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Abstract

Persistent warming and water cycle change due to anthropogenic climate change modifies the temperature and salinity dis-

tribution of the ocean over time. This ‘forced’ signal of temperature and salinity change is often masked by the background

internal variability of the climate system. Analysing temperature and salinity change in watermass-based coordinate systems

has been proposed as an alternative to traditional Eulerian (e.g., fixed-depth, zonally-averaged) co-ordinate systems. The

impact of internal variability is thought to be reduced in watermass co-ordinates, enabling a cleaner separation of the forced

signal from background variability - or a higher ‘signal-to-noise’ ratio. Building on previous analyses comparing Eulerian and

water-mass-based one-dimensional coordinates, here we recast two-dimensional co-ordinate systems - temperature-salinity (?

- ?), latitude-longitude and latitude-depth - onto a directly comparable equal-volume framework. We compare the internal

variability, or ‘noise’ in temperature and salinity between these remapped two-dimensional co-ordinate systems in a 500 year

pre-industrial control run from a CMIP6 climate model. We find that the median internal variability is lowest (and roughly

equivalent) in ? - ? and latitude-depth space, compared with latitude-longitude co-ordinates. A large proportion of variability

in ? - ? and latitude-depth space can be attributed to processes which operate over a timescale greater than 10 years. Overall,

the signal-to-noise ratio in ? - ? co-ordinates is roughly comparable to latitude-depth co-ordinates, but is greater in regions

of high historical temperature change. Conversely, latitude-depth co-ordinates have greater signal-to-noise ratio in regions of

historical salinity change. Thus, we conclude that the climatic temperature change signal can be more robustly identified in

watermass-co-ordinates.
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ABSTRACT: Persistent warming and water cycle change due to anthropogenic climate change

modifies the temperature and salinity distribution of the ocean over time. This ‘forced’ signal

of temperature and salinity change is often masked by the background internal variability of the

climate system. Analysing temperature and salinity change in watermass-based coordinate systems

has been proposed as an alternative to traditional Eulerian (e.g., fixed-depth, zonally-averaged)

co-ordinate systems. The impact of internal variability is thought to be reduced in watermass

co-ordinates, enabling a cleaner separation of the forced signal from background variability - or

a higher ‘signal-to-noise’ ratio. Building on previous analyses comparing Eulerian and water-

mass-based one-dimensional coordinates, here we recast two-dimensional co-ordinate systems -

temperature-salinity (𝑇 − 𝑆), latitude-longitude and latitude-depth - onto a directly comparable

equal-volume framework. We compare the internal variability, or ‘noise’ in temperature and

salinity between these remapped two-dimensional co-ordinate systems in a 500 year pre-industrial

control run from a CMIP6 climate model. We find that the median internal variability is lowest

(and roughly equivalent) in 𝑇 − 𝑆 and latitude-depth space, compared with latitude-longitude co-

ordinates. A large proportion of variability in 𝑇 − 𝑆 and latitude-depth space can be attributed

to processes which operate over a timescale greater than 10 years. Overall, the signal-to-noise

ratio in 𝑇 − 𝑆 co-ordinates is roughly comparable to latitude-depth co-ordinates, but is greater in

regions of high historical temperature change. Conversely, latitude-depth co-ordinates have greater

signal-to-noise ratio in regions of historical salinity change. Thus, we conclude that the climatic

temperature change signal can be more robustly identified in watermass-co-ordinates.
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SIGNIFICANCE STATEMENT: Changes in ocean temperature and salinity are driven both by29

human-induced climate change and by modes of natural variability in the climate system, such as30

the El-Niño SouthernOscillation. It can be difficult to isolate the human-induced ‘signal’ of climate31

change from the natural fluctuations or ‘noise’ in the climate system. Watermass-based methods,32

which ‘follow’ a parcel of water around the ocean, have been thought to improve on ‘Eulerian’33

(i.e., analyses performed at fixed latitude, longitude and depth) frames of reference as they are34

less impacted by the ‘noise’. However, it is difficult to cleanly compare between watermass-based35

methods and Eulerian methods. Here, we aim to quantify the extent to which watermass-based36

frameworks improve on Eulerian frameworks in isolating the climate signal from the noise. We37

recast watermass and Eulerian methods onto an equivalent grid, enabling a clean comparison38

between them, and find that doing so increases the signal-to-noise ratio in watermass-based co-39

ordinates in regions of ocean warming. These results emphasise the utility of watermass-based40

methods in analysing long-term climatic temperature change in the ocean.41

1. Introduction42

Anthropogenic climate change is characterised by the persistent build-up of heat in the climate43

system (Stocker et al. 2013) and long-term changes to the hydrological cycle (Durack et al. 2012;44

Sohail et al. 2022). A vast proportion of excess heat in the climate system is absorbed by the45

ocean (Schuckmann et al. 2020), and changes to the water cycle manifest as ocean salinity changes46

(Pierce et al. 2012). These human-induced changes to ocean heat and salinity occur alongside47

natural variability in the climate system, driven in part by physical modes of climate variability48

like the El-Niño Southern Oscillation (ENSO) (Trenberth 2020) and the North Atlantic Oscillation49

(Visbeck et al. 2001). Natural variability in the climate system can obscure forced anthropogenic50

trends in the ocean, adding ‘noise’ to the signal.51

Numerous studies have aimed to tackle the problem of detecting the anthropogenic signal of52

climate change in observations and climate models. A conventional approach to detecting changes53

in ocean temperature and/or salinity involves detecting changes to ocean properties at fixed loca-54

tions on the ocean surface (that is, in latitude-longitude co-ordinates, Hawkins and Sutton 2012;55

Hamlington et al. 2011) or by zonally-averaging (that is, in latitude-depth co-ordinates, Pierce et al.56

2012; Boyer et al. 2005; Swart et al. 2018; Hobbs et al. 2021). In these traditional Eulerian frames57
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of reference, the ‘noise’, natural variability in the climate system, can be reduced by coarsening58

the grid, filtering out the relevant time-scales, taking large ensemble means, and/or by focusing59

on specific ocean regions that may not be impacted by dominant modes of variability (Hamling-60

ton et al. 2011; Penland and Matrosova 2006; Maher et al. 2021; Pierce et al. 2012). In doing61

so, past research has effectively increased the ‘signal-to-noise‘ ratio - allowing for a more robust62

identification of the long-term climate change-induced trend.63

Watermass-based frameworks have been proposed as an alternative to traditional Eulerian-based64

methods for tracking ocean change. Tracking changes in ocean properties following iso-surfaces65

of conservative tracers, such as density, temperature and/or salinity, is thought to filter out short-66

timescale, highly variable adiabatic motions, potentially reducing internal variability and noise67

in the system (Silvy et al. (2020); Palmer et al. (2007); Zika et al. (2015, 2021)). In addition,68

watermass-based methods can enable a direct attribution of heat or salt content tendencies to69

surface fluxes and diabatic mixing, as only diabatic flux terms are present in the budget (Walin70

1982; Groeskamp et al. 2019; Holmes et al. 2019; Bladwell et al. 2021; Hieronymus et al. 2014).71

However, a clean comparison of the internal variability, and thus signal-to-noise ratio, in72

watermass-based and Eulerian methods is challenging because the volume bounded by watermass-73

based coordinate surfaces can change with time. Thus, a given temperature or salinity surface could74

expand to fill a large portion of the ocean, while volumes bounded by latitude, longitude and depth75

surfaces are (by construction) fixed in time. For instance, Palmer et al. (2007); Palmer and Haines76

(2009) compared ocean temperature variability above the 14◦C isotherm, and the 220m depth77

level, which are approximately geographically collocated. While the use of a temperature-based78

co-ordinate reduces internal variability, the 14◦C isotherm expands over time to accommodate an79

increasingly warm ocean, while the 220m depth level remains fixed. Following work by Sohail80

et al. (2021), Holmes et al. (2022) avoided this problem by using a percentile-based co-ordinate81

system that enables a constant-volume comparison between one-dimensional temperature, depth82

and latitude co-ordinate systems. Holmes et al. (2022) showed that internal variability is indeed83

reduced in one-dimensional temperature co-ordinates (aligning with findings from Palmer and84

Haines (2009)), but only for specific timescales and regions of the ocean.85

While one-dimensional fixed-depth and fixed-temperature frameworks remain popular choices86

in assessing ocean heat and salt content (Wolfe et al. 2008; Morrison and Hogg 2013; Sohail et al.87
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2021, 2022), two-dimensional co-ordinate systems retain more information and are often used88

to assess ocean heat and salt content change (e.g., Roemmich et al. (2015); Silvy et al. (2020);89

Rathore et al. (2020)). For instance, in one dimension, ‘cold’ temperature surfaces conflate the90

ocean interior with surface polar regions, but introducing a second dimension (e.g. salinity) isolates91

the interior ocean from the polar surface effectively. Variability in two-dimensional watermass92

coordinates has been compared to variability in Eulerian coordinates by ‘re-projecting’ diabatic93

tendencies inferred in water mass coordinates back onto the geographical coordinates. Evans94

et al. (2014) inferred seasonal diabatic tendencies in Temperature versus Salinity (hereafter 𝑇 − 𝑆)95

co-ordinates within the Drake Passage and then remapped these onto the average locations of the96

corresponding 𝑇 − 𝑆 classes along a repeat hydrographic section. Similarly, Zika et al. (2021)97

inferred the diabatic tendencies necessary to explain changes in the global inventories of sea water98

in𝑇 −𝑆 coordinates and mapped these onto the 3D geographical distribution of those water masses.99

In each case, Eulerian changes were larger than the inferred diabatic tendencies. However, these100

methods have relied on inferring the diabatic tendency from either a numerical model or an inverse101

model, and the derived solution is not necessarily unique. Thus, a clean, objective comparison102

assessing whether the projection of internal variabilty into two-dimensional watermass frameworks103

(e.g. 𝑇 − 𝑆 co-ordinates) is reduced compared to Eulerian counterparts (e.g., latitude-longitude,104

latitude-depth) has not been conducted.105

In this paper, we recast two dimensional co-ordinate systems, namely, 𝑇 − 𝑆 space, latitude-106

longitude space, and latitude-depth space, onto a constant-volume-based two-dimensional frame-107

work using a statistical method called Binary Space Partitioning (BSP). We then track changes108

to the ocean’s temperature and salinity properties to quantify the internal variability (the ‘noise’)109

with the aim of establishing whether the signal-to-noise ratio of the climate signal increases in110

watermass-based frameworks. The coupled climate model data used in this study is described111

in section 2. We provide details of BSP and its two-dimensional remapping in section 3. Our112

findings, detailed in section 4, confirm that the median internal variability (the ‘noise’) is lowest113

in 𝑇 − 𝑆 and latitude-depth space, and is described by longer timescale processes. We explore the114

historical ‘signal’ in section 5, and show that signal-to-noise ratio is larger in 𝑇 −𝑆 space in regions115

of high temperature change compared to its Eulerian counterparts. Conclusions are summarised116

in section 6.117
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2. Model data: ACCESS-CM2118

In this work, we focus on a number of simulations performed using the ACCESS-CM2 climate119

model (Bi et al. 2020) as part of the Australian submission to the 6th generation Climate Model120

Intercomparison Project (CMIP6) (Eyring et al. 2016). The ocean model component of ACCESS-121

CM2 is theModular OceanModel version 5.1 (Griffies andGreatbatch 2012) and uses Conservative122

Temperature and Practical Salinity as its standard temperature and salinity variables (McDougall123

2003; McDougall and Barker 2011). More details on ACCESS-CM2, the ACCESS-CM2 submis-124

sion to CMIP6, and in particular, the forcing and spin-up of the piControl and historical runs, are125

provided by Bi et al. (2020); Mackallah et al. (2022).126

We analyse a 500 year pre-industrial control (piControl) simulation, as well as a 165 year127

historical simulation (Eyring et al. 2016). In this work, we analyse themodel Potential Temperature,128

Practical Salinity and grid cell volume variables in temperature-salinity, latitude-longitude, and129

latitude-depth coordinates over the entire pre-industrial control period, and the entire historical130

period, covering 1850 to 2014. A single ensemble member (r1i1p1f1) is used in this analysis.131

The monthly-averaged temperature and salinity in the piControl and historical runs are first132

binned into 2D 𝑇 − 𝑆, latitude-longitude and latitude-depth percentile coordinates using BSP as133

described in section 3. As in Irving et al. (2020), we find that the pre-industrial control simulation134

has a persistent drift in both temperature and salinity. The globally-integrated heat content grows135

significantly (by O(1024) J) over the 500-year period of the control run, while the ocean freshwater136

flux drops by O(1016) kg. In order to remove these long-term drifts in the pre-industrial control137

run, we de-drift and de-season binned outputs. De-drifting is accomplished by removing a cubic138

fit of the piControl time series over the relevant overlapping time period, following Irving et al.139

(2020). The seasonal cycle is removed by subtracting the time-mean seasonal cycle over the entire140

time period of interest from the monthly time series.141

Note that de-drifting and de-seasoning is conducted after aggregating or reorganising data into its142

relevant diagnostic. This is primarily because removing the drift from every grid point in the native143

grid does not guarantee there will be no drift in the aggregated or reorganised data. De-drifting144

after binning ensures that any drift in the system is removed in the final diagnostic, and thus does145

not contaminate calculations of variance in this diagnostic.146
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3. Theory147

Typically, watermass-based analyses involve tracking ocean properties at constant temperature148

or salinity (Worthington 1981; Walin 1982; Zika et al. 2015, 2018; Holmes et al. 2019). By149

following constant tracer isosurfaces, the heat and salt budgets contain contributions from diabatic150

processes only. However, there are still diasurface volume fluxes in these coordinates which must151

be accounted for and whose associated tracer flux may be ill-defined (see Holmes et al. (2019) and152

Bladwell et al. (2021) for details). In addition, as the surface outcrop location of temperature and153

salinity surfaces may shift over time, it is difficult to link changes at a given tracer isosurface to a154

specific geographical region in strongly forced ocean models. Thus, cleanly comparing between155

pure watermass-based coordinate systems and Eulerian coordinate systems (which track ocean156

changes at fixed latitude, longitude or depth) can be difficult, in part because Eulerian coordinate157

systems are fixed-volume by construction, while the volume of water bounded by temperature or158

salinity surfaces can change with time.159

a. Binary Space Partitioning160

In order to overcome this issue, we recast all 2D co-ordinate systems using a statistical method161

called Binary Space Partitioning (BSP). Originating from computer graphics and image processing162

fields (e.g. Radha et al. (1996); Thibault and Naylor (1987)), BSP is a method for recursively,163

hierarchically subdividing a distribution using arbitrarily oriented lines. We can use BSP to164

effectively partition the ocean’s two-dimensional volume distribution into equal weight bins in165

watermass and Eulerian space.166

To illustrate how BSP works, consider a two-dimensional volume distribution 𝑣(𝑥, 𝑦) which is167

the volume of sea-water per unit 𝑥 and 𝑦. 𝑥 and 𝑦 can be coordinates defined by Eulerian space168

or coordinates defined by time variable scalars such as T, S, density, etc. To form a BSP tree, we169

recursively subdivide the distribution with alternating axis-oriented lines 𝑛 times, such that the170

volume of the ocean in each subdivision is 1/2𝑛 of the total ocean volume
∬

𝑣(𝑥, 𝑦)𝑑𝑥𝑑𝑦. This171

procedure is shown graphically in Figure 1.172

The initial slice (figure 1a) divides the volume in half along some 𝑦−value 𝑦1, such that each173

subdivision contains half of the ocean volume 12
∬

𝑣(𝑥, 𝑦)𝑑𝑥𝑑𝑦. The subsequent slice (figure174

1b) divides each subdivided section further in half along two 𝑥−values 𝑥1 and 𝑥2, such that each175
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v(x,y)

y1

21 bins

v(x,y)

y1

22 bins

x2

x1

a) b)

Fig. 1. A simple demonstration of Binary Space Partitioning applied to a generic two-dimensional volume

distribution. a) One slice orthogonal to the 𝑦-axis at 𝑦1 (in red) yields 21 equal-volume bins of 𝑣(𝑥, 𝑦). b) Two

additional slices orthogonal to the 𝑥-axis at 𝑥1, 𝑥2 (in blue) yield 22 equal-volume bins of 𝑣(𝑥, 𝑦).

184

185

186

subdivision now contains a quarter of the ocean volume, 14
∬

𝑣(𝑥, 𝑦)𝑑𝑥𝑑𝑦. This process of recursive176

subdivision is repeated 𝑛 times along alternating axes such that each time a volume constraint of177

1
2𝑛
∬

𝑣(𝑥, 𝑦)𝑑𝑥𝑑𝑦 is met. The resulting BSP tree structure thus compresses any general distribution178

into equal-volume bins.179

Once the BSP has been performed for a given choice of 𝑥 and 𝑦 coordinates, we can track changes180

to the mean temperature, 𝑇 and salinity, 𝑆 in each bin over time. This allows us to quantify how181

variability (‘noise’) behaves in each co-ordinate system regardless of whether it is Eulerian or182

water-mass based.183

In this work, we use BSP to partition the ocean’s volume into 2𝑛 equal-volume bins in three187

2D coordinate systems: 𝑇 − 𝑆, latitude-longitude and latitude-depth space. We first illustrate the188

partitioning of the ocean’s 𝑇 − 𝑆 volume distribution in the ACCESS-CM2 piControl run in figure189

2 for 𝑛 = 1,2,5, and 8.190
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Fig. 2. BSP splitting on alternating axes, applied to the time-mean ACCESS-CM2 piControl volumetric

distribution in 𝑇 − 𝑆 space, with 2𝑛 bins, where a) n=1, b) n=2, c) n=5, and d) n=8. Note that the salinity axis

has three linear scales, delineated by the two horizontal breaks.

191

192

193
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In latitude-longitude and latitude-depth co-ordinates, we perform BSP on the depth-integrated194

and zonally-integrated time-mean volume distribution, respectively. Figure 3 shows the resulting195

BSP bins in both Eulerian co-ordinate systems for 𝑛 = 8, coloured by their mean temperature and196

salinity. The BSP binning algorithm only ‘sees’ the (depth- or zonally-integrated) ocean volume,197

ignoring any land masses. The BSP algorithm will thus not abide by continental boundaries and it198

will form bins that stretch across continents and between ocean basins to meet the equal volume199

constraint. To limit such inter-basin BSP bins, and to account for the periodicity of longitude, we200

choose to ensure that the Americas and Drake Passage form both the far western and far eastern201

boundary of the ocean. This is done by slicing the ocean at 70◦W longitude from 90◦S to 3◦N202

latitude. Then, a diagonal slice is made from 70◦W longitude to 100◦W between 3◦N latitude and203

20◦N, and the slice continues north from 20◦N to 90◦N along the 100◦W longitude. Data points204

between this line and the Greenwich Meridian, moving east, are labelled with negative longitudes205

(i.e. are measured west of Greenwich) while the remaining data points to the east of Greenwich are206

labeled with positive longitudes (i.e. are measured east of Greenwich). This ensures, for example,207

that data points either side of the Isthmus of Panama do not combine into the same BSP bin (hence208

the grey, empty cells in figure 3a and b)209

The BSP algorithm dynamically adjusts its bin limits to capture equal volumes at all times.210

In a time-varying vertical grid modeling system (as in ACCESS-CM2 which uses a z∗ vertical211

coordinate), this dynamic adjustment, combined with grid cell volume changes in coarse-resolution212

regions, can lead to an unphysical representation of model properties. Specifically, in the coarsely-213

resolved deep ocean, infinitesimal fluctuations in the grid cell volume due to the movements of214

the coordinate system surfaces can trigger large changes in BSP bin limits. This means that the215

deep ocean variability can appear to be quite large within a given BSP bin, driven primarily by216

changing bin limits as they accommodate small volumetric changes in sparsely resolved regions of217

the ocean. The impact of the coarse vertical resolution on the BSP binning algorithm is clear in218

figure 3c and d, where empty regions are scattered through depth amongst the BSP bins. This is219

because, as the model grid coarsens vertically, the volume, T and S information becomes aligned220

along increasingly distant grid cell centers. Hence, the BSP algorithm needs to make a decision221

about which grid cells to cover to ensure a set of equal-volume bins. This leads to some regions222

not being covered by any BSP bins, as they do not contain any model information (grey cells in223
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Fig. 3. BSP splitting on alternating axes with 28 bins, applied to the ACCESS-CM2 piControl (a and c) depth-

integrated volumetric distribution in latitude-longitude co-ordinates, and (b and d) zonally-integrated volumetric

distribution in latitude-depth co-ordinates. BSP bins are coloured by the time-mean (top row) salinity and

(bottom row) temperature in each bin. Empty cells (where there is no BSP bin) are coloured in grey.

233

234

235

236

figure 3c and d). In order to minimise the shifting of BSP bin limits in response to minute grid-cell224

volume changes in the deep ocean, we first take the time-mean of the grid cell volumes and then225

use this static field, along with the time varying 𝑇 −𝑆 properties of the grid-cells, to define the BSP226

bins and the 𝑇 − 𝑆 variability within them.227

The coarse vertical resolution also impacts the results in 𝑇 −𝑆 space, as regions that are strongly228

stratified (but coarsely resolved vertically) will have significant gaps in temperature and salinity229

when re-projected onto 𝑇 − 𝑆 space. The impact of coarse vertical resolution in the model can be230

reduced by linearly interpolating the vertical model grid. In section 5, we show how our results231

change when the vertical model grid resolution is doubled and quadrupled via linear interpolation.232

Note that in BSP, the choice of which axis to cut along, or indeed the angle of the line that237

makes the cut, is entirely arbitrary. If choosing to cut orthogonal to the distribution axes, there238

exist 2𝑛 combinations of the order of subdivision that are valid. More generally, the choice to239

slice orthogonally to an axis is also arbitrary, and the BSP algorithm could, for instance, be240

directed to modify its angle until the volume constraint 12𝑛
∬

𝑣(𝑥, 𝑦)𝑑𝑥𝑑𝑦 is met. However, not all241

combinations are physically plausible when subdividing the ocean in 𝑇 − 𝑆 or Eulerian space, and242
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Fig. 4. Remapping BSP bins from (a and c) real 𝑇 −𝑆 space, to (b and d) relative 𝑇 −𝑆 space based on a binary

tree structure. BSP bins are coloured by (a and b) time-mean salinity, and (c and d), time-mean temperature in

the ACCESS-CM2 piControl run. Empty cells (where there is no BSP bin) are coloured in grey.

249

250

251

we opt to focus hereafter on the specific case of orthogonal slices alternating between the 𝑦− and243

𝑥− axes (𝑦𝑥𝑦𝑥𝑦𝑥𝑦𝑥 for 8 cuts). This order of BSP split combinations preserves the aspect ratio244

of BSP bins, ensuring a more equivalent representation of 𝑥− and 𝑦− variability. We explore this245

aspect ratio argument, and impact of choosing to slice along other orders of subdivision, in the246

Appendix, and reserve exploration of non-orthogonal slices in BSP for future work.247

b. Visualising 2D BSP framework248

In Eulerian space, the BSP bins generally align with the regular latitude-longitude (and latitude-252

depth) grid, as demonstrated by the general uniformity in BSP bin size in figure 3. However, in253
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𝑇 − 𝑆 space, the ocean’s volume is concentrated over a relatively narrow range of temperatures254

and salinities (figures 2). Thus, the equal-volume binning using BSP leads to a large difference255

in the temperature and salinity ranges spanned by a given bin in 𝑇 − 𝑆 space. Surface waters256

(which occupy a large range of temperatures and salinities but represent minimal volume) are over-257

represented in the visualisation, as exhibited in figure 4a. Instead, it is advantageous to visualise258

each bin with an equal area in order to more clearly convey the equal-volume nature of the BSP259

framework. In order to achieve this, wemake use of the binary tree structure obtained from the BSP.260

By construction, the corner bins obtained from the BSP (i.e, the top-right, top-left, bottom-right261

and bottom-left bins) represent the extrema in 𝑇 − 𝑆 space. All other bins are situated relative to262

these extrema in the BSP tree, and can be remapped relative to these corner bins. Hence, we remap263

the bins obtained from BSP onto a plot relative to the ocean’s extrema.264

In figure 4, we plot the output of this remapping in 𝑇 −𝑆 space. We plot the mean salinity (figure265

4a and b) and the mean temperature (figure 4c and d) within each BSP bin in 𝑇 −𝑆 and in remapped266

𝑇 − 𝑆 space. The remapping effectively preserves the fresh-to-salty and hot-to-cold gradient of267

temperature and salinity in each bin (figure 4b and d). The use of the BSP tree structure in the268

remapping ensures that each bin (representing a single unit of volume) is saltier (fresher) and hotter269

(colder) than the bin to its left (right) and below (above) it. The fact that we ‘tag’ each BSP bin in270

this relative space also means that in time series where the overall volume distribution of the ocean271

changes (for instance, in the historical run), the BSP bins will remain positioned relative to one272

another, and thus will stay comparable as the 𝑥𝑡ℎ percentile warmest (coldest), saltiest (freshest)273

bin in the model run.274

The characteristic salinity and temperature of the global ocean can be seen in the remapped279

BSP plots in all coordinate systems (figure 5). The salty North Atlantic is visible in the top left280

of figure 5b and right side of figure 5c, while the relatively fresher Pacific and Southern Oceans281

are evident in the bottom and right hand side of figure 5b and top left of figure 5c, respectively.282

The clear thermal stratification of the global ocean through depth is also retained in the remapped283

latitude-depth plots, as shown in figure 5f. Overall, the latitude-depth BSP diagnostic aligns well284

with traditional zonally-averaged plots (not shown). However, there are some clear differences285

between the two diagnostics. Low volume regions are naturally collapsed in the BSP framework286

and combined with other, adjacent water masses to reach the equal-volume constraint. This is287

13



Fig. 5. Time-mean (a - c) salinity and (d - f) temperature in remapped equal-volume BSP bins, in (a and d)

𝑇 − 𝑆, (b and e) latitude-longitude, and (c and f) latitude-depth co-ordinates, from the ACCESS-CM2 piControl

simulation. The vertical black lines in panels b and e roughly delineate the Atlantic (left), Indian (center) and

Pacific (right) basins.

275

276

277

278

particularly true for the Arctic, which occupies the northern high latitudes but has a low overall288

volume and thus is collapsed to the rightmost BSP bins in figures 5c and f. The (fresh) tropical289

and (salty) sub-tropical surface waters are also collapsed to a handful of bins near the surface of290

the ocean in figure 5c.291

In this work, we present all results in the form of this remapped BSP visualisation, as it provides292

equal visual weight to each volume of ocean regardless of the space occupied by each bin in293

its original coordinate system. This remapping also retains the salient features of the different294

coordinate systems while presenting the data on an equivalent constant-volume metric, enabling a295

cleaner comparison between different coordinate systems. For ease of interpretation of the BSP296

remapping and further results in 𝑇 − 𝑆 space, we show the broad geographic distribution of the297

warmest (coldest), freshest (saltiest) 25% volume of the ocean in the Appendix (figure B1).298
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c. Signal-to-Noise Ratio299

The signal-to-noise ratio is commonly employed to determine the relative impact of internal300

variability in the climate system (e.g., Hawkins and Sutton (2012)). Here, we define signal-301

to-noise ratio (F/N) as the change in temperature (or salinity) in a given bin over the historical302

period (1850 to 2014), divided by the standard deviation of the temperature (or salinity) over the303

pre-industrial control period:304

𝐹/𝑁 = Δ𝐶/𝜎𝑐𝑜𝑛𝑡𝑟𝑜𝑙 , (1)

where 𝐶 is any generic tracer. The signal (F) is calculated as the linear trend from 1850 to 2014,305

multiplied by the number of years in the entire period (165 years). In this work, we calculate F/N306

for the mean T and S in all BSP bins in 𝑇 − 𝑆, latitude-longitude, and latitude-depth co-ordinates307

(section 5).308

4. Results309

The BSP framework enables an equal-volume comparison between three popular two-310

dimensional coordinate systems used to assess ocean and climatic changes - the temperature-311

salinity, latitude-longitude, and latitude-depth coordinate systems. In this section, we explore the312

internal variability, or ‘noise’, in these three co-ordinate systems.313

a. Internal Variability314

We begin by assessing the internal variability in the mean temperature and salinity of each BSP315

bin in the three coordinate systems in question. Overall, the 𝑇 − 𝑆 coordinate system exhibits316

a broad range in variance, from low variability in BSP bins corresponding to the ocean interior317

(bottom-middle bins in figure 6a and d), to high variability in BSP bins corresponding to the318

ocean’s surface (edge and corner bins in figure 6a and d). The range in variability between surface319

and interior BSP bins is also reflected in the latitude-depth plots (figure 6c and f), where deep320

bins have much lower variability than surface bins. Latitude-longitude co-ordinates (which are321

depth-integrated) tend to have a smaller range in variability overall (figure 6b and e).322

The difference in variability between different BSP bins, and between co-ordinate systems, can323

be traced to two possible sources. First, the process of integrating over the ocean volume in324
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Fig. 6. (a - c) Variance in salinity, 𝑙𝑜𝑔10(𝜎2𝑆) and (d - f) temperature, 𝑙𝑜𝑔10(𝜎
2
𝑇
) in equal-volume BSP bins, in

(a and d) 𝑇 − 𝑆, (b and e) latitude-longitude, and (c and f) latitude-depth co-ordinates.

335

336

different co-ordinate systems may lead to differing phase-cancellation characteristics of variability325

that varies in space. For example, any modes of variability that result in warming at one longitude326

and cooling at another longitude at the same latitude and depth will compensate each other in327

that given latitude-depth bin, leading to reduced variability in latitude-depth compared to the328

longitude-latitude coordinate where the two phases of the variability are separated.329

Second, watermass-based co-ordinates exclude by construction adiabatic processes (associated330

with, for example, wind-driven circulation changes), whichmay have a higher amplitude variability.331

Thus, the difference between variability in 𝑇 − 𝑆 space and its Eulerian counterparts may be due332

to the fact that variability in 𝑇 − 𝑆 space is due to diabatic processes, while variability in Eulerian333

co-ordinates may be due to both diabatic and adiabatic processes.334

The histogram of salinity and temperature variance in each co-ordinate system (figure 7) provides337

further insight into differences between watermass-based and Eulerian co-ordinate systems. 𝑇 − 𝑆338

co-ordinates and latitude-depth co-ordinates have similar median variability, likely for different339

reasons - 𝑇 − 𝑆 co-ordinates filter out adiabatic processes, resulting in a lower median variability,340
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Fig. 7. Distribution of a) salinity variance, 𝑙𝑜𝑔10(𝜎2𝑆) and b) temperature variance, 𝑙𝑜𝑔10(𝜎
2
𝑇
) across all BSP

bins in 𝑇 − 𝑆 (red), latitude-longitude (blue) and latitude-depth (green) co-ordinates. Dashed lines show the

median variance for each co-ordinate system.

350

351

352

while latitude-depth co-ordinates naturally highlight deep ocean processes separate from the surface341

ocean, leading to a lower median variance. Latitude-longitude co-ordinates, on the other hand,342

have a higher median variance.343

In order to assess how statistically different these histograms are, we apply the Kolmogorov-344

Smirnoff (K-S) test of ‘goodness of fit’ between histogram pairs. The K-S test assesses the345

probability that a given pair of distributions were randomly sampled from the same data. The 𝑇 −𝑆346

and latitude-depth histograms are identified as the only statistically similar pair of histograms,347

implying that the medians (red and green lines) may not be statistically different. No other348

distributions in this analysis pass the K-S test for statistical similarity.349

As discussed in section 1, moving from one-dimensional temperature co-ordinates to two-353

dimensional 𝑇 − 𝑆 co-ordinates can enable a cleaner separation of surface and ocean interior354

watermasses due to the addition of the salinity co-ordinate. The histograms in figure 7 indicate355
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that this separation leads to a more skewed distribution of variance, with a large number of weakly356

varying interior bins and a small handful of surface ocean bins (note the logarithmic x-axis). Due357

to this skewness, the mean variance across the entire distribution (as calculated in the 1D case in358

Holmes et al. (2022)) for our 2D case is strongly impacted by surface bins (which have higher359

variance). On the other hand, the median variance (vertical lines in Fig. 7) is lower, reflecting the360

much more numerous interior BSP bins. Moving forward, we opt to compare the median terms of361

interest, though we do explore the difference between mean and median variance in our spectral362

analysis below.363

The internal variability in figure 6 is a consequence of inter-annual and sub-decadal ocean pro-364

cesses, (<10 year periods, such as the El-Niño Southern Oscillation and North Atlantic Oscillation),365

and multi-decadal and centennial processes (>10 year periods, such as Atlantic Meridional Over-366

turning Circulation variability). In order to parse the relative influence of sub-decadal processes367

on internal variability, we present the variability of the 10-year high-pass filtered temperature and368

salinity signal relative to the total temperature and salinity variability, in figure 8. A fraction of369

1 in figure 8 indicates that all of the variability in the given bin may be attributed to sub-decadal370

processes, while a fraction of 0 indicates that all of the variability in the given bin may be attributed371

to multi-decadal processes. Overall, variability in latitude-depth coordinates is influenced most by372

multi-decadal processes (figure 8c and f), likely due to the emphasis on deep ocean processes which373

change minimally over time in this co-ordinate system. The bulk of variability in𝑇 −𝑆 co-ordinates374

is also due to multi-decadal processes. Surface waters in 𝑇 −𝑆 and latitude-depth space (edge bins375

in figure 8a, c, d and f) have a high proportion of sub-decadal variability. Latitude-longitude376

co-ordinates have a higher fraction of sub-decadal variability overall, particularly in the North377

Atlantic and Equatorial Pacific (possibly due to the influence of ENSO; figure 8b and e).378

The difference between different co-ordinate systems is highlighted by plotting the distribution of382

proportion of sub-decadal variance (see figure 9). In latitude-depth space, approximately 80−85%383

of the total variability comes from > 10 year processes (green dashed lines in figure 9), again due384

to the over-representation of deep ocean volumes in this co-ordinate system. 𝑇 − 𝑆 co-ordinates385

also host a high proportion of multi-decadal processes, with the overall multi-decadal variability386

representing 77− 80% of the total, suggesting that diabatic processes tend to occur, on average,387

at multi-decadal timescales (red dashed lines in figure 9). In contrast, around 50% of the total388
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Fig. 8. Proportion of variance due to sub-decadal processes, (a - c) in salinity 𝜎2
𝑆
(𝑡 < 10)/𝜎2

𝑆
and (d - f)

in temperature 𝜎2
𝑇
(𝑡 < 10)/𝜎2

𝑇
, in (a and d) 𝑇 − 𝑆, (b and e) latitude-longitude, and (c and f) latitude-depth

co-ordinates.

379

380

381

salinity and temperature variability in latitude-longitude space comes from > 10 year processes389

(blue dashed lines in figure 9). These results are consistent with the one-dimensional analysis of390

Holmes et al. (2022) who showed that the mean temperature variance in a 1D temperature-based391

coordinate became comparable to variability in one-dimensional depth and latitude co-ordinates at392

decadal to multi-decadal time-scales, where diabatic processes dominate.393

The variability fractions presented here are stable across all feasible BSP split combinations397

(figure A1). For all split combinations, a lower fraction of variability comes from sub-decadal398

processes in latitude-depth and 𝑇 − 𝑆 co-ordinates compared with latitude-longitude co-ordinates.399

The variability in all three co-ordinate systems may be further broken down into characteristic405

timescales using spectral analysis, as shown in figure 10. As highlighted earlier, mean variance406

is more sensitive to outlier values in the skewed distributions presented. As a consequence, mean407

power spectra (figure 10a and c) are more impacted by outlier (often surface) sources of variability.408

Our mean results in figure 10c compare with the prior one-dimensional analysis of Holmes et al.409
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Fig. 9. Distribution of proportion of variance due to sub-decadal processes a) in salinity 𝜎2
𝑆
(𝑡 < 10)/𝜎2

𝑆
and

b) in temperature 𝜎2
𝑇
(𝑡 < 10)/𝜎2

𝑇
across all BSP bins in 𝑇 − 𝑆 (red), latitude-longitude (blue) and latitude-depth

(green) co-ordinates. Dashed lines show the median variance proportion for each co-ordinate system.

394

395

396

(2022) (specifically, figure 11a in Holmes et al. (2022)). The mean power spectra of temperature410

shows a clear peak in the 2 - 3 year time period in temperature in all coordinate systems (figure411

10c), aligning with findings by Holmes et al. (2022), who concluded that this peak is likely due to412

ENSO. Holmes et al. (2022) found that the mean temperature variability in 𝑇 space exceeds that in413

depth space at 𝑡 > 10 years.414

The median power spectra, that is, the median of all power spectra at each timescale, is a means415

of comparison between co-ordinate systems which is more reflective of the more numerous ocean416

interior bins. The median power spectra highlight the similarity between latitude-depth and 𝑇 − 𝑆417

co-ordinates (figures 10b and d). Across all time periods, median variance in 𝑇 −𝑆 space is similar418

(but slightly higher) than that in latitude-depth space. Overall, latitude-longitude co-ordinates have419

the highest median variance across most time periods.420
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Fig. 10. Power spectra of (a and b) salinity variability and (c and d) temperature variability in𝑇 −𝑆 co-ordinates

(red), latitude-longitude co-ordinates (blue) and latitude-depth co-ordinates (green). Spectra are presented both

as the mean of all BSP bins (a and c) and the median of all BSP bins (b and d). The vertical dashed line shows a

period of 10 years, the cutoff used in figure 8. Power spectra are calculated frommonthly data, using Thompson’s

multitaper method with 19 Slepian tapers.

400

401

402

403

404

b. Modes of Variability421

The primary modes of variability that drive internal variability in the three coordinate systems422

may be explored via Principal Component Analysis (PCA), where a principal component (PC) is423

the eigenvector of the covariance matrix of the distribution. The correlation coefficients obtained424

from PCA can indicate dominant modes of variability in the time series. PCA yields several PCs425

which collectively explain the total variance in a time series. We can thus find the number of PCs426

needed to adequately explain a high proportion of variance in a time series – the lower the number427

of PCs, the ‘simpler’ the time series can be considered to be. Figure 11 shows the cumulative428

proportion of variance explained by the PCs obtained from PCA.429

𝑇 − 𝑆 and latitude-depth co-ordinates capture total salinity variance with the fewest PCs, while430

𝑇 − 𝑆 co-ordinates are superior in capturing temperature variance with the fewest PCs (compare431

green and red lines in figure PCAs). In 𝑇 − 𝑆 space, 95% of the total temperature variance is432
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Fig. 11. Cumulative proportion of total variance captured by principal components in the Principal Component

Analysis, for monthly a) salinity, and b) temperature, in 𝑇 − 𝑆 co-ordinates (red), latitude-longitude co-ordinates

(blue) and latitude-depth co-ordinates (green).

435

436

437

captured in 17 principal components, while in latitude-depth and latitude-longitude co-ordinates433

31 and 104 PCs respectively are required to capture 95% of temperature variance.434

In the salinity time series (figure 11b), 95% of variance can be captured by 26, 25, and 101438

PCs in 𝑇 − 𝑆 space, latitude-depth space and latitude-longitude space, respectively. Thus, while439

𝑇 − 𝑆 co-ordinates remain the preferred choice to express temperature variability most simply,440

latitude-depth presents an equivalent alternative for salinity variability.441

5. Discussion: Implications for signal-to-noise ratio442

Overall, our results so far show that the projection of internal variability, or ‘noise’ in the443

global ocean, into latitude-depth and 𝑇 − 𝑆 co-ordinates is roughly equivalent, and is lower than444

latitude-longitude co-ordinates. Here we assess the ‘signal’, that is, the historical temperature and445

salinity tendency, in 𝑇 − 𝑆, latitude-depth space and latitude-longitude space. Figure 12 shows the446
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Fig. 12. Linear trend in historical (a - c) salinity (in g/kg/year) and (d - f) temperature (in ◦C/year), in (a and d)

𝑇 − 𝑆, (b and e) latitude-longitude, and (c and f) latitude-depth co-ordinates, from 1970-2014. The linear trend

is calculated by finding the slope of the linear regression on monthly data from January 1970 to December 2014.

457

458

459

temperature and salinity tendencies from 1970 to 2014 in the ACCESS-CM2 historical simulation.447

The salinity tendency (figure 12a, b and c) aligns with previous model and historical estimates448

of salt content change. In 𝑇 − 𝑆 space, salty regions get saltier, and fresh regions get fresher,449

following a ‘wet-gets-wetter-dry-gets-drier’ pattern (Allan et al. 2020). This is most pronounced in450

the warmest 50% of the ocean in𝑇 −𝑆 space, corresponding with the surface ocean that experiences451

widening salinity contrasts first. The Antarctic Intermediate Water is freshening and sub-tropical452

waters are becoming more saline, aligning well with observations of salinity change (see figure453

12c). Tropical salinity changes are not as obvious in this framework as the tropics constitute a454

relatively small proportion of the global ocean volume. Overall, the changes in salinity in 𝑇 − 𝑆455

space and latitude-depth space align with findings by Sohail et al. (2022); Silvy et al. (2020).456

Temperature tendency in a fixed-volume framework is proportional to heat content change, so460

the temperature tendencies presented in figure 12d, e and f may be thought of as equivalent to the461

ocean heat content change. In 𝑇 − 𝑆 space, there is broad warming over almost all water masses462
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in the 50% warmest BSP bins, save a small water mass in a warm, salty quadrant of the global463

ocean. Further exploration (not shown) suggested this cooling patch may have originated in the464

tropical and sub-tropical Pacific, though the watermasses corresponding to the cooling also exist465

in the Indian and Atlantic sectors. This warming profile is consistent, at least in temperature space466

and depth space, with findings by Sohail et al. (2021). Thus, the BSP remapping captures well467

previously observed trends in ocean heat and salt content, lending credence to the method as a468

means to assess changes in historical temperature and salinity, or the climate change ‘signal’.469

Having quantified both the temperature and salinity signal and noise in the climate system, we470

proceed to test the signal-to-noise ratio across the three co-ordinate systems of interest. We focus471

on the entire historical signal, from 1850 to 2014, as our climate ‘signal’ (note that this is in contrast472

to other detection and attribution studies which look at the recent past since 1950, e.g. Pierce et al.473

(2012)). We follow equation (1) to calculate signal-to-noise ratio, and use the linear trend over474

the historical period (i.e., C in 2014 minus C in 1850), multiplied by the number of years (165)475

as ΔC in the signal-to-noise ratio calculation. The signal-to-noise ratio in 𝑇 − 𝑆, latitude-depth476

and latitude-longitude space is shown for each BSP bin in figure 13, for salinity (panels a-c), and477

temperature (panels d-f).478

Latitude-depth co-ordinates coordinates broadly show the highest signal-to-noise ratio, with a482

large proportion of bins having a signal which exceeds twice the standard deviation of the pre-483

industrial control simulations 𝐹/𝑁 > 2, particularly in the deep ocean. Latitude-depth 𝐹/𝑁 is484

especially high for salinity (figure 13c), particularly in the deep ocean. This is in contrast to485

previous studies that have found the anthropogenic signal to be most pronounced in the surface486

ocean relative to noise (e.g. Pierce et al. (2012)). This is likely because we choose to assess our487

signal, 𝐹, as the linear trend over the entire historical period (1850-2014), rather than the recent488

past since 1950 considered by other detection and attribution studies. Thus, the long-term changes489

to deep ocean salinity and temperature are more readily picked up, and at the same time surface490

temperature and salinity changes are lower in a relative sense. Given the sharp contrast in variance491

between the surface and deep bins, this leads to a relatively large 𝐹/𝑁 in the deep ocean compared492

to the surface. Our analysis also shows a high temperature 𝐹/𝑁 in water masses corresponding493

to Subantarctic Mode Waters (figure 13f), consistent with past research (Banks et al. 2000, 2002;494

Swart et al. 2018; Hobbs et al. 2021).495
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Fig. 13. Signal-to-noise ratio of (a - c) salinity and (d - f) temperature, in (a and d) 𝑇 − 𝑆, (b and e) latitude-

longitude, and (c and f) latitude-depth co-ordinates. Stippling shows BSP bins with a signal-to-noise ratio,

F/N<2.

479

480

481

𝑇 −𝑆 coordinates also perform relatively well in isolating the forced signal, with the hot-spots of496

F/N broadly distributed across the 𝑇 − 𝑆 co-ordinates in both salinity and temperature. Latitude-497

longitude coordinates perform the worst in isolating the historical forced signal from internal498

variability, with the majority of bins having a relatively low signal-to-noise ratio, in both salinity499

and temperature.500

While latitude-depth co-ordinates clearly show the greatest F/N across the different co-ordinate504

systems assessed here, these bins appear to be isolated to the deep ocean, which does not exhibit505

a particularly strong climate change signal (as shown in figure 12c and f). A co-ordinate system506

which has enhanced F/N in regions of high T and S change is of particular utility, as these are507

the regions of most interest for future studies. In order to investigate this, we plot the cumulative508
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Fig. 14. Number of BSP bins with signal greater than F for each co-ordinate system, 𝑇 − 𝑆 (red), latitude-

longtiude (blue) and latitude-depth (green), in (a) salinity and (b) temperature. Only bins with a signal-to-noise

ratio of 𝐹/𝑁 > 2 are accumulated.

501

502

503

number of bins with a signal greater than F and an F/N>2 in each co-ordinate system in figure 14.509

For salinity (figure 14a), latitude-depth co-ordinates clearly have more BSP bins with F/N>2 across510

all signal strengths (but particularly in the high F regime). However, 𝑇 −𝑆 co-ordinates prove to be511

superior in isolating high 𝐹/𝑁 in high temperature change regions. While latitude-depth overall512

has more BSP bins across all signal strengths for temperature, this advantage is isolated to lower513

signal regions, and thus may not be as useful. Hence, 𝑇 − 𝑆 co-ordinates are superior to their514

Eulerian counterparts in capturing the climate change signal in temperature, due to a high F/N in515

regions of high temperature change, F.516

The results and discussion have so far focussed on analysis of the native ACCESS-CM2 model521

grid. However, as flagged in section 3, increasing the vertical resolution of the model grid may522

change the representation of variability in 𝑇 − 𝑆 and latitude-depth space, altering the conclusions523

of this study. in figure 15, we show how the median noise and signal-to-noise ratio in 𝑇 − 𝑆524
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Fig. 15. The median (a and b) noise and (c and d) signal-to-noise ratio of (a and c) salinity and (b and d)

temperature, given a doubling (2x) and quadrupling (4x) of the native model vertical grid via linear interpolation.

The first 100 years of the ACCESS-CM2 control simulation are analysed here. Only𝑇 −𝑆 (red) and latitude-depth

(green) co-ordinates are compared.

517

518

519

520

and latitude-depth co-ordinates changes with a doubling and quadrupling of the model vertical525

resolution. As vertical resolution increases, the median noise in 𝑇 − 𝑆 space decreases for both526

temperature and salinity (figure 15a and b). In latitude-depth space, the median variance increases,527
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though not by as much as variance decreases in 𝑇 − 𝑆 space, implying that 𝑇 − 𝑆 co-ordinates are528

more sensitive to vertical model resolution. Therefore, models with a native Eulerian grid will529

naturally be better represented in Eulerian co-ordinate systems, but as the vertical grid resolution530

increases, the representation of T and S is improved, enhancing the utility of 𝑇 − 𝑆 co-ordinates as531

a diagnostic tool.532

The gap in median signal-to-noise ratio between latitude-depth and 𝑇 − 𝑆 narrows for salinity533

as vertical resolution increases (figure 15c). For temperature, the median signal-to-noise ratio534

in 𝑇 − 𝑆 becomes larger than that in latitude-depth upon doubling of the vertical grid resolution535

(figure 15c). Hence, it is essential to use a model which adequately resolves vertical structures of536

temperature and salinity to unlock the key benefits of water mass co-ordinates. The F/N in regions537

of high T and S change (as shown in figure 14) does not change significantly with different vertical538

resolutions (not shown). Therefore, one of the the main conclusions of this study, that is, that539

watermass co-ordinates isolate the historical temperature change signal, is robust regardless of the540

model vertical resolution.541

There are several questions open for further exploration, particularly in terms of theBSP algorithm542

presented here. In the past, watermass-based frameworks have been used to develop simple ocean543

heat and salt content budgets, wherein salt and heat content tendencies can be related solely to544

diabatic air-sea flux and mixing processes (Holmes et al. 2019; Sohail et al. 2021; Bladwell et al.545

2021). In the two-dimensional BSP framework, such a budget is more difficult to formulate, as546

changes to the properties of a bin can potentially change the BSP bins in adjacent 𝑇 − 𝑆 regions.547

That said, the formulation of a budget in the BSP framework would yield a more process-based548

understanding of some of the trends and variability seen in this analysis, and is reserved for future549

work. In addition, while the two-dimensional frameworks assessed here retain regional information,550

the diagnostics are calculated over the entire global data set. An analysis which is confined only551

to certain regions may provide further guidance towards the driving processes in different regions552

of the ocean. Such a process-based, regional approach may also aid in understanding the tendency553

results in figure 12, including the cooling patch in 𝑇 − 𝑆 space. In addition, one-dimensional554

analyses in temperature space have highlighted the potential benefits of using watermass-based555

co-ordinates to reduce sampling bias arising from adiabatic heave in observations (Palmer et al.556

2007; Palmer and Haines 2009). BSP presents an opportunity to extract synthetic profiles from557
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climate model data, following Allison et al. (2019), and assess the influence of two-dimensional558

co-ordinate systems on observational sampling biases and observed heat and salt content.559

6. Conclusions560

Watermass-based frameworks are becoming popular for capturing changes in ocean heat and561

salt content, in part because they are believed to reduce internal variability, thus more effectively562

isolating the historical ‘signal’ of climate change. However, a rigorous comparison between563

watermass-based frameworks and Eulerian (latitude-longitude, latitude-depth, etc.) co-ordinate564

systems has been difficult due to fundamental differences in the way these co-ordinate systems565

are formulated. In this work, we introduce a statistical method, called Binary Space Partitioning566

(BSP) to recast 𝑇 −𝑆, latitude-longitude and latitude-depth co-ordinate systems onto an equivalent,567

equal-volume co-ordinate. Applied to pre-industrial control and historical simulations of a state-568

of-the-art climate model, ACCESS-CM2, BSP enables an apples-to-apples comparison of internal569

variability between watermass-based and Eulerian co-ordinates. We find that 𝑇 − 𝑆 and latitude-570

depth co-ordinates have equally low global variability, and the majority of this variability can571

be attributed to multi-decadal processes in both co-ordinate systems. Overall, we find that the572

historical temperature signal is more effectively isolated in 𝑇 −𝑆 space, with a signal-to-noise ratio573

that is greater than its Eulerian counterparts in regions of high temperature change. Latitude-depth574

co-ordinates, on the other hand, present the best option for isolating the historical salinity change575

signal, with a signal-to-noise ratio that is greater than 𝑇 − 𝑆 and latitude-longitude co-ordinates576

in regions of high salinity change. These results present the lower bound of variance and signal-577

to-noise ratio in 𝑇 − 𝑆 co-ordinates, and are dependent on the model’s vertical grid resolution.578

Our findings provide a road-map for choosing the best two-dimensional co-ordinate system when579

analysing global data sets, suggesting that 𝑇 − 𝑆 co-ordinates are most appropriate for temperature580

change studies, and latitude-depth co-ordinates are preferred for salinity change analyses.581
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APPENDIX A596

Variability across 2𝑛 combinations of axis subdivisions597

In this study, we opt to subdivide alternating axes (starting with the 𝑦−axis) 8 times, to yield598

28 = 256 bins. However, as mentioned in section 3, there are 256 possible combinations of599

axis subdivisions that may have been chosen, including 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥𝑥𝑥𝑦, 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑥, etc. In600

this appendix, we explore the influence of choosing some of these other combinations of axis601

subdivisions on our results.602

When assessing internal variability in two-dimensional tracer space, an ideal coordinate system603

would equally represent changes in both the 𝑥− and 𝑦−axes. For instance, in some climate model604

grids latitude and longitude have roughly equivalent resolutions as variability in the latitudinal605

and longitudinal directions is roughly similar. Of course, for the sake of reducing computational606

complexity, dimensions which are known apriori to exhibit characteristically lower variability may607

have reduced resolution - for instance, ocean model grids typically have lower depth resolution608

than latitude or longitude. Without such apriori knowledge of variability in a given dimension, and609

in an attempt to create a like-for-like co-ordinate system, we argue that the most appropriate BSP610

split combinations would be ones that preserve the aspect ratio of bins. Thus, we propose that the611

most physically plausible BSP split combinations are combinations of 𝑥𝑦 and 𝑦𝑥. Always splitting612

in axis pairs ensures that no long, thin bins are created which span a large range in one dimension613

but a small range in another dimension.614
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Fig. A1. (a and c) Median variance and (b and d) median fraction of sub-decadal variance in 𝑇 − 𝑆 (red),

latitude-longitude (blue) and latitude-depth (green) co-ordinates across 16 plausible BSP split combinations.

615

616
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For 𝑛 = 8, there are 16 𝑦𝑥 and 𝑥𝑦 combinations that preserve the BSP bin aspect ratio. As the617

variance distributions (figure 7) are highly skewed, we examine how the median (rather than mean)618

variance changes across the 16 BSP split combinations in figure A1 a and c. For salinity, 𝑇 −𝑆 and619

latitude-depth co-ordinates have extremely similar median variances across all split combinations.620

For temperature on the other hand, latitude-depth co-ordinates have consistently lower median621

variance than 𝑇 − 𝑆, and this gap changes based on the specific split combination used. That said,622

themedian variance of𝑇 −𝑆 and latitude-depth remains quite close relative to the latitude-longitude623

co-ordinate system, which has a median variance that is approximately one order of magnitude624

larger. Across all BSP split combinations, 𝑇 − 𝑆 and latitude-depth co-ordinates are dominated by625

multi-decadal processes, while latitude-longitude co-ordinates have a roughly equal split between626

sub-decadal and multi-decadal processes (see figure A1 b and d). Our exploration of alternative627

BSP split combinations further solidifies our findings, showing that our results are insensitive to628

the order of (physically constrained) BSP splitting used.629

APPENDIX B630

Geographic location of watermasses in 𝑇 − 𝑆 space631

It is difficult to conceptualise changes in watermass space in terms of the geographic location of632

said water masses. In an attempt to aid in interpretation of the results we show the volume fraction633

in each latitude-longitude and latitude-depth grid cell that corresponds to the warmest (coldest)634

and freshest (saltiest) 25% volume of the ocean, in figure B1. The 25% coldest and freshest ocean635

by volume is predominantly located in the Southern Ocean and surface Arctic ocean (figure B1a,636

b and c). Antarctic Bottom Water and Pacific subsurface waters are captured in this quadrant. The637

25% coldest and saltiest ocean is much more broadly distributed - and largely corresponds to the638

deepest ocean water (figure B1d, e and f). The North Atlantic Deep Water and North Atlantic639

overturning are captured in this quadrant.640
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Fig. B1. The volume fraction, in latitude-longitude and latitude-depth co-ordinates, occupied by four water

masses in 𝑇 − 𝑆 space: (a, b and c) The coldest, freshest 25% of the ocean, (d, e and f) the coldest, saltiest 25%

of the ocean, (g, h and i) the warmest, freshest 25% of the ocean and (j, k and l) the warmest, saltiest 25% of the

ocean. Note that these quadrants are the same as those presented in Figure 2 for 22 bins, and their temperature

and salinity limits are denoted in grey. Land masses are coloured in dark grey.

641

642

643

644

645
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The 25% warmest and freshest ocean is largely isolated to the surface Pacific ocean, as well as646

the Antarctic Intermediate Water, but excludes the Pacific subpolar gyres (figure B1g, h and i). The647

25% warmest and saltiest ocean, on the other hand, is almost exclusively isolated to the Indian and648

Atlantic oceans (excluding the Indo-Pacific warm pool), and includes the Pacific subpolar gyres649

(figure B1j, k and l).650

References651

Allan, R. P., and Coauthors, 2020: Advances in understanding large-scale responses of the wa-652

ter cycle to climate change. Annals of the New York Academy of Sciences, 1472 (1), 49–75,653

https://doi.org/10.1111/nyas.14337.654

Allison, L. C., C.D.Roberts,M.D. Palmer, L.Hermanson, R. E.Killick, N.A.Rayner, D.M. Smith,655

and M. B. Andrews, 2019: Towards quantifying uncertainty in ocean heat content changes using656

synthetic profiles. Environmental Research Letters, 14 (8), 084 037, https://doi.org/10.1088/657

1748-9326/ab2b0b.658

Banks, H., R. Wood, and J. Gregory, 2002: Changes to Indian Ocean Subantarctic ModeWater in a659

Coupled Climate Model as CO2 Forcing Increases. Journal of Physical Oceanography, 32 (10),660

2816–2827, https://doi.org/10.1175/1520-0485(2002)032<2816:ctiosm>2.0.co;2.661

Banks, H. T., R. A. Wood, J. M. Gregory, T. C. Johns, and G. S. Jones, 2000: Are observed decadal662

changes in intermediate water masses a signature of anthropogenic climate change? Geophysical663

Research Letters, 27 (18), 2961–2964, https://doi.org/10.1029/2000gl011601.664

Bi, D., and Coauthors, 2020: Configuration and spin-up of ACCESS-CM2, the new generation665

AustralianCommunityClimate andEarth SystemSimulatorCoupledModel. Journal of Southern666

Hemisphere Earth Systems Science, https://doi.org/10.1071/es19040.667

Bladwell, C., R. M. Holmes, and J. D. Zika, 2021: Internal salt content: a useful framework668

for understanding the oceanic branch of the water cycle. Journal of Physical Oceanography,669

https://doi.org/10.1175/jpo-d-20-0212.1.670

Boyer, T. P., S. Levitus, J. I. Antonov, R. A. Locarnini, and H. E. Garcia, 2005: Linear trends in671

salinity for the World Ocean, 1955–1998. Geophysical Research Letters, 32 (1), https://doi.org/672

10.1029/2004gl021791.673

34



Durack, P. J., S. E. Wijffels, and R. J. Matear, 2012: Ocean Salinities Reveal Strong Global674

Water Cycle Intensification During 1950 to 2000. Science, 336 (6080), 455–458, https://doi.org/675

10.1126/science.1212222.676

Evans, D. G., J. D. Zika, A. C. N. Garabato, and A. J. G. Nurser, 2014: The imprint of Southern677

Ocean overturning on seasonal water mass variability in Drake Passage. Journal of Geophysical678

Research: Oceans, 119 (11), 7987–8010, https://doi.org/10.1002/2014jc010097.679

Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor,680

2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental681

design and organization. Geoscientific Model Development, 9 (5), 1937–1958, https://doi.org/682

10.5194/gmd-9-1937-2016.683

Griffies, S. M., and R. J. Greatbatch, 2012: Physical processes that impact the evolution of684

global mean sea level in ocean climate models. Ocean Modelling, 51, 37–72, https://doi.org/685

10.1016/j.ocemod.2012.04.003.686

Groeskamp, S., P. M. Barker, T. J. McDougall, R. P. Abernathey, and S. M. Griffies, 2019: VENM:687

An Algorithm to Accurately Calculate Neutral Slopes and Gradients. Journal of Advances in688

Modeling Earth Systems, 11 (7), 1917–1939, https://doi.org/10.1029/2019ms001613.689

Hamlington, B. D., R. R. Leben, R. S. Nerem, and K.-Y. Kim, 2011: The Effect of Signal-to-Noise690

Ratio on the Study of Sea Level Trends. Journal of Climate, 24 (5), 1396–1408, https://doi.org/691

10.1175/2010jcli3531.1.692

Hawkins, E., and R. Sutton, 2012: Time of emergence of climate signals. Geophysical Research693

Letters, 39 (1), n/a–n/a, https://doi.org/10.1029/2011gl050087.694

Hieronymus, M., J. Nilsson, and J. Nycander, 2014: Water Mass Transformation in Salin-695

ity–Temperature Space. Journal of Physical Oceanography, 44 (9), 2547–2568, https://doi.org/696

10.1175/jpo-d-13-0257.1.697

Hobbs, W. R., C. Roach, T. Roy, J.-B. Sallée, and N. Bindoff, 2021: Anthropogenic Temperature698

and Salinity Changes in the SouthernOcean. Journal of Climate, 34 (1), 215–228, https://doi.org/699

10.1175/jcli-d-20-0454.1.700

35



Holmes, R. M., T. Sohail, and J. D. Zika, 2022: Adiabatic and Diabatic Signatures of701

Ocean Temperature Variability. Journal of Climate, 35 (5), 1459–1477, https://doi.org/702

10.1175/jcli-d-21-0695.1.703

Holmes, R. M., J. D. Zika, and M. H. England, 2019: Diathermal Heat Transport in a Global704

Ocean Model. Journal of Physical Oceanography, 49 (1), 141–161, https://doi.org/10.1175/705

jpo-d-18-0098.1.706

Irving, D., W. Hobbs, J. Church, and J. Zika, 2020: A Mass and Energy Conservation Analysis of707

Drift in the CMIP6 Ensemble. Journal of Climate, 34 (8), 3157–3170, https://doi.org/10.1175/708

jcli-d-20-0281.1.709

Mackallah, C., and Coauthors, 2022: ACCESS datasets for CMIP6: methodology and ide-710

alised experiments. Journal of Southern Hemisphere Earth Systems Science, 72 (2), 93–116,711

https://doi.org/10.1071/es21031.712

Maher, N., S. Milinski, and R. Ludwig, 2021: Large ensemble climate model simulations: in-713

troduction, overview, and future prospects for utilising multiple types of large ensemble. Earth714

System Dynamics, 12 (2), 401–418, https://doi.org/10.5194/esd-12-401-2021.715

McDougall, T. J., 2003: Potential Enthalpy: A Conservative Oceanic Variable for Evaluating Heat716

Content and Heat Fluxes. Journal of Physical Oceanography, 33 (5), 945–963, https://doi.org/717

10.1175/1520-0485(2003)033<0945:peacov>2.0.co;2.718

McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS---10 and the Gibbs Seawater719

(GSW) Oceanographic Toolbox. SCOR/IAPSO WG127, 28.720

Morrison, A. K., andA.M.Hogg, 2013: On the Relationship between SouthernOceanOverturning721

and ACC Transport. Journal of Physical Oceanography, 43 (1), 140–148, https://doi.org/10.722

1175/jpo-d-12-057.1.723

Palmer, M. D., and K. Haines, 2009: Estimating Oceanic Heat Content Change Using Isotherms.724

Journal of Climate, 22 (19), 4953–4969, https://doi.org/10.1175/2009jcli2823.1.725

Palmer, M. D., K. Haines, S. F. B. Tett, and T. J. Ansell, 2007: Isolating the signal726

of ocean global warming. Geophysical Research Letters, 34 (23), n/a–n/a, https://doi.org/727

10.1029/2007gl031712.728

36



Penland, C., and L. Matrosova, 2006: Studies of El Niño and Interdecadal Variability in Tropical729

Sea Surface Temperatures Using a Nonnormal Filter. Journal of Climate, https://doi.org/https:730

//doi.org/10.1175/JCLI3951.1.731

Pierce, D. W., P. J. Gleckler, T. P. Barnett, B. D. Santer, and P. J. Durack, 2012: The fingerprint732

of human-induced changes in the ocean’s salinity and temperature fields. Geophysical Research733

Letters, 39 (21), n/a–n/a, https://doi.org/10.1029/2012gl053389.734

Radha, H., M. Vetterli, and R. Leonardi, 1996: Image compression using binary space partitioning735

trees. IEEE Transactions on Image Processing, 5 (12), 1610–1624, https://doi.org/10.1109/83.736

544569.737

Rathore, S., N. L. Bindoff, H. E. Phillips, and M. Feng, 2020: Recent hemispheric asymmetry in738

global ocean warming induced by climate change and internal variability. Nature Communica-739

tions, 11 (1), 2008, https://doi.org/10.1038/s41467-020-15754-3.740

Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels, 2015: Un-741

abated planetary warming and its ocean structure since 2006. Nature Climate Change, 5 (3),742

https://doi.org/10.1038/nclimate2513.743

Schuckmann, K. v., and Coauthors, 2020: Heat stored in the Earth system: where does the energy744

go? Earth System Science Data, 12 (3), 2013–2041, https://doi.org/10.5194/essd-12-2013-2020.745

Silvy, Y., E. Guilyardi, J.-B. Sallée, and P. J. Durack, 2020: Human-induced changes to the global746

ocean water masses and their time of emergence. Nature Climate Change, 1–7, https://doi.org/747

10.1038/s41558-020-0878-x.748

Sohail, T., D. B. Irving, J. D. Zika, R. M. Holmes, and J. A. Church, 2021: Fifty Year Trends in749

Global Ocean Heat Content Traced to Surface Heat Fluxes in the Sub-Polar Ocean. Geophysical750

Research Letters, 48 (e2020GL091439), 1 – 13, https://doi.org/10.1029/2020gl091439.751

Sohail, T., J. D. Zika, D. B. Irving, and J. A. Church, 2022: Observed poleward freshwater transport752

since 1970. Nature, 602 (7898), 617–622, https://doi.org/10.1038/s41586-021-04370-w.753

Stocker, and Coauthors, 2013: Climate Change 2013: The Physical Science Basis. Contribution754

of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate755

Change. Tech. rep., Cambridge University Press, 1535 pp.756

37



Swart, N. C., S. T. Gille, J. C. Fyfe, and N. P. Gillett, 2018: Recent Southern Ocean warming757

and freshening driven by greenhouse gas emissions and ozone depletion. Nature Geoscience,758

11 (11), 836–841, https://doi.org/10.1038/s41561-018-0226-1.759

Thibault, W. C., andB. F. Naylor, 1987: Set operations on polyhedra using binary space partitioning760

trees. ACM SIGGRAPH Computer Graphics, 21 (4), 153–162, https://doi.org/10.1145/37401.761

37421.762

Trenberth, K. E., 2020: ENSO in the global climate system. El Nino Southern Oscillation in763

a Changing Climate, Vol. 253, American Geophysical Union, 21 – 37, https://doi.org/https:764

//doi.org/10.1002/9781119548164.ch2.765

Visbeck, M. H., J. W. Hurrell, L. Polvani, and H. M. Cullen, 2001: The North Atlantic Oscillation:766

Past, present, and future. Proceedings of the National Academy of Sciences, 98 (23), 12 876–767

12 877, https://doi.org/10.1073/pnas.231391598.768

Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the769

ocean. Tellus, 34 (2), 187–195, https://doi.org/10.3402/tellusa.v34i2.10801.770

Wolfe, C. L., P. Cessi, J. L. McClean, and M. E. Maltrud, 2008: Vertical heat transport in eddying771

ocean models. Geophysical Research Letters, 35 (23), https://doi.org/10.1029/2008gl036138.772

Worthington, L. V., 1981: The Water Masses of the World Ocean:Some Results of a Fine-Scale773

Census.774

Zika, J. D., J. M. Gregory, E. L. McDonagh, A. Marzocchi, and L. Clément, 2021: Recent Water775

Mass Changes Reveal Mechanisms of Ocean Warming. Journal of Climate, 34 (9), 3461–3479,776

https://doi.org/10.1175/jcli-d-20-0355.1.777

Zika, J. D., N. Skliris, A. T. Blaker, R.Marsh, A. J. G. Nurser, and S. A. Josey, 2018: Improved esti-778

mates of water cycle change from ocean salinity: the key role of ocean warming. Environmental779

Research Letters, 13 (7), 074 036, https://doi.org/10.1088/1748-9326/aace42.780

Zika, J. D., N. Skliris, A. J. G. Nurser, S. A. Josey, L. Mudryk, F. Laliberté, and R. Marsh, 2015:781

Maintenance and Broadening of the Ocean’s Salinity Distribution by the Water Cycle. Journal782

of Climate, 28 (24), 9550–9560, https://doi.org/10.1175/jcli-d-15-0273.1.783

38


