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Abstract

Ingenious use of multisource satellite observations to accurately invert global and regional subsurface thermohaline structure

is essential for understanding ocean interior processes, but extremely challenging. This study proposes a new method from the

sea surface information inverting daily subsurface temperature (ST) based on generative adversarial network (GAN) model in

China’s marginal seas. The proposed GAN-based model can project the STs from sea surface information (SLA, SSTA, SST)

with a high resolution of 1/12°. A traditional regression-based model, Modular Ocean Data Assimilation System (MODAS), is

set up the same experiments for the sake of comparison. The results show that the averaged RMSE results are less than 1.45°C
in upper 200m and the highest averaged R2 of 0.97 at the 70m level, which are better than that of MODAS. Errors analysis

and typical oceanographic phenomena analysis results show the superiority of the proposed GAN-based model in this study.

This study can provide high-precision daily ST data from sea surface information, which can be expanded to further studies on

the ocean interior variation characteristics.
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Key Points:10

 A Generative Adversarial Network based model is proposed for deriving high-resolution11
daily subsurface temperature fields.12

 Feature-wise loss is introduced in adversarial learning for extracting complex13
hydrographical characteristics from satellite observations.14

 This model can accurately reflect the physical oceanographic phenomena both normal15
and extreme conditions.16
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Abstract18

Ingenious use of multisource satellite observations to accurately invert global and regional19
subsurface thermohaline structure is essential for understanding ocean interior processes, but20
extremely challenging. This study proposes a new method from the sea surface information21
inverting daily subsurface temperature (ST) based on generative adversarial network (GAN)22
model in China's marginal seas. The proposed GAN-based model can project the STs from sea23
surface information (SLA, SSTA, SST) with a high resolution of 1/12°. A traditional regression-24
based model, Modular Ocean Data Assimilation System (MODAS), is set up the same25
experiments for the sake of comparison. The results show that the averaged RMSE results are26
less than 1.45°C in upper 200m and the highest averaged R2 of 0.97 at the 70m level, which are27
better than that of MODAS. Errors analysis and typical oceanographic phenomena analysis28
results show the superiority of the proposed GAN-based model in this study. This study can29
provide high-precision daily ST data from sea surface information, which can be expanded to30
further studies on the ocean interior variation characteristics.31

32

Plain Language Summary33

GANs are undoubtedly one of the most creative advances in deep learning due to their good34
generation performances but are not widely used for interior ocean variables’ deriving. Deriving35
sea subsurface temperature fields from satellite remote sensing data using deep learning methods36
are significance but full of challenges. Most of the existing models are based on a single37
observation point or monthly average fields, without considering the daily fields in high spatial38
resolution, so they lack application value to some extent. In this study, we propose a sea surface39
information-guided GAN (SSIG-G) to deriving daily sea subsurface temperature fields in40
China’s marginal seas with a high-resolution. We find that this model can more accurately reflect41
the typical physical oceanographic phenomena in China's marginal seas among daily, seasonally42
and extreme weather conditions than traditional inversion method or reanalysis data. Thus, our43
results indicate that the proposed SSIG-G model have great application value of real-time ocean44
physical phenomena researches and this study can provide methodological support for using45
GANs’ in ocean variables’ deriving.46

1 Introduction47

As a leading space technology, satellite remote sensing allows the observation of the state48
of Earth’s resources and their processes at several spatial-temporal scales; for several decades,49
notable contributions have been made in monitoring and understanding global and regional50
atmospheric, ocean, and climate changes using satellite remote sensing (Yang et al., 2013; Yuan51
et al., 2020). Oceans have absorbed approximately 93% of the global heat entering Earth’s52
climate system and play a decisive role in regulating and stabilizing the Earth’s climate system53
(Johnson & Lyman, 2020; Su et al., 2021). In recent decades, the ocean heat content has54
significantly increased, causing global ocean warming (Boyer et al., 2016; Cheng et al., 2020;55
Cheng & Zhu, 2018). An improved understanding of the distribution and redistribution of heat56
interior ocean will help better monitor Earth's energy budget and its consequences (Drijfhout et57
al., 2014; Dulvy et al., 2014; Yan et al., 2016). High-precision observation data within the ocean58
are crucial for improving the understanding of ocean interior and subsurface thermal structures,59
which are highly relevant to global warming. Since making observations covering the entire60

https://ifbfh253cb3a601b84ef2s560wp0wx90xb60u6fgac.eds.tju.edu.cn/topics/earth-and-planetary-sciences/marginal-sea
https://ifbfh253cb3a601b84ef2s560wp0wx90xb60u6fgac.eds.tju.edu.cn/topics/earth-and-planetary-sciences/marginal-sea
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ocean with high spatial and temporal resolution is difficult, it is significant and challenging to61
accurately estimate ocean subsurface thermal structures based on multi-satellite remote sensing62
data.63

Although satellite remote sensing has provided high-resolution and long time series of64
ocean data, its observations are confined to sea surface phenomena. Thus, most of the research65
on ocean interior characteristics has traditionally relied on models and in situ measurements.66
Extensive subsurface in situ measurement projects, such as the Integrated Ocean Observing67
System (IOOS) and the Global Ocean Observing System (GOOS), which adopt different68
observation platforms, have been established to achieve simultaneous observations of the global69
ocean both in time and space (Su et al., 2021; Yan et al., 2016). However, the existing subsurface70
observations are spatially sporadic and temporally scarce in most parts of the ocean. Studies of71
ocean interior characteristics are extremely limited by sparse and uneven in situ data, which72
leads to uncertainties in the full depth steric height from ocean interior variability analysis and73
prediction (Su et al., 2021; Wu et al., 2012).74

The ocean surface is dynamically influenced by both the sea surface and interior ocean75
(e.g., thermal expansion) (Wu et al., 2012). Many subsurface phenomena have surface76
manifestations that can be measured and used for deriving key parameters of subsurface ocean77
processes, making it possible to obtain the internal parameters of the ocean from the sea surface78
(Klemas & Yan, 2014; Su et al., 2019). Sea surface height changes very likely reflect the traces79
left by sea subsurface variations, and research shows that ocean temperature is associated with80
thermohaline expansions that contribute substantially to sea level rise (Syst et al., 2018).81

Deeper ocean remote sensing (DORS) is a technique used to obtain subsurface82
information from satellite measurements by using specially developed algorithms/techniques83
(Klemas & Yan, 2014). The DORS technique has become an important research subject because84
of its great potential to indirectly retrieve ocean interior information from satellite observations85
(Su et al., 2018). Previous studies have highlighted that the DORS technique can be used to86
reconstruct or invert the sea subsurface thermal structure from satellite observations mainly by87
using traditional dynamic and statistical methods or comprehensive dynamic and statistical88
methods (Fox et al., 2002; Guinehut et al., 2012; Jeong et al., 2019; Nardelli & Santoleri, 2005;89
Yan et al., 2020); insufficient attention has been paid to advanced machine learning approaches.90

Machine learning/deep learning approaches are increasingly being used to extract91
patterns and insights from the ever-increasing stream of satellite remote sensing data, from which92
a further understanding of Earth system science problems is expected to be gained. Various93
forms of data-driven machine learning (ML) methods have played a valuable role in94
environmental remote sensing (Reichstein et al., 2019; Yuan et al., 2020). Some researchers have95
developed ML algorithms to estimate regional and basin-scale ocean interior thermal structures96
using multiple satellite observations. Backpropagation (BP) is an early ML algorithm used to97
retrieve subsurface temperature. Ali et al. (Ali et al., 2004) adopted the BP algorithm to estimate98
the subsurface temperature of the Arabian Sea by using sea surface temperature, sea surface99
height, wind stress, net radiation, and net heat flux. In recent years, more advanced ML100
algorithms have been applied to the study of ocean subsurface temperature inversion. Wu et al.101
(2012) developed a self-organizing map (SOM) (Wu et al., 2012) neural network to estimate102
subsurface temperature anomalies (STAs) in the North Atlantic by using remote sensing data and103
Argo gridded datasets. Su et al. (Su et al., 2015) proposed a support vector machine (SVM)104
method to estimate STAs in the Indian Ocean from a suite of satellite remote sensing105
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measurements. Su et al. (Su et al., 2018) proposed a random forest (RF)-based ML algorithm to106
invert STAs in the global ocean from multisource satellite observations. Lu et al. (Lu et al., 2019)107
reported a combined pre-clustering process and a neural network approach to determine STAs by108
using ocean surface temperature, surface height, surface wind observations and gridded monthly109
Argo data. Meng et al. (Meng et al., 2021) proposed a generative adversarial network (GAN)-110
based framework combined with a numerical model to predict sea subsurface temperature. In111
addition, popular deep learning algorithms, such as convolutional neural networks (CNNs), long112
short-term memory (LSTM) neural networks, extreme gradient boosting (XGBoost) and light113
gradient boosting machine (LightGBM), have also been adopted to invert ocean interior thermal114
structures from multisource satellite observations (Han et al., 2019; Su et al., 2019; Su, Wang, et115
al., 2021; Su, Zhang, et al., 2021).116

Existing ML/DL algorithms can be used to retrieve subsurface thermal structures from117
sea surface parameters; while they are still in their infancy in the DORS field, they have great118
potential given the accumulation of ocean observation data (Su et al., 2021). In particular, there119
is a paucity of contributions to subsurface temperature inversion compared with sea surface120
temperature prediction research. Although some studies have employed advanced ML/DL121
algorithms in DORS, more attention was paid to estimating monthly STA fields rather than122
directly inferring the subsurface temperature fields from remote sensing data. In other studies,123
the subsurface temperature was only directly inverted at one subsurface point, not over an entire124
area. In addition to the deficiencies of input sea surface elements and time frequency of125
subsurface temperature inversion, the existing studies also lack algorithm improvements to126
specific research problems. Thus, there is still much room for improvement with respect to127
advanced ML/DL model algorithms and inversion elements in DORS. There is also room for128
further improvements in the accuracy of regional and basin-scale ocean interior thermohaline129
structures using multiple satellite observations with high resolution.130

In this study, we propose a new remote sensing inversion method based on a GAN model131
to address the abovementioned limitations in the existing ML/DL algorithms for ST inversion.132
The remote sensing inversion method can be used to accurately reconstruct daily ST at 1/12◦ in133
China's marginal seas from multiple satellite observations, including sea surface height anomaly134
(SSHA), sea surface temperature (SST), sea level anomaly (SLA), and the reanalysis data135
products of the Hybrid Coordinate Ocean Model (HYCOM) and China Ocean Reanalysis 2.0136
(CORA 2.0), for training and testing.137

The remainder of the paper is organized as follows. Section 2 describes the study area138
and satellite observations used in this study. Section 3 presents the GAN model and proposes ST139
inversion via the sea surface information-guided GAN model. The experimental results and140
discussions are given in Section 4. Finally, Section 5 concludes the paper.141

2 Study area and data142

The study area covers China's marginal seas, which include the Bohai Sea (BHS), the143
Yellow Sea (YS) and the East China Sea (ECS) from 24°N to 41°N and from 117°E to 130°E144
(Fig. 1). The YS is a shallow marginal sea with an obvious seasonality of the vertical145
temperature structure. In winter, the temperature from the surface to the bottom in the shallow146
continental shelf region of the YS becomes homogeneous, while a surface boundary layer is147
observed in summer (Zhang et al., 2012). The BHS is the innermost gulf of the YS and is located148
at the western boundary of the Northwest Pacific Ocean with a maximum depth of approximately149

https://ifbfh253cb3a601b84ef2s560wp0wx90xb60u6fgac.eds.tju.edu.cn/topics/earth-and-planetary-sciences/marginal-sea
https://ifbfh253cb3a601b84ef2s560wp0wx90xb60u6fgac.eds.tju.edu.cn/topics/earth-and-planetary-sciences/marginal-sea
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60 m; it covers an area of approximately 78,000 km2 (Shi et al., 2011). The ECS is a typical150
epicontinental shelf bounding the North Pacific Ocean in the west and is connected to the YS in151
the north. The broad shelf of the ECS covers an area of approximately 770,000 km2. It has a152
mean depth of 349 m, including the narrow and deep regions of the Okinawa Trough (2100 m153
maximum depth). The ECS and YS are influenced by Kuroshio flows and the Northeast154
Asian Monsoon. The Kuroshio flows northeastward along the continental slope of the ECS with155
seasonal and interannual variations; the Northeast Asian Monsoon brings different air masses156
during the winter monsoon and the summer monsoon (Lie & Cho, 2016). The SST of the ECS157
has stable positions and strong seasonal variability, and the isotherms are mostly parallel to158
isobaths running in the southwest‒northeast direction (Huang et al., 2010; Ji et al., 2018). The159
vertical temperature in the southern ECS is thought to have a three-layer structure, namely, an160
upper mixed layer, barrier layer and bottom mixed layer (Xuan et al., 2019). In this study,161
China's marginal seas could play an important role in modulating Pacific climate fluctuations and,162
to some extent, influence global climate variability. In addition, China's marginal seas have163
rich fishery resources. The Wentai fishing ground and Mindong fishing ground are located in the164
western ECS, a typical subtropical coastal ocean ecosystem (Sun et al., 2021). The Lvsi fishing165
ground is located at the junction of the ECS and East Yellow Sea and is the spawning ground and166
feeding ground of the main economic fish in the East Yellow Sea (Gao et al., 2021). The167
dynamics of food webs and the stability of ecosystems are key topics for studies of coastal ocean168
ecosystems, and mesozooplankton, which are key components in this framework, affect the169
stability and productivity of fish communities (Heneghan et al., 2016). The body size of an170
individual mesophyte as proxy for many other traits is sensitive to temperature and171
eutrophication and is a key factor driving trophic interactions in aquatic food webs (Sun et al.,172
2021; Ward et al., 2012). Therefore, understanding and predicting the thermal structures in this173
area is of vital importance.174

175
Figure. 1 Bathymetry map of China's marginal seas176

The multisource satellite observations used in this study include sea-surface temperature177
(SST) and sea level anomaly (SLA). All the sea-surface remote sensing observations are daily178
data provided by the Copernicus Marine Environment Monitoring Service (CMEMS). Near real179
time level 4 SST products from 2007 with a spatial resolution of 0.05° × 0.05° are obtained from180
OSTIA (https://resources.marine.copernicus.eu/product-detail/). The SST products use in situ181

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/monsoon
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/continental-slope
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/monsoon
https://ifbfh253cb3a601b84ef2s560wp0wx90xb60u6fgac.eds.tju.edu.cn/topics/earth-and-planetary-sciences/marginal-sea
https://gfbfh253cb3a601b84ef2spoupx5k6vxon69wvfgac.eds.tju.edu.cn/topics/earth-and-planetary-sciences/fishery-resource
https://gfbfh253cb3a601b84ef2spoupx5k6vxon69wvfgac.eds.tju.edu.cn/topics/earth-and-planetary-sciences/european-communications-satellite
https://ifbfh253cb3a601b84ef2s560wp0wx90xb60u6fgac.eds.tju.edu.cn/topics/earth-and-planetary-sciences/marginal-sea
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and satellite data from both infrared and microwave radiometers. SLA products from 1993 with a182
spatial resolution of 0.25° × 0.25° are also obtained183
(https://resources.marine.copernicus.eu/product-184
detail/SEALEVEL_GLO_PHY_L4_MY_008_047/). Altimeter satellite gridded SLA data are185
computed based on a twenty-year mean. The SLA is estimated by optimal interpolation, merging186
the measurements from the different altimeter missions. There are two subsurface temperature187
(ST) datasets used in this experiment. The first subsurface temperature (ST) data are reanalysis188
data produced by the near real time Global Ocean Forecasting System (GOFS) 3.1 and are189
available at https://www.hycom.org/data/glbv0pt08/. This system uses the Navy Coupled Ocean190
Data Assimilation (NCODA) system (Cummings, 2005; Cummings and Smedstad, 2013) for191
data assimilation. Available satellite altimeter observations, satellites, in situ sea surface192
temperatures as well as other in situ observations are assimilated using this system. The ST data193
have a 1/12° × 1/12° horizontal spatial resolution and 41 vertical levels, but only the upper 200194
m data with 13 depth levels (0, 2, 10, 15, 20, 25, 35, 50, 70, 100, 125, 150, and 200 m) are used195
in this study. The other ST dataset is reanalysis data produced by the National Marine Data and196
Information Service (NMDIS) of China (http://mds.nmdis.org.cn/). In the reanalysis data product197
CORA 2.0, key technologies, such as high-resolution MITgcm-CICE coupled numerical198
simulation and multivariable and multiscale assimilation, are adopted, and the field observation199
data of WOD18, GSTPP, Argo, NMDIS, satellite remote sensing observations, etc. are200
assimilated. The daily ST data have a 1/10° × 1/10° horizontal spatial resolution and 50 vertical201
levels. The depth levels used are the same as those used for the HYCOM reanalysis data product.202

To train the model, the daily SST, SLA, and SSTA data from China's marginal seas are203
input. The SSTA is the SST anomaly with respect to the daily mean gridded SST fields. Since204
the sea surface parameters have different horizontal resolutions, the nearest neighbor205
interpolation method is adopted for all the above remote sensing variables (SST and SLA) to206
unify the sea surface data to a 1/12° × 1/12° horizontal resolution, which is consistent with the207
horizontal resolution of the ST data. To spatially match all variables, if any variable data are208
missing on a certain day, the day is removed and not included in model training. Then, the SST209
data are subtracted from their monthly averages to obtain their daily SST anomaly (SSTA)210
values. Similarly, the nearest neighbor interpolation method is adopted all the CORA 2.0 ST data211
to unify the sea surface data to a 1/12° × 1/12° horizontal resolution, and all the ST data on the212
upper 200 m (12 depth levels) are employed as labels for training and testing after the quality213
control process. Maximum–minimum normalization is applied to normalize the training and214
testing datasets to the range of [0,1], which ensures effective training.215

For the verification of the inversion results, the measured data adopts NMDIS’s216
Integrated Temperature & Salinity dataset (http://mds.nmdis.org.cn). The sources of this dataset217
include international exchange and cooperation institutions or projects and international business218
observations, including the observation data of China's marginal seas. After quality control, more219
than 300 profiles distributed in the range of 24°N-41°N and 117°E-130°E in 2018 are used in the220
study.221

https://resources.marine.copernicus.eu/product-detail/SEALEVEL_GLO_PHY_L4_MY_008_047/
https://resources.marine.copernicus.eu/product-detail/SEALEVEL_GLO_PHY_L4_MY_008_047/
https://www.hycom.org/data/glbv0pt08/expt-53ptx
http://mds.nmdis.org.cn/
https://ifbfh253cb3a601b84ef2s560wp0wx90xb60u6fgac.eds.tju.edu.cn/topics/earth-and-planetary-sciences/marginal-sea
http://mds.nmdis.org.cn
https://ifbfh253cb3a601b84ef2s560wp0wx90xb60u6fgac.eds.tju.edu.cn/topics/earth-and-planetary-sciences/marginal-sea
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3 Methods222

3.1 Generative adversarial network (GAN)223

GANs are undoubtedly one of the most creative advances in deep learning (DL) in recent224
years (Goodfellow et al., 2014; Jozdani et al., 2022). GANs are based on the min-max, zero-sum225
game theory. In GAN, two neural networks are trained simultaneously in an adversarial manner:226
the generator (G) is used to capture the real data distribution to generate fake samples, and the227
discriminator (D) is used to estimate the probability that the samples originate from the real data228
rather than G. Competition in the training process drives both G and D to improve their229
performances until the generated fake data are very similar to real data, causing D to fail to230
distinguish generated data from real data.231

GANs use the Mini-max loss function define the objective which competes in an232
adversarial way through a two-player minimax game as presented in Equation (1):233

~ ( ) ~ ( )minmax ( , ) minmax [log ( )] [1 log ( ( ))]
data zx P x x P zG GD D

V G D E D x E D G z   (1)234

The goal of G is to learn a distribution pg(x) over input data x (a prior noise distribution z235
∼ pz) in the space of probability density functions, so that it is possible to generate samples236
resemble the real data distribution pdata(x). The D is a cross-entropy classifier which aims to237
distinguish fake data generated by the generator from the real data x ∼ Pdata. For any given G,238
the optimal discriminator D is shown in Equation (2):239

* ( )( )
( ) ( )
data

G
data g

P xD x
P x P x




(2)240

The generator minimizes the Jensen‒Shannon (JS) divergence to reach the goal of Pg(x)241
= Pdata(x) during training. When the discriminator is uncertain, the outputs of the discriminator242
have a probability of 1/2 whether the sample is fake or real.243

Basic GANs have the advantages that Markov chains are never needed, only244
backpropagation is used to obtain gradients, no inference is required during learning, and a wide245
variety of factors and interactions can easily be incorporated into the model (Mirza & Osindero,246
2014). However, it suffers from being noisy and incomprehensible by using random noise247
through a multilayer perceptron (MLP). The generated samples of basic GANs become248
uncontrollable by taking random noise as the generator's inputs, which leads to ambiguity in data249
generation. In addition, the locally optimal solution and gradient disappearance lead to250
considerable inaccuracy in the results of basic GANs.251

To satisfy more high-level training goals, conditional generative adversarial nets (cGANs)252
were proposed by conditioning the model on additional information, such as class labels, some253
part of the data for inpainting or data from different modalities (Mirza & Osindero, 2014). In254
cGANs, the training process is supervised, and the training results are predictable. In deep255
convolutional generative adversarial networks (DCGANs), the popular deep learning algorithm256
convolutional neural networks (CNNs) (Fukushima & Miyake, 1982) were successfully257
combined with basic GANs for the first time (Radford et al., 2016). In DCGAN, both G and D258
use the architectural constraints of CNNs, which are better at image processing than MLP. As a259
result, stable training is achieved, and complex high-quality generators can be developed by260
enforcing certain constraints.261
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At present, basic GANs, cGANs, DCGANs and their prevalent variants have been widely262
used in a variety of science-related tasks, including computer vision applications (Gonog & Zhou,263
2019; Isola et al., 2017; Ledig et al., n.d.; Zhu et al., 2017), video generation, prediction and264
remote sensing (RS) (Dash et al., 2021). Fortunately, the RS community quickly recognized the265
value of GANs and successfully adopted them in RS image reconstruction/restoration, RS image266
denoising, RS data translation and other RS-related tasks. Jozdani et al. (Jozdani et al., 2022)267
reviewed the relevant research on GANs in the context of RS, expecting to help the RS268
community understand the potential and limitations of GANs in this field. Although there have269
been several studies on GANs in the context of RS in recent years, remote sensing research on270
the applications of GANs in the ocean is still insufficient.271

3.2 ST inversion via sea surface information-guided GAN (SSIG-G)272

Our ultimate goal is to train a generator of a GAN-based model to generate daily ST data273
with typical feature representation in the study areas. In this scenario, one input to the generator274
is a dataset consisting of daily SST, SSTA and SSHA, and the generator is expected to invert275
STs from the sea surface information. In contrast to the basic GAN, the proposed GAN’s276
generator is guided with sea surface information data as input rather than random noise, and the277
conditioning of the data generation process is provided by the ground truth ST data. This further278
motivates us to exploit a more comprehensive GAN structure, i.e., cGAN. The cGAN-based279
model can be used to take such conditioning inputs, which have great feature representation and280
generation capabilities, to address the lack of control in the basic GAN. As observed in Fig. 2281
and Fig. 3, the proposed model includes two parts: 1) the SSIG generator and 2) the SSIG282
discriminator.283

284
Figure 2. The structure of SSIG-generator285
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286
Figure 3. The structure of SSIG-discriminator.287

For the SSIG generator, CNN architectures are chosen as generators to extract latent288
subsurface dynamic parameters because of their superiority in previous ST inversion tasks (Han289
et al., 2019; Su et al., 2021). The aim of the SSIG generator is to generate ST data that resembles290
the ground truth ST data as best as possible. The SST, SSTA and SSHA data are integrated into a291
concatenation method, and the SSIG generator learns a mapping from the concatenated sea292
surface data x to the real ST data y: G: {x, z} → y, where z represents a random noise vector,293
which is provided only in the form of dropout and applied on several layers of the SSIG294
generator (Isola et al., 2017). The SSIG generator mainly consists of three parts: 1) shallow295
feature extraction; 2) convolutional network modules; and 3) upsampling and reconstruction. For296
more high-quality inversion data, the SSIG generator is structured in terms of the U-Net deep297
learning structure, which is used to concatenate multilevel features between the input and output298
layers using skip connection (Navab et al., 2015). The SSIG generator applies six convolutional299
network modules (CNMs) in the following form: convolution-BatchNorm-LeakyReLU, for300
feature extraction, where batch normalization is used to counteract the internal covariate shift in301
training. Correspondingly, there are six transposed convolutional modules using ReLU as the302
activation function for upsampling and reconstruction.303

As for the SSIG-discriminator, a convolutional “PatchGAN” classifier (Betina, 2016; Zhu304
et al., 2017) is chosen as discriminator to let N*N overlapping patches of inversed data can be305
separately taken into account. The input to SSIG-discriminator is a channel wise concatenation306
of the sea surface data and the corresponding generated ST (ground truth ST). Through307
adversarial learning, the SSIG-discriminator will not be able to discriminate the generated STs308
and ground truth STs. For the purpose of capturing local statistics, SSIG-discriminator309
convolutationally crosses the data, generating probability maps at the scale of data patches and310
averaging all responses to provide the ultimate output of SSIG-discriminator.311

We use three different loss functions for ST inverse: adversarial loss, L1 loss and feature-312
wise loss. For adversarial learning, the SSIG-G adopts the adversarial loss consistent with cGAN.313
Adversarial loss is the key idea to GANs’ success, an adversarial loss forces the generated data314
to be, in principle, indistinguishable from real data (Zhu et al., 2017). The objective function is315
given as follows:316

, ,( , ) [log ( , )] [log(1 ( , ( , ))]cGAN x y x zL G D E D x y E D x G x z   (3)317

where Ex,y represents the expectation operator with respect to x and y, G is SSIG-318
generator and G (x, z) learns the mapping from concatenated sea surface data x to real ST data;319
G is SSIG-discriminator and D (x, y) distinguishes whether x and y are the true paired data.320
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Flowing the previous research of a well-known cGAN model Pix2Pix (Isola et al., 2017),321
we use L1 loss to further improve the inversion performance. L1 loss provides an objective322
similarity measure between real ST and inversed ST, the loss function is defined as follows:323

1 , , 1( ) [|| ( , ) || ]L x y zL G E y G x z  (4)324

Where Ex,y,z represents the expectation operator with respect to x, y and z.325

In deep generative networks, some data generation losses are optimized in a grid-based326
manner (grid-to-grid), so generated data typically lack high-frequency details; thus, the327
perceptual difference between the real data and the generated data is not understood (Kiasari et328
al., 2017; Wang et al., 2018). Our study area covers a large area of China's marginal seas,329
including the BHS, YS and ECS, with a high spatial resolution. Coupled with climate changes330
and offshore currents, the temperature in these areas has strong horizontal and vertical gradients331
(Lie & Cho, 2016; Simonyan & Zisserman, 2015). In addition, unique geographic topography332
and complex hydrographical characteristics are challenges for obtaining high-quality inversion333
ST results. To avoid undesired “blurry” inversion results in some areas with strong dynamic334
interactions, the proposed model needs to perceive multiscale features from other domains rather335
than only through a grid-to-grid approach. Inspired by image super-resolution and denoising of336
computer visual research, especially successes in RS image-related tasks (Ledig et al., 2017;337
Simonyan & Zisserman, 2015; Wang et al., 2018), we adopt a feature-wise loss by using338
pretrained visual geometry group (VGG) networks to capture correspondences between higher-339
level appearance structures, which is of great help for modeling mappings of highly complex SSI340
features. To fit the fixed input size of 224 × 224 × 3 of VGG-Net during training, the input data341
need to be resized before being fed into the network. The feature-wise loss is defined as:342
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   (5)343

where ϕi,j is the feature map obtained by the j-th convolution of the well-trained VGG19344
network before the i-th maxpooling layer; W is the row number of input data, and H is the345
column number of input data.346

According to the above discussions, the overall loss function for the proposed SSIG-G is347
denoted as follows, where  is the control coefficient for the relative importance of the three348
objectives.349

350

1( , ) ( , ) ( ) ( )cGAN L PLL G D L G D L G L G   (6)351

3.3 The Modular Ocean Data Assimilation System (MODAS)352

MODAS is a modular system for ocean analysis designed to meet the U.S. Navy’s need353
to produce rapid estimates of present and near-term ocean conditions, often in situations where354
little or no in situ data are available (Fox et al., 2002). Not only a static climatology, MODAS355
also provides a vehicle for assimilating real-time observations to provide an adjusted climatology,356
including remotely sensed sea surface temperature (SST) and sea surface height (SSH) data and357
local observations from ships, aircraft, or buoys, referred as Dynamic MODAS. As an effective358
traditional method, Dynamic MODAS inverses ST profiles by using stored regression359
relationships between remotely sensed SSH and SST data with historical temperature profile data360
in this area. The ocean temperature outputs of Dynamic MODAS are daily three-dimensional361
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gridded analysis field with grid resolution ranging from 1/2°in the open ocean to 1/8° near the362
coasts. In this study, MODAS’s inputs are daily sea surface temperature anomaly and sea level363
anomaly observed by satellite, and daily subsurface temperature data in China's marginal seas is364
retrieved from the sea surface information. The outputs of MODAS include 50 depth levels365
ranging from 0 to 9000 m. The MODAS tool used in this study is from NMDIS of China.366

3.4 Experimental setup367

The training process consists of three steps: HYCOM reanalysis data training, fine tuning368
with satellite and CORA 2.0 data and model inversion. First, the SSIG-G model is trained on369
HYCOM ocean reanalysis data from 2000-2015 (a 15-year period), and the data from 2014 are370
used as the validation dataset. This training step is designed for ST inversion at each depth level371
(12 levels in total) by using sea surface parameter combinations (SST, SSTA, SSHA) as input.372
Ocean reanalysis is a reconstruction of historical and current ocean states by combining various373
ocean observations with a dynamical ocean model using ocean data assimilation (Han et al.,374
2011). As a well-known reanalysis product, HYCOM ocean reanalysis is often used to generate375
initial conditions for forecasts. HYCOM ocean reanalysis is used to assimilate multiple types of376
data (i.e., in situ temperature and salinity profiles and remotely sensed SST and altimeter sea377
surface height anomalies) using the Navy Coupled Ocean Data Assimilation (NCODA) three-378
dimensional variational data assimilation (3DVAR) technique (Jang et al., 2022). There are 5478379
sets of sea surface parameter combinations (SST, SSTA, SSHA) after removing some daily380
combinations with poor quality grid points for one or more parameters. For a GAN-based model,381
it is difficult to measure the quality of generated data in an objective manner while training, as382
the loss value of GANs may not be indicative of the model's performance during training383
(Jozdani et al., 2022). The maximum number of training epochs is set to 200, and the model with384
the best performance on the validation dataset is saved as the final model.385

Second, the trained model at each depth level was fine-tuned with satellite remote sensing386
data and CORA 2.0 data. Meng et al. (Meng et al., 2021) used daily Argo data to fine-tune a387
trained model which can improve the model performance. However, our study areas are the388
marginal sea of China with only a few Argo buoys at the edge of the ECS. It is difficult to adjust389
the model involving the whole study area using only a few observation points, especially the390
offshore area far away from the observation points. Therefore, we adopted satellite remote391
sensing data and CORA 2.0 daily data to fine tuning the entire model. CORA 2.0 data392
assimilated the in-site observations in China's marginal seas from the National Marine Data393
Information Center of China, so it has higher accuracy in our research area. Four years of CORA394
2.0 daily data from 2016-2019 are used in the fine turning step, the data in 2018 is used as the395
testing dataset. The training setting is similar to the first step and the final models are the best396
performing model on validation datasets.397

To evaluate the inversion accuracy, the root mean square error (RMSE) and the398
determination coefficient (R2) were employed as performance indexes, which are defined as399
follows:400
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  (7)401
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403

where d is the error vector calculated by the difference between the inversed STs and the field404
observed data, i is verification points index and n is the number of verification points; Yi405
represents observed STs, Yi’ represents inversed STs andY represents average of observations.406

4 Results and discussion407

In this study, we established the SSIG-G model to invert STs in China's marginal seas at408
12 different depth levels in 2018. In this section, we first compared the inverted STs with field-409
observed data from NMDIS. Meanwhile, we used the traditional MODAS tool to carry out the410
same experiments. The experimental results were used as a benchmark to further verify the411
inversion accuracy of our proposed SSIG-G model. Fig. 4 and Fig. 5 and Figs. 7 to 8 show412
comparisons of the inversion performance of the proposed SSIG-G model and MODAS tool413
using different statistics and different perspectives. Next, to further verify the accuracy of the414
inversion results and their utility in the study of relevant oceanographic phenomena, the415
inversion results, MODAS results and reanalysis dataset CORA were used to analyze some416
typical oceanographic physical phenomena in the study areas.417

4.1 Error analysis of the inversion results418

Fig. 4 shows the overall inversion performances of the proposed SSIG-G model and the419
traditional MODAS tool for STs at 12 different depths using the average root mean square error420
(RMSE) and the determination coefficient (R2) as evaluation criteria. For the SSIG-G model, the421
average RMSE first increases from 0 to 125 m, then decreases at 150 m, and finally increases422
from 150 m to 200 m.423

The highest inversion accuracy occurs at the top level (2 m), with the average RMSE of424
0.432 °C, and the average R2 of 0.906. The lowest inversion accuracy exist in the bottom level425
of 200 m, with an average RMSE of 1.79 °C and an average R2 of 0.775. The highest R2 of 0.97426
occurs at 70 m, and the average RMSE is 1.101 °C. For MODAS, the average RMSE variation427
pattern of the 12 levels is the same as that of the SSIG-G model, and the highest inversion428
accuracy occurs at 2 m. The average RMSE is 0.445 °C, and the average R2 is 0.897. The lowest429
inversion accuracy is the bottom level of 200 m, with an average RMSE of 2.152 °C and an430
average R2 of 0.794. At 125 m, the average RMSEs of both the SSIG-G model and MODAS are431
relatively high, which is due to the ST characteristics being significant and the variation range432
being large at this depth. The results show that for the SSIG-G model and MODAS tool, the433
accuracy of inversion results retrieved from sea surface information decreases gradually with434
increasing depth. In addition, the inversion accuracy is affected when the temperature435
characteristics change dramatically. Overall, we find that the inversion accuracy of the MODAS436
tool is not as high as that of the SSIG-G model at the 12 depth levels. The average RMSEs of the437
inversion results obtained by the SSIG-G model from 2-200 m are less than 2 °C, while the438
average RMSEs of the inversion results obtained by the MODAS tool are higher than 2 °C at 125439
m and 200 m.440
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441
Figure 4. The performance measures of proposed model and MODAS products for STs442

inverse at different depths (12 levels) by employing (a) RMSE (Root Mean Squared Error) and443
(b) R2 (squared correlation coefficient).444

Fig. 5 shows the average RMSEs of the inversion results at 12 different depths and445
different seasons using the proposed SSIG-G model and MODAS. Fig. 5 (a)-(d) shows the446
results in winter, spring, summer and autumn, respectively. We can see that the highest inversion447
accuracy occurs in winter; the average RMSEs at 2-200 m are less than 1.2 °C, and the inversion448
results of the SSIG-G model are slightly better. In winter, the cold northerly wind prevails in the449
study sea area, and the vertical convection mixing of sea water is very strong. In the shallow sea450
of the continental shelf, with a water depth of less than 100 m, the mixing depth can almost reach451
the seabed, resulting in a very similar plane distribution of surface and bottom water452
temperatures. Therefore, more accurate subsurface temperatures can be obtained from the sea453
surface information.454

Fig. 5(b) shows that the second highest inversion accuracy occurs in spring; the average455
RMSEs of the SSIG-G model are less than 1.5 °C, and the lowest inverse accuracy is at 50 m.456
The average RMSEs of the MODAS model are less than 1.5 °C, except at 50 m. It can be457
inferred that the thermocline is approximately 50 m in spring in this sea area.458

The lowest inversion accuracy occurs in autumn, and the average RMSEs of the SSIG-G459
model and MODAS are approximately 2.5 °C and 3 °C, respectively, at 200 m. In autumn, the460
overall pattern of STs obtained by the two methods is consistent, and the inversion accuracy461
decreases with increasing depth. This may be because in autumn, the water temperature462
distribution begins to transition to the winter type; not only does the water temperature drop463
significantly, but the thermocline essentially disappears, and the water temperature distribution464
tends to be vertically uniform. Therefore, the STs obtained by the sea surface information only465
show the characteristics that the accuracy decreases with increasing depth.466

The inversion results in summer are shown in Fig. 5(c). The inversion accuracy of the467
SSIG-G model is less than 2.5 °C, and levels shallower than 100 m have an inversion accuracy468
below 2 °C. The inversion accuracy of MODAS is below 2.5 °C at these depth levels, except at469
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150 m. Although the results in summer are better than those in autumn, the inversion accuracy is470
much different, compared with that in winter and spring. This is because the solar radiation is471
strongest in summer, and the sea surface is affected by the warm and humid south wind, which is472
the season with the highest water temperature throughout the year. Especially during the summer473
monsoon, the surface water of the Yellow Sea and East China Seas is heated by the absorption of474
solar radiation and freshened by precipitation and freshwater discharge from land [36].475
Consequently, the most prominent feature of the sea temperature distribution is that in most of476
the sea areas, the thermocline appears vertically, and the ST distribution pattern is very different477
between the surface and bottom layers. This leads to large errors in inversion STs obtained from478
sea surface information.479

The seasonal results demonstrate that the SSIG-G model has high inversion accuracy and480
that the inversion results can better reflect the seasonal characteristics. Compared with the481
traditional MODAS tool, the SSIG-G model has a higher inversion accuracy of STs in different482
seasons. This indicates that the deep learning method SSIG-G has strong applicability and that483
the inversion results can be taken into account when studying seasonally related ocean484
phenomena.485

486

487
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Figure 5. The average RMSEs of inversion results at 12 different depths and different488
seasons using the proposed SSIG-G model and MODAS, (a) winter, (b) spring, (c) summer and489
(d) autumn.490

In order to further verify the accuracy distribution of the inversion results in the entire491
study area, 4 square-areas were selected throughout the study area in the experiment, namely: A,492
B, C, and D. Taking these 4 square-areas as verification areas, the inversion accuracy of493
inversion results in the whole study area is analyzed. Fig. 6 is the distribution map of observation494
points and schematic diagram of verification areas.495

496

497
Figure 6. Distribution map of observation points and schematic diagram of verification498

area in 2018.499

Fig.7 shows the average RMSEs of inversion results at 12 different depths in different500
square-areas using the proposed SSIG-G model and MODAS, Fig.7 (a)-(d) show the results in501
area A, B C and D respectively. We can see that square-area A has the highest inversion502
accuracy; the average RMSEs at 2-200m are less than 1.2 ◦C, the inversion results of SSIG-G503
model are slightly better. For the inversion results obtained by the two methods, the highest504
accuracy is 2m, and the lowest accuracy is 200m. The accuracy of 50m is higher, and the505
accuracy of the 70m-100m is significantly lower than that of the shallow depth levels. The506
accuracy of the MODAS inversion results in 70m is slightly better than that of the SSIG-G507
model.508

The inversion results of square-area B are shown in Fig.7(b). As shown in Fig. 7(b), the509
inversion results accuracy of SSIG-G model is all less than 2°C, and the average RMSEs of the510
inversion results of 2-70m layers are 1°C or less. Fig.7(c) shows the inversion results accuracy511
within the square-area C. The average RMSEs of the inversion results obtained by the two512
methods are below 2°C, and the inversion accuracy of SSIG-G model is slightly better than that513
of MODAS. Fig.7(d) shows the accuracy of inversion results within the square-area D. It can be514
seen from this figure that the MODAS inversion results accuracy is lower at 50m, and the515
average RMSE exceeds 2.5°C, which is inaccurate compared with the inversion results of the516
SSIG-G model.517



manuscript submitted to replace this text with name of AGU journal

In general, the inversion result accuracy of the SSIG-G model is higher, and for some518
layers in some regions, the inversion result accuracy is slightly lower. This may be due to drastic519
changes in seasons or regions, such as the Kuroshio and California currents, and variations in the520
thermal structure in the upper ocean due to horizontal advection are large.521

522

523
Figure 7. The average RMSEs of inversion results at 12 different depths and in different square-524
areas using the proposed SSIG-G model and MODAS, (a) square-area A, (b) square-area B, (c)525
square-area C, (d) square-area D.526

Fig. 8 displays the daily error maps of STs inverted by the SSIG-G method and MODAS527
at 5 depth levels (10 m 35 m, 50 m, 100 m, 200 m). These error maps represent the differences528
between the inversion results and the field observations on June 27, 2018. The verification points529
on this day are mainly within the range of 27°N and 126°E, and the visual results show that the530
inversion STs by the SSIG-G method are closer to the ground truth observations. For example, it531
can be seen from Fig. 8(b), (c) and (d) that at the corresponding verification points, the errors of532
the SSIG-G model are obviously smaller than those of MODAS, and the errors of the other533
levels are small when using the SSIG-G model. The errors at the 100 m and 200 m levels are534
larger than those of shallower levels, which is consistent with the previous analysis results. The535
daily error results demonstrate that the proposed SSIG-G method is accurate.536

537

(a) (b)
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538

539
540

Figure 8. Daily error maps of STs inversed by the SSIG-G method and MODAS at 5 selected541
depths levels, on June 27, 2018; (a) 10m, (b) 35m, (c) 50m, (d) 100m and (e) 200m.542

4.2 Typical physical oceanographic phenomena analysis in China's marginal seas543

The temperature distribution characteristics of China's offshore and adjacent areas can be544
classified into three types: winter type, summer type and transitional type. In China's marginal545
seas, the winter type appears from December to March of the following year, when the sea546
temperature is the lowest throughout the year. At this time, the coastal sea temperature is low,547
the outer sea temperature is high, the isotherm shows a roughly parallel distribution to the548
coastline, and the horizontal gradient is large. The summer type, which is the season with the549
highest sea temperature throughout the year, appears from June to August, and the surface sea550
temperature generally rises. During this period, the strong solar radiation makes the sea surface551
temperature rise faster and the deep sea temperature rise slower. In addition, convection and552
eddy mixing are weak in summer, which makes the vertical distribution of sea temperature553
exhibit strong stratification.554

The Western Pacific is the region with the highest frequency of tropical cyclones (TCs),555
and our research area is often affected by TCs. As a type of extreme weather, TCs have a great556

https://ifbfh253cb3a601b84ef2s560wp0wx90xb60u6fgac.eds.tju.edu.cn/topics/earth-and-planetary-sciences/marginal-sea
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impact on the upper ocean temperature in a short period. Therefore, in addition to the seasonal557
variation characteristics, the inversion results also need to be able to correctly reflect the558
temperature variations at the synoptic scale.559

This section first takes summer and winter as examples to display and analyze some560
typical physical features of China's marginal seas through the inversion results. Then, the561
response of the upper ocean temperature to TCs will be further analyzed by using the SSIG-G562
inversion results.563

4.2.1 Temperature distribution characteristics of YS564

The Yellow Sea (YS) cold water mass is a typical physical oceanographic phenomenon565
in the shallow sea of China's continental shelf. YS cold water mass is a water body with a large566
temperature difference, small salt difference and low temperature as the main features. It is567
located at the bottom of the depression in the middle of the YS. The vertical distribution of the568
YS cold water mass is stratified, with three layers of structure, namely, upper and lower569
homogeneous layers and a thermocline. From July to August, the cold water mass reached its570
peak, with the strongest three-layer structure and high stability near the thermocline. Fig. 9571
shows the cross-section of the YS cold water mass from the proposed SSIG-G method, MODAS572
and CORA in August, Fig. 9(a) shows the monthly average temperature at 35°N and Fig. 9(b)573
shows the monthly average temperature at 37 °N. It can be seen from these figures that the574
vertical structure of temperature is clearly stratified, the upper sea water temperature is high and575
relatively evenly distributed, and below it is a strong thermocline. Most of the sea areas below576
the thermocline have been covered by a fully formed YS cold water mass, and the temperature is577
low.578

579

580
Figure 9. Monthly average temperature in August: (a) Monthly average temperature in 35°N, (b)581
Monthly average temperature in 37°N.582

In winter, since the outer sea water entering the YS mixes with the coastal water and583
sinks to the deep bottom due to the cooling effect of the sea surface, the sea temperature is584
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vertically uniform. At this time, the northerly monsoon prevails in the sea area, and the mixing585
effect of eddies and convection is strong. The sea temperature distribution characteristics in the586
surface, middle and bottom layers of the entire YS are similar, showing the characteristics of low587
temperature near the coast and high temperature in the central sea. Fig. 10 shows the monthly588
average sea temperature of the 35°N and 37°N cross-sections in winter (February). A vertically589
uniform temperature can be seen clearly from this figure. The results obtained by the three590
methods are slightly different, but the overall characteristics are the same, which can sufficiently591
reflect the winter sea temperature characteristics of this sea area.592

593

594
Figure 10. Monthly average temperature in February: (a) Monthly average temperature in 35°N,595
(b) Monthly average temperature in 37°N.596

Fig. 11 shows sea temperature’s horizontal distribution in summer and winter in China's597
marginal seas. Fig. 11(a) shows the sea temperature’s horizontal distribution near the bottom of598
YS in summer, and the structure of YS cold water mass can be seen clearly. In particular, the599
SSIG-G inversion results show two obvious low temperature centers, located in the northern YS600
and the southern YS, respectively, which is consistent with the hydrological characteristics of601
this region. Fig. 11(b) shows the temperature near the bottom of the YS in winter, the602
temperature of the YS showed a winter characteristic at this time, without cold water mass603
structure.604



manuscript submitted to replace this text with name of AGU journal

605

606
Figure 11. Monthly average sea temperature’s horizontal distribution in summer and winter in607
China's marginal seas: (a) Monthly average sea temperature distribution near the bottom of the608
YS in summer, (b) Monthly average sea temperature distribution near the bottom of the YS in609
winter.610

4.2.2 Temperature distribution characteristics of ECS611

The cross-section of the ECS is selected at 31°N, which is a typical cross-section for612
studying the hydrological characteristics of the ECS. The sea temperature distributions in this613
section are different in summer and in winter. In summer, the sea temperature west of the cross-614
section shows a three-layer structure with increasing temperature. The sea surface temperature is615
above 27 °C, but there is cold water near the bottom, with a clear thermocline in the middle. In616
winter, the shallow water area west of this cross-section is mixed by convection directly to the617
seabed, and the sea temperature distribution is consistent from top to bottom. The eastern part of618
the cross-section is the Kuroshio high-temperature water, which shows the surface layer is above619
18 °C, and the vertical distribution of sea temperature is relatively uniform to approximately 150620
m. At a depth of more than 150 m, the water temperature decreases with increasing depth. The621
isotherm east of the section bulges upward from the seabed, and the water temperature from the622
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surface to the bottom drops evenly. Fig. 12 shows the 31°N cross-section results obtained by the623
three methods, of which Fig. 12(a) shows the results in summer. The results of the proposed624
SSIG-G model and CORA are similar, which proves that the inverted STs can be used to625
accurately reflect the physical oceanographic phenomena. The MODAS results are slightly626
different from those obtained by the other two methods. There is a large temperature change at627
128° E, and the eastern part of the cross-section does not reflect the fact that the isotherm bulges628
upward well. Fig. 12(b) shows the winter results, and the three methods accurately reflect the629
winter temperature distribution characteristics.630

631

632
Figure 12. Monthly average temperature cross-section of the ECS in 31°N: (a) summer, (b) winter.633

4.2.3 Responses of upper ocean temperature to tropical cyclones (TCs) in634
China's marginal seas635

The ocean response and feedback to TCs are the most intense air-sea interactions636
involving complex processes from weather to climate scales, from local to global scales, and637
from dynamic and thermodynamic elements to multiple environmental variables. The specific638
impacts of tropical cyclones on the upper ocean are as follows: during the passage of TCs, the639
loss of water vapor and heat in the ocean surface, the cooling of the upper sea water and the640
strong wind stress and wave action can penetrate the ocean at 100-200 m depth, and thus cause641
turbulent mixing and strong upwelling (Chang et al., 2013). The cyclonic stress of TCs can also642
play a "cold suction" role in the upper ocean by the strong uplift of the ocean thermocline643
through Ekman suction (Chereskin & Price, 2001).644

Due to the lack of in situ observations during TCs passage, response analysis of upper645
ocean temperature to TCs lacks sufficient data. To better verify our inversion results and further646
expand the applications of our inversion results in studying typical physical oceanographic647
phenomena in China's marginal seas, based on the China Meteorological Administration (CMA)648
best-track dataset (Lu et al., 2021; Ying et al., 2014) provided by the Tropical Cyclone Data649
Center of the CMA, four TCs that crossed China's marginal seas in 2018, "GAEMI", "YAGI",650
"RUMBIA" and "KONG-REY", are selected, and the response of upper ocean temperature at651
depths of 10-100 m during TC passage are analyzed. The sea temperature 7 days before TC652
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passage is taken as the reference temperature, and the responses of upper sea temperatures to653
TCs are analyzed by calculating the abnormal changes in sea temperature at 10 m, 50 m, 75 m654
and 100 m during TC passage. Fig. 13 shows the trajectory of four selected TCs in the study area.655

656
Figure 13. Trajectory of four selected TCs in the study area: (a) "GAEMI", (b) "YAGI", (c)657
"RUMBIA" and (d) "KONG-REY".658

The trajectory of TC "GAEMI" during its passage in the study area from 12:00 on June659
15 to 6:00 on June 16, 2018 is shown in Fig. 13 (a). Fig. 14 shows the abnormal temperature660
changes during TC "GAEMI" (June 16, 2018), and the inversion results are compared with661
MODAS and CORA 2.0. Fig. 14(a) - (d) show the temperature anomalies of the 10 m, 50 m, 75662
m and 100 m layers, respectively. It can be seen from this figure that the CORA does not well663
reflect the cold anomaly of the upper ocean temperature during the transit of "GAEMI", which664
indicates that the reanalysis data may not well reflect the changes under the influence of weather665
scale without in situ observations. The inversion results of SSIG-G and MODAS obtained from666
satellite observations, can better reflect real-time changes. The inversion results of SSIG-G show667
a better cold anomaly near the "GAEMI" path.668
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669
Figure 14. Temperature anomaly during the transit of TC "GAEMI" (June 16, 2018): (a) 10m, (b)670
50m, (c) 75m and (d) 100m.671

The trajectory of TC " YAGI " during its transit in the study area from 00:00 on August672
11 to 21:00 on August 15, 2018 is shown in Fig. 13 (b) and the trajectory of TC " RUMBIA "673
during its transit in the study area from 12:00 on August 14 to 3:00 on August 17, 2018 is shown674
in Fig. 13 (c). The transit time of these two TCs overlaps, so they are analyzed together. Fig. 15675
shows the abnormal temperature changes of TCs "YAGI" and "RUMBIA" during their transit676
(August 15, 2018). Fig. 15 (a) - (c) correspond to the temperature anomalies of 10m, 50m and677
75m layers respectively. It can be seen from this figure that the results of CORA have large areas678
of warm anomalies in the 50m and 75m layers, which do not reflect the "cold suction" effect679
during the transit of TCs. The results of SSIG-G and MODAS reflect the response of the upper680
ocean temperature to TCs. Besides, the inversion results show warm anomalies in some regions681
besides cold anomalies because the subsurface temperature is also affected by the "heat pump"682
effect.683

684
685
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Figure 15. Temperature anomaly during the transit of TCs " YAGI "(Black dots) and686
“RUMBIA” (Red dots) in August 15, 2018: (a) 10m, (b) 50m, (c) 75m and (d) 100m.687

The trajectory of TC "KONG-REY" during its passage in the study area from 06:00 on688
October 4, 2018, to 00:00 on October 6, 2018, is shown in Fig. 13(d). Fig. 16 shows the689
abnormal temperature changes of TC "KONG-REY" during its passage (October 5, 2018). Fig.690
16(a) - (d) show the temperature anomalies at the 10 m, 50 m, 75 m and 100 m layers,691
respectively. Consistent with the analysis results of other TCs, the SSIG-G and MODAS results692
can well reflect the "cold suction" effect of TCs.693

694

695
Figure 16. Temperature anomaly during the transit of TCs " KONG-REY (October 05, 2018): (a)696
10m, (b) 50m, (c) 75m and (d) 100m.697

5 Conclusions698

In this study, a new GAN-based model was proposed for the inversion of high-resolution699
daily ST fields in the upper 200 m of China's marginal seas using multisource remote sensing700
and two reanalysis datasets. The traditional inversion tool MODAS was used for the sake of the701
comparison and validation. In this study, we first analyzed the inversion results at 12 different702
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depth levels from different temporal and spatial perspectives, including seasonal and703
geographical distributions, and used NMDIS’s integrated temperature and salinity data for704
accuracy verification. Next, we further verified the inversion results and their importance in705
oceanographic research by analyzing the YS cold water mass and temperature distribution706
characteristics of the ECS in China's marginal seas.707

The results show that the proposed SSIG-G model can be used to invert the daily ST708
fields of China's marginal seas with a resolution of 1/12°. The accuracy of the inversion results709
using both SSIG-G and MODAS decreases with an increase of depth, except at 125 m; the710
average RMSEs are less than 1.45 °C and 2.23 °C, respectively, at all depth levels, and the711
highest accuracy is 2 m with average RMSE of less than 0.45 °C. The highest R2 values are 0.97712
and 0.898 when using the SSIG-G model and MODAS, respectively. At 70 m, the highest713
average R2 values of 0.97 and 0.898 are obtained using the SSIG-G model and MODAS,714
respectively. The results in different seasons show that the lowest inversion accuracy occurs in715
autumn, and the highest inversion accuracy occurs in winter. The SSIG-G model and MODAS716
have consistent seasonal change trends; the average RMSEs in winter are all less than 1.2 °C,717
while the highest average RMSEs in autumn reaches 2.5 °C and 3 °C at 200 m, respectively. The718
seasonal inversion results reflect the seasonal variation characteristics of China's marginal seas.719
For the accuracy inversion distribution results in the entire study area, the highest inversion720
accuracy is around square-area A, and the inversion results around square-area B is relatively721
poor; in square-area D, the accuracy inversion accuracy of the SSIG-G model is obviously better722
than that of MODAS. Overall, the SSIG-G model has higher accuracy and model robustness in723
both time and space.724

Through the analysis of typical physical oceanographic phenomena in China's marginal725
seas and the comparison with MODAS and CORA, it can be seen that the inversion results726
obtained by the proposed SSIG-G model can accurately reflect the physical oceanographic727
phenomena, which has important research and application value. The vertical and horizontal728
distributions of the YS cold water mass in summer and winter are clearly reflected, and the729
unique cold water mass structure is consistent with the actual hydrological characteristics. The730
temperature characteristics of the ECS in summer and winter are also well reflected in the731
inversion results. In addition, because it is derived from satellite data, this model provides more732
real-time results than reanalysis data. Through the analysis of the abnormal changes of the upper733
ocean temperature during the passage of four tropical cyclones "GAEMI", "YAGI", "RUMBIA"734
and "KONG-REY", the superiority of the inversion results in this study and its application value735
of ocean physical phenomena researches are further verified.736

Overall, the proposed SSIG-G model can take into account the spatial-temporal variation737
characteristics of ST structures in China's marginal seas and has higher horizontal resolution and738
accuracy than the traditional MODAS tool. SSHA, SSTA and SST are important sea surface739
information in inverting STs, and the SSIG-G model has successfully adopted these data for740
retrieving ocean interior thermal structures. This study can provide methodological support for741
the DORS technique, and the application of ML/DL in this field has once again proven to be of742
great value. Of course, this study uses a relatively simple framework, and more targeted743
improvement based on the research area and variables could be performed in the future. In744
addition, we can use more multisource remote sensing data and advanced ML/DL networks to745
improve the inversion accuracy and model robustness. Coping with ocean warming and climate746
change is a common issue for mankind, and abundant, multisource, massive remote sensing data747
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and advanced ML/DL methods have created positive impacts. Our research has provided some748
valuable foundations.749
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