not only improve our understand-497

ing of hazardous mass movements from a scientific point of view by highlighting inter-498

actions between the mass movement and the subsurface, but can also improve seismic499

hazard monitoring and early warning solutions in the near-future.500

8 Conclusions and Outlook501

We have shown that the DAS technology is capable to measure avalanches prop-502

agating towards and on top of a fiber-optic cable. The avalanche signals measured from503

such a system include the seismo-acoustic near- and far-field as well as various mass move-504

ment regimes. By combining DAS with Bayesian Gaussian mixture models, we are able505

to extract key avalanche characteristics and their developments over both space and time.506

Significant importance for the classification are both the frequency content and the ap-507

parent phase velocities of the data within local time-space windows.508

DAS adds new observations to the toolbox of mass movement research. With high-509

resolution recordings, DAS delivers data from the interface of the avalanche with the (sub)surface510

of the Earth. We observed indications of roll-waves. In the future, it can be envisioned511

that the Froude number could be calculated from the apparent velocities if the depth512

of the flow is known (similar to Pérez- Guillén et al. (2016)). Further research in am-513

plitude calibration of DAS systems for mass movements is required, but a site-specific514

flow regime characterization based on DAS recordings and physical properties of strain515

rate measurements can be envisioned in the future.516

The incorporation of subsurface strain (rate) as observed with DAS into numer-517

ical avalanche simulation tools could increase the usability of DAS data in the field of518

avalanche dynamics research even further.519
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Figure A1. Schematic avalanche processes generating seismo-acoustic signals. The velocity

and density profile vary with depth (z). The propagation of the avalanche downhill (x) results

in acoustic infrasound waves in the air, as well as seismo-acoustic waves due to sliding fric-

tion, depositional mechanisms, and interaction of the mass movement with the topography. In

this experiment, the fiber-optic cable is located in a conduit in the subsurface, over which the

avalanches propagate. Figure schematically after Pérez- Guillén et al. (2016) and Sovilla et al.

(2015).
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Table B1. Avalanche characteristics of the events discussed in this manuscript. The duration

indicates the time the avalanches are propagating on top of the fiber-optic array.

Number Date of occurrence Duration Characteristics

Avalanche 3005 2021-01-02 ? minutes
- Very small avalanche
- Did not reach the cable
- No surges visible

Avalanche 3009 2021-01-15 4 minutes

- Large transitional
powder snow avalanche
- Fast and dilute component
- 3 main surges
- Depositional tail

Avalanche 3016 2021-01-25 1 minute
- Powder snow avalanche
- No dense transition
- Depositional tail

Avalanche 3020 2021-01-27 0.5 minutes
- Small powder snow avalanche
- No dense transition
- One surge

Avalanche 3021 2021-01-28 1 minute
- Dense avalanche
- Depositional tail
- One big surge

Avalanche 3022 2021-01-28 2.5 minutes
- Large transitional powder
snow avalanche
- Depositional tail

Avalanche 3023 2021-01-28 3 minutes

- Large powder
snow avalanche
- Partial transition
- Fast and slow part
- Well separated
- Long tail

Avalanche 3024 2021-01-28 ? minutes
- Large transitional powder
snow avalanche
- Not over array

Avalanche 3026 2021-01-31 ? minutes - No avalanche visible

Avalanche 3027 2021-02-01 ? minutes
- Small one-surge
powder snow avalanche
- Not over array

Avalanche 3028 2021-02-01 ? minutes

- Large multi-surge
snow avalanche
- Not over array
- Too far away

Avalanche 3030 2021-02-08 ? minutes - No avalanche visible

Event 3036 2021-03-03 < 0.3 minutes
- Regional earthquake
M1.2 at Sanetschpass
- No avalanche
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Appendix C Additional plots537

Additional plots of the avalanche candidates in Tab. B1 with their corresponding538

predicted classes from the clustering algorithm can be found in the supplementary ma-539

terial.540

References541

Allstadt, K. E., Matoza, R. S., Lockhart, A. B., Moran, S. C., Caplan-Auerbach,542

J., Haney, M. M., . . . Malone, S. D. (2018). Seismic and acoustic sig-543

natures of surficial mass movements at volcanoes. Journal of Volcanol-544

ogy and Geothermal Research, 364 , 76-106. Retrieved from https://545

www.sciencedirect.com/science/article/pii/S0377027317306261 doi:546

https://doi.org/10.1016/j.jvolgeores.2018.09.007547

Alpaydin, E. (2020). Introduction to machine learning. MIT press.548

Ammann, W. J. (1999). A new swiss test-site for avalanche experiments in the vallée549

de la sionne/valais. Cold Regions Science and Technology , 30 (1-3), 3–11.550

Arattano, M., & Marchi, L. (2008). Systems and sensors for debris-flow monitoring551

and warning. Sensors, 8 (4), 2436–2452.552

Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learn-553

ing (Vol. 4) (No. 4). Springer.554

Boore, D. M., & Joyner, W. B. (1997). Site amplifications for generic rock sites. Bul-555

letin of the seismological society of America, 87 (2), 327–341.556

Capelli, A., Kapil, J. C., Reiweger, I., Or, D., & Schweizer, J. (2016). Speed and557

attenuation of acoustic waves in snow: Laboratory experiments and modeling558

with biot’s theory. Cold Regions Science and Technology , 125 , 1–11.559

Carroll, C., Turnbull, B., & Louge, M. (2012). Role of fluid density in shaping560

eruption currents driven by frontal particle blow-out. Physics of Fluids, 24 (6),561

066603.562

Chmiel, M., Walter, F., Wenner, M., Zhang, Z., McArdell, B. W., & Hibert,563

C. (2021). Machine learning improves debris flow warning. Geophysi-564

cal Research Letters, 48 (3), e2020GL090874. Retrieved from https://565

agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL090874566

(e2020GL090874 2020GL090874) doi: https://doi.org/10.1029/2020GL090874567

Dilley, M. (2005). Natural disaster hotspots: a global risk analysis (Vol. 5). World568

Bank Publications.569

Edwards, A., & Gray, J. (2015). Erosion–deposition waves in shallow granular free-570

surface flows. Journal of Fluid Mechanics, 762 , 35–67.571

Emberson, R., Kirschbaum, D., & Stanley, T. (2020). New global characterisation of572

landslide exposure. Natural Hazards and Earth System Sciences, 20 (12), 3413–573

3424.574

Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004575

to 2016. Natural Hazards and Earth System Sciences, 18 (8), 2161–2181.576

Gimbert, F., Tsai, V. C., & Lamb, M. P. (2014). A physical model for seismic noise577

generation by turbulent flow in rivers. Journal of Geophysical Research: Earth578

Surface, 119 (10), 2209–2238.579

Grimm, J. (2021). Cryoseismic event analysis on distributed strain recordings lever-580

aging statistical learning methods. MSc. Thesis, ETH Zürich.581
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