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Abstract

As the largest natural source of sulfur-containing gases into the atmosphere, ocean organism-derived dimethyl sulfide (DMS)

has been considered to play a critical role in the Earth’s climate system. Yet there are great uncertainties in modeling the

spatiotemporal variations of DMS and incomplete knowledge of influencing factors in different oceanic regions. Moreover,

little is known about the future change of global DMS, which limits our understanding of the feedback of marine ecosystem to

climate change. Here we develop an artificial neural network model and combine data mining approaches to address these issues.

Phytoplankton biomass and salinity are currently predominant factors associated with DMS variability in the coastal and Arctic

regions, respectively. In the mid- and low-latitude open oceans, nutrients and temperature are also crucial factors in addition to

radiation and mixed layer depth, and their relationships with DMS show reversals when passing certain thresholds. Although

the global average DMS concentration and emission slightly decline from 2005 to 2100, they may change considerably in specific

regions. In contrast to the DMS decreases in the low-latitudes mainly related with phosphate reduction and temperature rise

and in the North Atlantic subpolar gyre attributed to salinity decline, warming will cause DMS increase in the Southern Ocean

and sea ice loss will dramatically enhance DMS emission in the Arctic. Although the global negative feedback loop between

oceanic DMS and climate may not operate, the future spatial redistribution of DMS may lead to the change in cloud cover

pattern and significantly affect regional climate.

1



manuscript submitted to Global Biogeochemical Cycles 

 

Data-driven exploration of the variability, controls and future changes of dimethyl 1 

sulfide in the global surface ocean 2 

 3 

Shengqian Zhou1, Ying Chen1,2*, Fanghui Wang1, Yang Bao1, Guipeng Yang3,4,5, Honghai 4 
Zhang3,4,5, Yan Zhang1,2, Zongjun Xu1 5 

1Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of 6 
Environmental Science & Engineering, and Institute of Atmospheric Sciences, Fudan University, 7 
Shanghai 200438, China. 8 

2Institute of Eco-Chongming (IEC), Shanghai 202162, China. 9 

3Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory 10 
of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of 11 
China, Qingdao, Shandong 266100, China. 12 

4Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for 13 
Marine Science and Technology, Qingdao, Shandong 266071, China. 14 

5College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 15 
Shandong 266100, China. 16 

*Corresponding author: Ying Chen (yingchen@fudan.edu.cn) 17 

 18 

Key Points: 19 

 Machine learning can well capture the variability of dimethyl sulfide and unravel its 20 
relationships with environmental factors 21 

 Nutrients and temperature are also crucial factors influencing dimethyl sulfide variations 22 

in the mid- and low-latitude open oceans 23 

 The future changes of dimethyl sulfide concentration and emission have large spatial 24 
disparities and their global averages slightly decline 25 

  26 
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Abstract 27 

As the largest natural source of sulfur-containing gases into the atmosphere, ocean organism-28 
derived dimethyl sulfide (DMS) has been considered to play a critical role in the Earth’s climate 29 
system. Yet there are great uncertainties in modeling the spatiotemporal variations of DMS and 30 
incomplete knowledge of influencing factors in different oceanic regions. Moreover, little is 31 
known about the future change of global DMS, which limits our understanding of the feedback 32 
of marine ecosystem to climate change. Here we develop an artificial neural network model and 33 
combine data mining approaches to address these issues. Phytoplankton biomass and salinity are 34 
currently predominant factors associated with DMS variability in the coastal and Arctic regions, 35 
respectively. In the mid- and low-latitude open oceans, nutrients and temperature are also crucial 36 
factors in addition to radiation and mixed layer depth, and their relationships with DMS show 37 
reversals when passing certain thresholds. Although the global average DMS concentration and 38 
emission slightly decline from 2005 to 2100, they may change considerably in specific regions. 39 
In contrast to the DMS decreases in the low-latitudes mainly related with phosphate reduction 40 
and temperature rise and in the North Atlantic subpolar gyre attributed to salinity decline, 41 
warming will cause DMS increase in the Southern Ocean and sea ice loss will dramatically 42 
enhance DMS emission in the Arctic. Although the global negative feedback loop between 43 
oceanic DMS and climate may not operate, the future spatial redistribution of DMS may lead to 44 
the change in cloud cover pattern and significantly affect regional climate. 45 

Plain Language Summary 46 

Dimethyl sulfide (DMS) mainly from marine biota is a key precursor of sulfate aerosols 47 
generating cooling effect on Earth’s climate, but the response of DMS to global warming is 48 
highly uncertain with limited numbers of studies showing discrepant results. Based on decades-49 
long sea surface DMS observations, we established a machine learning model to systematically 50 
explore the variabilities of DMS and their relationships with different environmental variables 51 
across global ocean. Then the future changes of DMS are projected and the dominant positive or 52 
negative factors are identified. The DMS concentration and emission present overall slight 53 
decreases in the 21st century, and their changes and causes have huge spatial disparities. The 54 
negative feedback of DMS to climate warming may not exist on a global scale but the spatial 55 
pattern shift may have a significant impact on regional climate. This work provides new insights 56 
into DMS biogeochemistry from a different perspective compared to conventional models, which 57 
helps to promote our understanding of the role of DMS in changing climate. 58 

1 Introduction 59 

Dimethyl sulfide (DMS) mostly produced by ocean biota accounts for more than half of 60 
natural sulfur emissions and contributes substantially to sulfur dioxide in the troposphere 61 
(Andreae, 1990; Sheng et al., 2015) which can be oxidized to sulfuric acid and form sulfate 62 
aerosols (Barnes et al., 2006; Hoffmann et al., 2016). Sulfate aerosols play an important role in 63 
mitigation of global warming by both scattering solar radiation and altering cloud condensation 64 
nuclei (CCN) and albedo (Masson-Delmotte et al., 2021). Recent studies have proven that CCN 65 
over remote oceans and polar regions are primarily composed of non-sea-salt sulfate (nss-SO4

2–) 66 
(Park et al., 2021; Quinn et al., 2017). Given 70% coverage of the Earth’s surface by the ocean 67 
and weak influence of anthropogenic SO2 over open oceans, marine biogenic DMS can be the 68 
most important source of nss-SO4

2– and regulates regional and global climate (McCoy et al., 69 
2015). Accordingly, DMS has been suggested to be the key substance in the postulated negative 70 
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feedback of marine phytoplankton to climate warming (the “CLAW” hypothesis) (Charlson et 71 
al., 1987). However, there are still many knowledge gaps in testing the “CLAW” hypothesis 72 
(Quinn and Bates, 2011), and how oceanic DMS will respond to global warming is one of the 73 
most crucial puzzles. Therefore, accurate simulation of spatiotemporal variations of DMS in 74 
global oceans is required for understanding current atmospheric chemistry and climate system, 75 
and the prediction and attribution of DMS future trends are of great help for reducing the 76 
uncertainty of our knowledge about climate change. 77 

Many researches have attempted to explore the oceanic DMS dynamics but found that 78 
DMS production and consumption mechanisms are more complex than expected. The major 79 
precursor of DMS, dimethylsulfoniopropionate (DMSP), is synthesized mainly by phytoplankton 80 
in the photic zone and plays a variety of physiological functions in algal cells (McParland and 81 
Levine, 2018; Stefels, 2000; Sunda et al., 2002). The DMSP yield differs dramatically among 82 
algal species with the high-yielding Haptophytes and Dinoflagellates relative to Cyanobacteria 83 
and diatoms (Keller et al., 1989; Stefels et al., 2007), and DMS can be produced through DMSP 84 
intracellular and extracellular cleavage by both algae and bacteria (Alcolombri et al., 2015; 85 
Zhang et al., 2019). Therefore, the oceanic DMS produced via multiple pathways can be affected 86 
by many biotic and abiotic factors, including temperature, salinity, solar radiation, mixed layer 87 
depth (MLD), nutrients, oxygen, acidity, etc. (Omori et al., 2015; Simó and Pedrós-Alió, 1999; 88 
Six et al., 2013; Stefels, 2000; Stefels et al., 2007; Vallina and Simó, 2007; Zindler et al., 2014). 89 
In addition, seawater DMS has multiple removal pathways (bacterial consumption, 90 
photodegradation, sea-to-air ventilation, etc.), further complicating the DMS cycling (Stefels et 91 
al., 2007). Tesdal et al. (2016) have evaluated diverse approaches for estimating the DMS 92 
variability in global ocean surface, and found great difference among the results regardless of 93 
data-based climatologies, empirical models or process-embedded prognostic models. In addition 94 
to the large uncertainty in mapping DMS distribution, the understanding of its controlling factors 95 
and future changes in different regions is more challenging, as a result of potential inconformity 96 
on different spatial and temporal scales. For example, the dominant controlling factor of DMS 97 
variation on a global scale may be less important in a specific region. Besides, the key factor 98 
driving the seasonal cycle of DMS, such as solar radiation dose (SRD), may not induce the long-99 
term change of DMS (Vallina et al., 2007b). By contrast, the minor factors for DMS seasonal 100 
variation may be essential to the DMS change under global warming. 101 

In recent years, the application of data-driven approaches like machine learning to Earth 102 
system science has drawn more and more attention. Compared with conventional approaches and 103 
process models, machine learning explores larger function space and captures more hidden 104 
information from large amounts of datasets, hence it often provides a better simulation and 105 
prediction performance (Bergen et al., 2019; Reichstein et al., 2019; Zheng et al., 2020). A recent 106 
study has demonstrated that artificial neural network (ANN) can capture more (~66%) of the raw 107 
data variance than multilinear regression (~39%) in producing the global climatology of DMS 108 
with monthly temporal resolution (Wang et al., 2020). However, this work is lack of the in-depth 109 
exploration of relationships between DMS and environmental variables in different regions. The 110 
construction of ANN and other machine learning models do not depend on the understanding of 111 
explicit mechanisms. Due to the “black-box” nature of these models, the complex relationships 112 
between target and predictors are stored in nonobvious form and not directly available (Murdoch 113 
et al., 2019). Therefore, machine learning models are generally less robust in physical 114 
interpretability than theory-driven models (Hou et al., 2022; Molnar, 2020). However, by 115 
integrating with appropriate data mining approaches, machine learning models can also be 116 
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interpretable to some extent and the output-input relationships may be extracted indirectly 117 
(Murdoch et al., 2019). 118 

Here we established a DMS-simulation model based on Global Surface Seawater DMS 119 
(GSSD) database (Kettle et al., 1999), datasets of multiple oceanic variables, and ANN approach. 120 
Then we simulated the variation of DMS across global oceans and explored the relationships 121 
between DMS and environmental variables in 9 separated oceanic regions through global 122 
sensitivity analysis and partial dependence plot. Taking the sixth Coupled Models 123 
Intercomparison Project (CMIP6) ensemble as the ANN model inputs, the trends of oceanic 124 
DMS concentrations and emissions from present to 2100 were projected and the leading 125 
influence factors were identified in combination with a series of sensitivity experiments. 126 

 127 

2 Materials and Methods 128 

2.1 ANN Training and Validation 129 

The ANN model incorporated 9 variables as input features, including chlorophyll a (Chl 130 
a), sea surface temperature (SST), MLD, nitrate, phosphate, silicate, dissolved oxygen (DO), 131 
downward short-wave radiation (DSWF) and sea surface salinity (SSS). The data sources and 132 
relevant information of 9 input variables and DMS are listed in Table 1. The GSSD database 133 
contains totally 87,801 DMS measurements obtained from 266 cruises and fixed-site observation 134 
campaigns during 11 March 1972 to 27 August 2017 (last access: 1 April 2020). The data match-135 
up, filtration and binning were carefully performed as described in Text S1. After these data 136 
preprocessing approaches, a total of 34,118 samples were obtained for the ANN model 137 
construction and their spatial distribution is shown in Figure 1a, which covers all major regions 138 
of global ocean. 139 

As for the ANN training, the target variable is log10(DMS), and the input variables 140 
include log10(Chl a), SST, log10(MLD), log10(nitrate), log10(phosphate), log10(silicate), DO, 141 
DSWF, and SSS. All variables were standardized before training. We randomly selected 5% of 142 
binned samples (n = 1706) to be entirely excluded from training, as a subset for global validation 143 
and overfitting test. Then, the remaining samples (n = 32,412) were randomly split into three 144 
parts, that is, 70% for training, 15% for validation, and 15% for testing. Our feed-forward back-145 
propagation (BP) neural network contains one hidden layer with 20 nodes, and the training 146 
algorithm is the Levenberg-Marquardt algorithm. Mean squared error (MSE) is chosen as the 147 
indicator for performance evaluation during training, and the upper limit of the number of 148 
iterations in each training session is 1000. The training processes were carried out with Neural 149 
Network Toolbox on Matlab R2014b, and the URL link to the training code and obtained ANN 150 
model is given in Open Research. We have trained the ANN for 100 times to improve the 151 
network generalization and performance (Sigmund et al., 2020) and each training session started 152 
independently with a new division of those 32,411 samples. The average output of 100 trained 153 
ANNs showed a much higher consistency with target than individual ANN. But as the number of 154 
training sessions (Ntraining) increases, the simulation performance tends to be stable when Ntraining 155 
is larger than 100. Therefore, we used the average output of 100 ANNs as our final model output. 156 
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We divided the global ocean into 9 regions based on Longhurst’s biomes (Longhurst, 157 
1998). There are 6 biomes in Longhurst’s definition, including Coastal, Polar_N, Polar_S, 158 
Westerlies_N, Westerlies_S, and Trades (the .shp file of Longhurst’s biomes and provinces was 159 
downloaded from https://www.marineregions.org/downloads.php#longhurst). We further divided 160 
Westerlies_N into Westerlies_N_Pacific and Westerlies_N_Atlantic, and divided Trades into 161 
Trades_Pacific, Trades_Indian, and Trades_Atlantic as shown in Figure 1b. In order to evaluate 162 
whether there is a spatial preference of DMS simulation, the comparisons of simulated and 163 
observed DMS concentrations in each region were conducted. 164 

There may be intrinsic connections between the excluded subset and trained dataset, 165 
because the data from the same cruise or fixed-site campaign have significant continuity. To 166 
further evaluate the reliability of ANN model, we compared the simulated DMS concentrations 167 
with the observational data not archived in GSSD database, which are obtained from 35 cruises 168 
in Northeast Pacific, West Pacific and North Atlantic (number of data = 6,478). These data 169 
include: (1) off-line sampling and measurement data of 31 cruises of Line P Program in 170 
Northeast Pacific (9 February 2007 – 26 August 2017, number of data = 177, 171 
https://www.waterproperties.ca/linep/index.php), (2) underway measurements during SONNE 172 
cruise 202/2 (TRANSBROM) in West Pacific (Zindler et al., 2013) (9 – 23 October 2009, number 173 
of data = 115, https://doi.org/10.1594/PANGAEA.805613), (3) underway measurements during 174 
3 cruises of the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) (Behrenfeld et 175 
al., 2019; Bell et al., 2021) (11 – 30 November 2015, 14 May – 4 June 2016, 6 – 24 September 176 
2017, number of data = 6,186, https://seabass.gsfc.nasa.gov/naames). 177 
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 178 

Figure 1. (a) The distribution of 34,118 DMS observational data (after matchup, filtration, and 179 

binning) used for constructing the ANN model. The grid size is 11. (b) Nine oceanic regions 180 
separated on the basis of Longhurst’s biomes. 181 

Table 1.  182 

The Data Sources and Related Information of Variables Used for Developing the ANN Model, 183 
DMS Simulation, and Flux Calculation 184 

Variable Data source URL 
Temporal 
resolution 

Temporal 
coverage 

Spatial grid 

DMS 
GSSD 

database 
https://saga.pmel.n

oaa.gov/dms/ 
- 

Mar. 1972 – 
Aug. 2017 

- 

Chl a 
GSSD 

database 
https://saga.pmel.n

oaa.gov/dms/ 
- 

Oct. 1980 – 
Aug. 2017 

- 
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SeaWiFS 
https://oceandata.sc

i.gsfc.nasa.gov/ 

Daily, 8-
day, 

monthly 

Sep. 1997 - 
Dec. 2011 

0.083 
Aqua-

MODIS 
Jul. 2002 - 

present 

SST 
NOAA OI 
SST V2 

https://psl.noaa.gov
/data/gridded/data.
noaa.oisst.v2.highr

es.html 

Daily 
Sep. 1981 - 

present 0.25°0.25° 

MLD 

NASA 
ECCO V4r4 

https://data.nas.nas
a.gov/ecco/data.ph
p?dir=/eccodata/llc
_90/ECCOv4/Rele

ase4 

Daily 
Jan. 1992 - 
Dec. 2017 

LLC90 DSWF 

SSS 

Nitrate 

WOA18 
https://www.nodc.n
oaa.gov/OC5/woa1
8/woa18data.html 

Monthly 
climatology 

- 1°1° 
Phosphate 

Silicate 
DO 

WS 
NASA 

ECCO V4r4 

https://data.nas.nas
a.gov/ecco/data.ph
p?dir=/eccodata/llc
_90/ECCOv4/Rele

ase4 

Daily 
Jan. 1992 - 
Dec. 2017 

LLC90 

SI 
NOAA OI 
SST V2 

https://psl.noaa.gov
/data/gridded/data.
noaa.oisst.v2.highr

es.html 

Daily 
Sep. 1981 - 

present 0.25°0.25° 

Note. The LLC90 (Lat-Lon-Cap 90) grid is a native grid used for ECCO data, which has 5 faces 185 
containing 13 regional tiles covering the global ocean. The spatial resolution of oceanic grids 186 
varies from 22 km to 110 km (Forget et al., 2015). 187 

 188 

2.2 Simulating Spatiotemporal Patterns of Sea Surface DMS 189 

First, we constructed the daily gridded dataset of input variables with a spatial resolution 190 

of 11 during 2005 to 2014 using the data sources listed in Table 1 (except in-situ Chl a data). 191 

For those datasets with a higher resolution than 11, values in each 11 grid were averaged. 192 
As for satellite Chl a data, the priority level was the same as mentioned in Text S1, and SeaWiFS 193 
and Aqua-MODIS datasets were combined. As for nutrients and DO, only monthly climatology 194 
was provided in WOA18 and the same value was used for all the days of each month. Hence, 195 
these variables lack information on inter-annual and day-to-day variations, but the spatial and 196 
monthly variations are well captured. After obtaining the input dataset, the spatiotemporal 197 
distribution of sea surface DMS concentrations was simulated using the ANN model. Then the 198 
sea-to-air fluxes of DMS were calculated as the products of DMS concentrations and total 199 
transfer velocities (Kt). In brief, we adopted the bubble scheme (Woolf, 1997) to calculate the 200 
water-side transfer velocity (kw), and the parameterization schemes proposed by Johnson (2010) 201 
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to calculate the air-side transfer velocity (ka) and Henry’s law constant (H). The inhibitory effect 202 
of sea-ice cover on gas transfer was considered. More detailed information is described in Text 203 
S2. The implementation of above approaches to calculate DMS fluxes follows Galí et al. (2019). 204 

2.3 Global Sensitivity Analysis and Partial Dependence Plot 205 

ANN is conventionally seen as a “black box” that there is no clear functional relationship 206 
between the output and input variables. In order to demystify this “black box”, we used global 207 
sensitivity analysis (GSA) and partial dependence plot (PDP) to reveal the dominant variables 208 
associated with DMS spatiotemporal varaibility and how DMS changes with the change of each 209 
variable in different oceanic regions. When exploring the relative importance of one variable, 210 
GSA considers the full-space variabilities of all variables simultaneously, rather than hold other 211 
variables at certain values for local sensitivity analysis (LSA) which only captures a small 212 
portion of the input variability (Wagener and Pianosi, 2019). Therefore, GSA can provide more 213 
rigorous results than LSA. Here we applied a variance-based GSA by calculating first-order 214 

Sobol indices using quasi-Monte Carlo approach (Sobol′, 2001; Sobol′ and Myshetskaya, 2008). 215 

The indices in each oceanic region were calculated independently based on the same unified 216 
ANN model. This method has been widely used to explore which input mostly influence the 217 
model predictions in the field of environmental sciences (Girard et al., 2016; Sigmund et al., 218 
2020; Wagener and Pianosi, 2019). As for PDP, it graphically illustrates the marginal effect of an 219 
input variable on the model output, which can be interpreted as the response of output to the 220 
change of this input (Haaf et al., 2021; Molnar, 2020; Qin et al., 2022). PDP looks at the input 221 
variable of interest across a specified range. At each value of this variable, the output values for 222 
all input samples are simulated and then averaged. The detailed calculation processes are 223 
provided in Text S3. 224 

2.4 DMS Projection Based on CMIP6 Ensemble 225 

The future (2015–2100) changes of sea surface DMS concentrations and sea-to-air fluxes 226 
are projected by applying our ANN model and the ensemble of 11 earth system models in 227 
CMIP6 including ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CESM2-WACCM, GFDL-228 
ESM4, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0 and 229 
NorESM2-MM. The projection was subjected into two Shared Socioeconomic Pathway 230 
scenarios SSP2-4.5 and SSP5-8.5 (with radiative forcing approaching 4.5 and 8.5 W m–2 in 2100, 231 
respectively). The sea surface DMS concentrations and fluxes during 2005–2014 are also 232 
simulated using the Historical scenario outputs of same CMIP6 models. All model datasets were 233 
downloaded from https://esgf-node.llnl.gov/search/cmip6/ (last access: 23 November 2020). The 234 
data availability of involved variables for each model is listed in Table S2 and the model 235 
selection for Chl a and three nutrients are discussed in Text S4. Thresholds were set for some 236 
variables as shown in Table S3, while values outside the range were excluded. Then the data of 237 
all selected models for each variable were averaged and used as the model inputs to simulate 238 
DMS concentrations. Same treatments were applied for near-surface wind speed and sea-ice 239 
cover engaged in flux calculation. As for those variables need to be log transformed, the 240 
transformation was conducted before the averaging. The time resolution of all datasets was one 241 

month, and the spatial grids were unified to 11. 242 
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2.5 Sensitivity Experiments 243 

In order to infer the dominant factors accounting for the projected future change of DMS 244 
under global warming, the following sensitivity experiments were designed to isolate the effect 245 
of each variable. First, the abovementioned DMS projection with all input variables changing 246 
with time was set as the Reference Experiment. Then, we set an experiment for each variable 247 
(Variable Experiment) to exam DMS sensitivity to the variable’s long-term change. Taking SST 248 
Experiment as an example, the SST input was fixed to the values in 2014, while all other input 249 
variables still change year by year. If the simulated DMS change (between 2091–2100 and 250 
2005–2014) of SST Experiment was lower (higher) than that of Reference Experiment, it would 251 
suggest that the change of SST made a positive (negative) effect on DMS during the simulation 252 
period. The difference of DMS changes between Reference Experiment and each Variable 253 
Experiment represented the effect intensity of each variable which was used to identify dominant 254 
negative and positive factors. 255 

3 Results and Discussion 256 

3.1 Simulation of Ocean Surface DMS by Machine Learning 257 

As shown in Figure 2a, the newly-developed ANN model captures a substantial part of 258 
data variance globally (log10 space R2 = 0.624 and RMSE = 0.267). The simulation perfomance 259 
for 5% of dataset not used in training (R2 = 0.604 and RMSE = 0.274) is close to that for trained 260 
dataset, suggesting no obvious overfitting. The ANN model exhibits much better performance 261 

compared to previous empirical and process-based models (R2 = 0.010.14) (Tesdal et al., 2016) 262 

as well as a recent algorithm based on satellite data (R2 = 0.50) (Galí et al., 2018). In addition, it 263 
also shows good capability of simulation in each of 9 separated oceanic regions without 264 

significant spatial preference (Figure 2c, R2 = 0.3760.694, RMSE = 0.152~0.304). 265 
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  266 

Figure 2. Comparisons between ANN-simulated and observed DMS conentrations in GSSD 267 
database. (a) Scatter density for all simulated versus observed DMS concentration data used in 268 
ANN training. (b) Comparison between the simulation results and the 5% of GSSD observational 269 
data not used for training. (c) Scatter density for simulated versus observed DMS concentration 270 
data in each of 9 regionss. The number of data (n), the log10 space R2 and root mean squared 271 
error (RMSE) are also displayed. 272 
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 273 

The comparisons between observed DMS concentrations not archived in GSSD dataset 274 

and ANN simulation results in corresponding 11 grids and dates of samples are shown in 275 

Figure 3. As for the Line P Program, it should be noted that there are 7 cruises included in 276 
GSSD database, but those data were obtained by underway measurements, different from the off-277 
line data used here. Hence, these cruises were retained and marked in Figure 3a but eliminated in 278 
subsequent statistical analysis (Figure 3c-3d). It can be seen that the simulation well captures the 279 
seasonal variation, which is generally August > June > February. In addition, the simulation can 280 
also partially reproduce the changes between different stations, though the performance is not as 281 
good as the overall comparison between different cruises. As for underway measurements in 282 

West Pacific and North Atlantic, the data were binned by day and 11 grid and then compared 283 

with simulated DMS concentrations (Figure 3c). Most of the simulated values are within the 284 
range of 1/3 to 3 times of observations. If all above data are binned by each cruise, the 285 
simulations will demonstrate higher consistency with observations as shown in Figure 3c (log10 286 
space R2 = 0.784, RMSE = 0.227). Therefore, the ANN model has high fidelity in simulating the 287 
concentrations of sea surface DMS. 288 

 289 

Figure 3. Comparisons between the ANN model simulation results and DMS observational data 290 
not archived in GSSD database. (a) Time series of simulation results and DMS observational 291 
data obtained from Line P Program. The different markers represent different stations of Line P. 292 
The blue shades cover the data obtained from the cruises included in GSSD database but with a 293 
different method. (b) Scatter plot of simulated versus observed DMS concentrations. (c) The 294 
same as panel b but for averaged data of each cruise. The yellow lines and shaded bands are 295 
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linear fittings and corresponding 95% confidence intervals for log10 space data. The R2 and 296 
RMSE displayed in figure also corresponds to log10 space data. 297 

 298 

By applying the ANN model, we obtained a gridded dataset (11) of daily DMS 299 
concentrations in surface ocean and sea-to-air fluxes spanning from 2005 to 2014 (referred to as 300 
Z22 dataset). The simulation of atmospheric DMS chemistry by chemical transport models may 301 
be effectively improved by taking this dataset as marine DMS emission inventory, due to its 302 
higher time resolution than previously used monthly climatology (Hodshire et al., 2019; Novak 303 
et al., 2021; Woodhouse et al., 2013). Our estimate of globally area-weighted annual mean 304 
concentration of sea surface DMS is 1.86 nM, which is significantly lower than those derived 305 
from the SRD-based parameterization (2.71 nM, Vallina and Simó, 2007) and the interpolation-306 
based climatologies (2.43 nM and 2.26 nM from the second version L11 and the third version 307 
H22 climatologies, respectively) (Hulswar et al., 2022; Lana et al., 2011), but slightly higher 308 
than those estimated by the satellite-based algorithm (1.63 nM, referred to as G18) (Galí et al., 309 
2018) and another ANN model (1.74 nM, referred to as W20) (Wang et al., 2020). High DMS 310 
concentrations (> 2.5 nM) occur in the North Pacific and subarctic Atlantic during June-August 311 

and at the 40 S of Southern Ocean and near Antarctic continent during December-February 312 

(Figure 4a). DMS is also abundant in the eastern Pacific and Benguela upwelling zones, where 313 
nutrient-rich deep waters support high primary production. These overall seasonal and 314 
geographical distributions generally accord with the previous estimates of global DMS fields, as 315 
well as the observed DMS maximum in summer in subtropical to polar open oceans associated 316 
with the strongest radiation and water stratification (Simó and Pedrós-Alió, 1999; Vallina and 317 
Simó, 2007). Nonetheless, in specific regions our simulation (DMSZ22) may show considerable 318 
differences with other DMS estimates (Figure S4-S5). Compared with DMSL11, DMSZ22 is 319 
significantly lower at high latitudes in summer and in South Indian Ocean and Southwest Pacific 320 
Ocean during December to February (Figure S4a). As an update of L11, DMSH22 shows much 321 
less divergence with DMSZ22 in northern high latitudes, South Indian Ocean and Southwest 322 
Pacific Ocean, but its summertime concentrations around the Antarctic are much higher than 323 
DMSZ22 (Figure S4b). DMSG18 generally shows milder spatial variation in open oceans and 324 
lower values (especially in North Pacific and coastal Antarctic during summer) than DMSZ22 325 
(Figure S4c). DMSW20 exhibits the highest consistency with DMSZ22 in spatiotemporal 326 
distribution patterns among the four previous estimates. But there is a significant difference that 327 

DMSZ22 is generally higher in the region of ~40 S and 0–120 W, and forms a complete annular 328 

high-DMS area at 40 S in austral summer (Figure S4d and Figure 4a). 329 

The spatial and seasonal patterns of DMS flux follow its concentration variability with 330 
the exception of polar regions where sea-ice cover may prevent the gas transfer to the 331 
atmosphere (Figure S7). We obtain highly consistent distributions (Fig. 4b and Figure S6-S7) 332 
and values (global mean DMS concentration of 1.88 nM and emission of 19.2 Tg S yr–1) when 333 
substituting model inputs by Historical-scenario datasets of CMIP6, suggesting that CMIP6 334 
datasets could be used to project the long-term DMS trend through the ANN model. 335 
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 337 

Figure 4. Seasonal distribution of simulated DMS concentrations in the global ocean surface 338 
during 2005–2014. (a) Simulated seasonal climatology of global sea surface DMS concentrations 339 
during 2005 to 2014 on the basis of the same input datasets as training. (b) The latitudinal 340 
distributions of simulated DMS concentration, transfer velocity, and sea-to-air flux in different 341 
seasons during 2005 to 2014. The solid and dashed lines correspond to the simulations on the 342 
basis of the same input datasets as training and CMIP6 datasets, respectively. 343 

 344 

3.2 Relationships between DMS and Environmental Factors 345 

By applying GSA and PDP (see Methods and Text S3), we were able to identify the main 346 
environmental factors related with the DMS variability and illustrate the relationship between 347 
DMS concentration and each factor in different oceanic regions. For coastal region, the most 348 
important factor is Chl a (Figure 5), which shows a monotonically positive relationship with 349 
DMS (Figure 6), mainly attributed to stronger biogenic sulfur producing with higher 350 
phytoplankton biomass. In the Arctic region (Polar_N), the top two controlling factors are SSS 351 
and Chl a (Figure 5), and they both exhibit positive relationships with DMS (Figure 6). In this 352 
region, high SSS is generally accompanied with the inflow of more saline, warmer and nutrient-353 
rich Atlantic water mass (the so-called "Atlantification") (Figure S8), where high abundances of 354 
Phaeocystis pouchetii were generally found (Schoemann et al., 2005; Vogt et al., 2012). In 355 
addition, both seasonal and decadal observations showed that enhanced Atlantification led to an 356 
increase in the summertime proportion of Phaeocystis pouchetii and decrease of diatoms (Nöthig 357 
et al., 2015; Orkney et al., 2020; Reigstad et al., 2002). Phaeocystis is likely one of major 358 
contributors to dimethylated sulfur compounds at high latitudes (Galí et al., 2021). Therefore, the 359 
close link between major DMSP-producing phytoplankton and saline Atlantic waters may partly 360 
explain why the SSS is a key influencing factor of the spatiotemporal variations of DMS in the 361 
Arctic region. It should be noted that salinity change and water stratification caused by sea-ice 362 
melt may also affect phytoplankton biomass and community structure (Ardyna and Arrigo, 2020; 363 
Galí et al., 2021), but the specific influence of sea-ice melt on DMS remains to be studied. Our 364 
results show that the coastal and Arctic regions belong to bloom-forced regime for DMS cycling, 365 
which is consistent with previous statements (Toole and Siegel, 2004). The importance of Chl a 366 
to DMS in the Arctic can also explain why good correlation between DMS and net primary 367 
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productivity occurred therein, which is a prerequisite for using ice-core MSA concentrations to 368 
reconstruct multi-century change of subarctic oceanic productivity (Osman et al., 2019). 369 
Nonetheless, Chl a is not a dominant factor in mid-latitude and tropical open oceans 370 
(Longhurst’s Westerlies and Trades biomes (Longhurst, 1998)), agreeing with the mismatch 371 
between annual cycles of DMS and Chl a, i.e. “DMS summer paradox” (Galí and Simó, 2015; 372 
Simó and Pedrós-Alió, 1999), which corresponds to the stress-forced regime. Instead, DSWF 373 
and MLD generally rank among the top three key factors, and DMS increases with the increase 374 
of DSWF and the decrease of MLD when MLD < 140 m (Figure 5-6), consistent with the 375 
significant role of SRD in controlling the DMS variation in upper mixed layer (Vallina and 376 
Simó, 2007; Vallina et al., 2007a). The consistency between former knowledge and our results of 377 
DMS controls can well prove that the combination of machine learning, GSA, and PDP 378 
approaches is a viable way to explore the complex relationships between DMS and various 379 
environmental factors. 380 

Macronutrients are also important factors in mid-latitude and tropical oceans, such as 381 
nitrate in Westerlies_N_Pacific and Westerlies_S; and phosphate in Westerlies_N_Atlantic, 382 
Westerlies_S, Trades_Pacific, and Trades_Atlantic (Figure 5). Nutrients demonstrate negative 383 
and positive effects on DMS at their low and high concentrations respectively (Figure 6), with 384 
the turning points of 0.030–0.122 μmol kg–1 nitrate and 0.025–0.032 μmol kg–1 phosphate in 385 
three Trades regions and 0.62–14.2 μmol kg–1 nitrate and 0.021–0.11 μmol kg–1 phosphate in 386 
Westerlies. High nutrients normally supply flourishing phytoplankton biomass leading to a high 387 
production of biogenic sulfur. However, in extremely nutrient-depleted regime, the biosynthesis 388 
of DMSP and its cleavage into DMS and acrylate may also be enhanced, which act as a 389 
substitute of nitrogen-containing osmolytes like glycine betaine (Stefels, 2000), dissipate the 390 
excess reduced sulfur and carbon under unbalanced growth (Stefels, 2000; Stefels et al., 2007), 391 
or establish an anti-oxidation system to eliminate reactive oxygen species (ROS) (Sunda et al., 392 
2002; Sunda et al., 2007). Moreover, nitrate may also enhance the DMS removal by photolysis 393 
(Bouillon and Miller, 2005; Toole et al., 2004), although it usually plays a secondary role 394 
compared to chromophoric dissolved organic matter (CDOM) (Galí et al., 2016). This 395 
mechanism may be particularly important in the Westerlies_S where nitrate concentrations are 396 
high and show mainly a negative relationship with DMS (Figure 6). As diatoms are generally 397 
low-DMSP producers (Keller et al., 1989), the importance of silicate to DMS is only found in 398 
Weterlies_S where the dominant phytoplankton group varies clearly between diatoms and other 399 
species around the year (Alvain et al., 2008). In this region, silicate ranks the second important 400 
factor and shows an inverse relationship with DMS when its concentration is within the range of 401 
0.16–22.7 μmol kg–1. 402 

Sea surface temperature is the most important factor in southern polar region (Polar_S) 403 

(Figure 5), and a sharp increasing trend of DMS is found with the decreasing SST from 4.7 C 404 
(Figure 6). The Southern Ocean is the largest high-nutrient low-chlorophyll (HNLC) region with 405 
the primary productivity limited by iron. In the Antarctic shelf, iron is much more abundant 406 
supporting higher seasonal productivity compared to off-shelf area (Charette et al., 2013; 407 
Tagliabue et al., 2012), although the SST of shelf is generally lower (Figure S9). In addition, 408 
Phaeocystis antarctica are dominant DMSP producers in Polar_S (DiTullio et al., 2000; Wang et 409 
al., 2015; Wang et al., 2018), which well adapt to low temperature (Schoemann et al., 2005) and 410 
often bloom with sea ice melt in the Antarctic shelf and the Ross Sea (DiTullio et al., 2000), 411 
where our simulated DMS concentrations are also relatively high (Figure S9). Additionally, 412 



manuscript submitted to Global Biogeochemical Cycles 

 

culture experiments have corroborated that low temperature can stimulate the DMSP production 413 
by Phaeocystis antarctica and subsequent DMS release (Baumann et al., 1994; Wittek et al., 414 
2020) since DMSP may act as cryoprotectant (Stefels, 2000; Stefels et al., 2007). Therefore, the 415 
spatial overlap of high biomass of DMSP producer with low SST and the cryoprotective effect of 416 
DMSP at cold temperature may both contribute to the negative relationship between DMS and 417 
SST in the Polar_S. In Trades biomes, SST is also an important factor showing negative 418 
relationship with DMS, but the physiological mechanism may be different from that in Polar_S. 419 
Together with Westerlies biomes and Polar_N, it seems that there is an optimum SST between 420 

10–20 C at which the relationship between DMS and SST shifts from positive to negative 421 

(Figure 6). Similar relationships have been reported between surface Chl a concentrations and 422 

SST with the turning point at around 14 C (7.18–21.06 C), attributed to the combination of a 423 
positive effect of warming on phytoplankton growth rate and its negative effect on nutrients 424 
supply to more stratified upper layer (Feng et al., 2021). Although Chl a concentration has little 425 
contribution to DMS seasonal dynamics in tropical and temperate open oceans, the long-term 426 
DMS evolution driven by the change of phytoplankton biomass and community composition 427 
caused by the combined effects of SST and nutrients is possible. 428 

It is noteworthy that only the first-order Sobol indices are calculated here, which means 429 

our GSA only reveals the “main effect” of individual variable. Further studies, like the derivation 430 

of second- or third-order Sobol indices, need to be conducted in the future to better dissect the 431 

controlling factors, their synergistic effects, and underlying biogeochemical processes. 432 
Moreover, the PDP is a global method (Molnar, 2020), which presents the average marginal 433 
effect of a certain factor on DMS concentration across all seasons and the entire space. Hence, 434 
the PDP-revealed relationship between DMS and this factor cannot be interpreted as a universal 435 
law that holds in every place or every season. 436 
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 438 

Figure 5. The first-order Sobol indices of input variables for different oceanic regions. A larger 439 

value indicates relatively higher importance of this variable. The error bars represent the standard 440 
deviations of 20 times calculation. 441 
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 443 

Figure 6. Partial dependence plots for each variable in different regions. 444 

 445 

3.3 DMS Change under Global Warming and Influencing Factors 446 

The future changes of sea surface DMS (2015-2100) under SSP2-4.5 and SSP5-8.5 447 
scenarios were simulated by the ANN model using CMIP6 ensemble and their dominant 448 
influencing factors were untangled. The global mean concentrations of oceanic DMS decline to 449 
1.78 and 1.75 nM in 2091-2100 (decrease by 5.1% and 7.0% compared to 1.88 nM during 2005-450 
2014) under SSP2-4.5 and SSP5-8.5, respectively. The spatial pattern of the DMS change 451 
matches well between these two scenarios, while the degree of change under SSP5-8.5 is 452 
relatively more significant (Figure 7a and Figure S10a). Above half (63.0–64.2%) of global 453 
oceans exhibit a decreasing trend (P < 0.05 for linear regression), especially in the vast tropical 454 
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and subtropical Pacific oceans and the subpolar gyre of North Atlantic. The increasing trend will 455 
take place mainly in the Southern Ocean, Antarctic shelves, North Pacific, the subtropical gyre 456 
of North Atlantic and part of the Arctic and Indian Oceans, which totally occupy 24.6–27.0% of 457 
global oceanic area. 458 

The decreasing trend of DMS concentration in tropical and subtropical Pacific oceans is 459 
predominantly related with the phosphate reduction and SST increase (Figure 8-9 and Figure 460 
S13-S15). The phosphate concentration and SST in this region are mostly above the turning 461 
points revealed by PDPs and demonstrate positive and negative relationships with DMS 462 
respectively, hence their future changes will both result in the decline of DMS (Figure 9a). 463 
Additionally, the overall phytoplankton biomass may decline in the warmer and nutrient-464 
deficient ocean evidenced by both long-term observations (Boyce et al., 2010) and numerical 465 
modeling (Kwiatkowski et al., 2019), whereas picophytoplankton (cyanobacteria 466 
Prochlorococcus and Synechococcus and picoeukaryotes) are suggested to be promoted 467 
(Flombaum et al., 2013; Flombaum et al., 2020). Therefore, picophytoplankton may outcompete 468 
high-DMSP producers (such as Haptophyceae and Dinophyceae) in the mid- or low-latitudes, 469 
and such community shifts are likely to be one mechanism for DMS decrease. In addition to 470 
Pacific, the negative effects of these two factors on DMS in low- to mid-latitude Atlantic and 471 
Indian Oceans are also universal and significant (Figure 9c and Figure S14-S15). In contrast, the 472 
phosphate reduction and SST rise in the Arctic Ocean may lead to DMS increase because their 473 
values are below the turning points (Figure 9a). But in high-latitude Southern Ocean near the 474 

Antarctic (> 55 S, Polar_S), the increasing SST will make a negative effect probably due to the 475 
cryoprotective function of DMSP and its high production in extremely cold waters as shown in 476 
PDP (Figure 6). Therefore, the same future trend of a specific factor may cause totally different 477 
effects on DMS changes in different regions, which is highly dependent on the background 478 
conditions. In Polar_S, the positive effect of silicate reduction will surpass the abovementioned 479 
negative effect of SST and lead to a net DMS increase, which may be attributed to the species 480 
succession from diatom to high-DMSP producers such as Phaeocystis antarctica (Cameron-481 
Smith et al., 2011; Wang et al., 2018) (Figure 8-9 and Figure S13-S15). 482 

The poleward shifts of oceanic physical and ecological zones generally occur under 483 
global warming (Barton et al., 2016; Yang et al., 2020). Similarly, the high-DMS regions in the 484 
North Pacific and Southern Ocean (Westerlies_S) also move to higher latitudes (e.g. the DMS 485 

concentration in the Southern Ocean peaks at 43–44 S during 2091–2100 under SSP5-8.5 486 

compared with 40–41 S during 2005–2014, Figure 7a) mainly explained by the SST rise and 487 

increased stratification (Figure 9). This is particularly important owing to the critical role of 488 

marine biogenic sulfate in cloud formation over the lower Southern Ocean latitudes (35–45 S) 489 

(McCoy et al., 2015), and change of cloud cover pattern may influence the regional atmospheric 490 
circulation and albedo. A recent study based on global observations from 1970 to 2018 showed 491 
that the summertime mixed layer was deepening concurrently with the increase of upper ocean 492 
stratification in response to global warming (Sallee et al., 2021). However, current CMIP6 493 
models do not capture these trends, which may result in considerable uncertainties for our 494 
projection and calls for the model improvement regarding this issue in next CMIP generation. 495 

Given the positive relationship between DMS and SSS (Figure 6), the dramatic decrease 496 
of SSS in the North Atlantic subpolar gyre (Figure 8 and Figure S13) associated with the 497 
strengthening of global water cycle (Durack et al., 2012), the freshwater influx from the Arctic 498 
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Ocean and the Greenland (Huang et al., 2014), and the weakening of Atlantic meridional 499 
overturning circulation (AMOC) (Zhu and Liu, 2020) is found to be the dominant factor 500 
accounting for DMS decline (Figure 9c and Figure S14b). It should be noted the decline in DO 501 
will cause universal positive effect on DMS in most of low- to mid-latitude oceans, but its effect 502 
generally cannot outcompete the negative effects of SST and phosphate (Figure 9b-c an Figure 503 
S14). In addition, the dominant factor controlling the current spatial variation or seasonal cycle 504 
of DMS in certain oceanic regions may not induce the long-term DMS change. For example, 505 
DSWF is one of the most important factors controlling the spatiotemporal pattern of DMS 506 
(Figure 5), but it makes nearly no effect on DMS change from 2005 to 2100 (Figure 9b and 507 
Figure S14b) because its annual values basically remain stable during the whole period (Figure 8 508 
and Figure S11). 509 

Due to the ubiquitous warming of surface water, the total transfer velocity (Kt) of DMS 510 
generally increase in most of global ocean (Figure 7 and Figure S10). As a result, the decline of 511 
global oceanic DMS emission (1.8% for SSP5-8.5) will be much smaller than the decrease 512 
(7.0%) of its concentration, from 19.15 Tg S yr–1 in 2005–2014 to 18.82 Tg S yr–1 in 2091–2100 513 
(Table S4). The change of DMS fluxes coincide spatially with its concentrations in mid- and 514 
low-latitude oceans. But in the Arctic Ocean, due to the striking loss of summertime sea-ice 515 
cover (Figure 10a), the Kt and sea-to-air flux of DMS exhibit extensive and significant rise 516 
(Figure 7b-f). Specifically, the summertime DMS emission will increase by approximately 73% 517 

from 42.4 Gg S yr–1 (2015) to 73.3 Gg S yr–1 (2100) under SSP5-8.5 scenario in the >70 N 518 
Arctic (Figure 10c), which accords with the decadal increase in Arctic DMS emission between 519 
1998 to 2016 reported in a recent study (Galí et al., 2019). This result highlights the importance 520 
of sea-ice retreat to biogenic sulfur emission and subsequently aerosol radiative forcing, likely 521 
leading to a negative feedback in Arctic climate system, which is warming faster than any other 522 
regions (Levasseur, 2013). It should be noted that some previous studies have pointed out the 523 
remarkable contribution of bottom-ice DMS production to sea surface DMS concentration and 524 
flux to the air in specific months (Hayashida et al., 2020), which is not considered in this study. 525 
However, this process is still highly uncertain due to the scarcity of observations, and the ice-to-526 
sea DMS flux is likely to make little impact on the upward trend of sea-to-air DMS emission 527 

(Hayashida et al., 2020). As for the Antarctic with latitude larger than 65, the summertime sea-528 

ice loss is relatively weaker than that in the Arctic and the average DMS concentration presents a 529 
slight decrease. Therefore, the increasing proportion of summertime DMS emission is much 530 
lower, from 140 Gg S yr–1 in 2015 to 169 GgS yr–1 in 2074 (21%) and then decrease to 157 GgS 531 
yr–1 in 2100. 532 
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  533 

Figure 7. Projected changes in sea surface DMS concentration, transfer velocity (Kt), and sea-to-534 
air flux under SSP5-8.5 scenario. (a-c) Spatial distributions of the future changes (between 535 
2091–2100 and 2005–2014) of (a) DMS concentrations, (b) transfer velocities, and (c) DMS 536 
fluxes in the global ocean surface based on CMIP6 datasets. (d-f) Latitudinal distributions of the 537 
mean (d) DMS concentrations, (e) transfer velocities, and (f) emission fluxes in the global ocean 538 
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surface in 2005–2014 (solid black lines) and 2091–2100 (dash black lines) and the changes 539 
between these two periods (red lines with light blue and red shades representing negative and 540 
positive changes, respectively). 541 

 542 

 543 

Figure 8. Changing rate of each variable from 2015 to 2100 for SSP5-8.5. The gray area in the 544 
ocean represents no significant change (P > 0.05 for linear regression of yearly data). 545 
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  546 

Figure 9. Attribution of the future changes of sea surface DMS concentration under climate 547 
warming. (a) Histograms of environmental factors in 2005–2014 and 2091–2100 (SSP5-8.5) as 548 
well as partial dependence plots (solid lines) showing how the changes of environmental factors 549 
affect DMS concentration in different regions. The illustrated factors include SST and phosphate 550 
for Trades_Pacific and Polar_N, and SST and MLD for Westerlies_S. The histograms were 551 
plotted on the basis of 5,000 samples by area-weighted random sampling from initial gridded 552 
dataset of each region. (b) Latitudinal distribution of the average effect of each factor on DMS 553 
future change. The bold black line shows the simulated latitudinal distribution of DMS change 554 
between 2091–2100 and 2005–2014. The left and right color bands illustrate dominant negative 555 
and positive factors at different latitudes, respectively. The dominant factor refers to the factor 556 
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with the largest absolute value of effect on DMS change. (c) Spatial distributions of the dominant 557 
negative and positive factors related with the DMS change across global oceans. 558 

 559 

 560 
Figure 10. Changes in summertime sea-ice cover and DMS in polar regions during 2015–2100 561 
for SSP5-8.5 scenario. (a) The spatial distributions of absolute decreasing rates of summertime 562 
(May–September for the North Pole and December–April for the South Pole when sea-ice cover 563 
is low and DMS emission is high in a year) sea-ice covering fraction. (b) The spatial 564 
distributions of changing rates of summertime DMS flux. (c-d) The time series of averaged 565 
summertime DMS concentration, area of sea-ice cover, and DMS emission for the (c) North pole 566 

with latitude larger than 70 and (d) South pole with latitude larger than 65. The thin lines 567 

represent area of sea-ice cover obtained from each of CMIP6 models and the purple thick line 568 
and shaded bands represent the average and standard deviation of these models. The proportions 569 
of ice-free extent to total area in 2015 and 2100 are presented. 570 

 571 

5 Conclusions 572 

Sea surface DMS distribution and its change under global warming have been simulated 573 
by characterizing main processes of DMS cycle and/or using empirical parameterization of 574 
influencing factors like Chl a, MLD, radiation and nutrients (Bock et al., 2021; Cameron-Smith 575 
et al., 2011; Gabric et al., 2004; Kloster et al., 2007; Six et al., 2013; Vallina et al., 2007b; Wang 576 
et al., 2018). However, distinct ocean environments and complexity of DMS production and 577 
cycle lead to striking biases in modeling DMS on a global scale. Data-driven approaches like 578 
ANN are a good supplement to conventional process-based (theory-driven) and empirical 579 
models. 580 
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Overall, the ANN model we developed can well reproduce the variability of sea surface 581 
DMS across the global ocean, which provides a foundation for analyzing the relationships 582 
between DMS and environmental variables at current situations and for projecting the DMS 583 
trends in the future. The simulated global annual average DMS concentration is ~ 1.9 nM and the 584 
emission is 19.2 Tg S yr–1 during 2005 to 2014. High values generally occur in North Pacific, 585 

subarctic Atlantic, the 40 S of Southern Ocean and Antarctic shelves at hemispheric summer. 586 

By applying the variance-based GSA and PDP approaches, which factor is the most important to 587 
current DMS variability and how these relationships display in nine oceanic regions are 588 
systematically investigated. The results show that there are large spatial disparities in dominant 589 
influencing factors and the same variable may have reverse effects in different regions. For 590 
example, Chl a and SSS are the most important factors in Coastal and Polar_N biomes both 591 
showing positive relationships with DMS concentrations. In the mid- to low-latitude open 592 
oceans, in addition to mixed layer depth and solar radiation, SST and nutrients (mainly 593 
phosphate and nitrate) are also important factors. There is probably an optimal SST between 10–594 

20 C, and the nutrients also exhibit reverse effects on DMS below and above certain turing 595 
points. In cold environment Polar_S, SST is the most important factor showing a negative effect. 596 

Using CMIP6 model ensemble as input datasets, the future changes in DMS 597 
concentration and flux were projected. For a specific region, the dominant factors accounting for 598 
DMS future changes may not coincide with the controlling factors for its current variations. The 599 
vast low-latitude Pacific present decreasing trend which is mainly related with phosphate decline 600 
and SST rise. The decrease of SSS may induce significant DMS decline in the North Atlantic 601 
subpolar gyre. In the North Pacific and Southern Ocean, the warming and increasing 602 
stratification may lead to the increase of DMS, and the high-DMS zones exhibit an obvious 603 
poleward shift. In general, the global mean concentration of sea surface DMS and global 604 
emission of DMS to the atmosphere will both decline slightly in the 21st century, although large 605 
spatial heterogeneity exists. These results seem adverse to part of “CLAW hypothesis” which 606 
assumed increased emission of oceanic DMS under global warming. But the climatic effect 607 
caused by future changes of oceanic DMS relies on further exploration and understanding of 608 
atmospheric DMS chemistry and aerosol-cloud-radiation interactions (Hoffmann et al., 2016; 609 
Novak et al., 2021; Veres et al., 2020). Nonetheless, the dramatic increase of DMS emission 610 
caused by sea-ice loss in the Arctic Ocean in future may lead to a CLAW-like negative feedback. 611 
Considering the diverse trends of DMS fluxes in different oceanic regions, the future evolution 612 
of marine DMS emission pattern may profoundly affect the regional cloud cover, albedo and 613 
atmospheric circulation to some extent. 614 

In this study, we have not incorporated any apriori information into the processes of 615 
model construction, relationship exploration and dominant factor identification, but the results 616 
seem reasonable and explainable, suggesting the good performance of data-driven techniques in 617 
DMS prediction and information mining. However, disadvantages also exist. For example, what 618 
we have obtained from GSA, PDP, and sensitivity experiments for future prediction are just 619 
statistic results. In other words, what are “interpretable” directly extracted are just the output-620 
input relationships for the ANN model itself, but not explicit causal mechanisms for DMS 621 
cycling. The mechanistic interpretations need to incorporate existing knowledge on underlying 622 
processes acquired by conventional techniques (e.g., culture experiments and process models). In 623 
addition, several studies have pointed out that seawater pH makes a great impact on DMS cycle 624 
as well as its response to future climate change (Arnold et al., 2013; Deng et al., 2021; Hopkins 625 
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et al., 2010; Six et al., 2013), but pH cannot be taken as a variable in the ANN model to project 626 
future DMS changes since future pH values will substantially fall outside its present range used 627 
in model construction. Actually, large uncertainties also exist in the previous study by applying 628 
the relationships between DMS and pH obtained from a few experiments in small regions to 629 
global projection (Six et al., 2013). In the future, the coupling of data-driven and theory-driven 630 
models will be more powerful to predict the distribution and untangle controlling factors and 631 
processes, with the help of more field observations and culture experiments as well as better 632 
mechanism understanding. 633 
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