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Abstract

Within the Charlotte, North Carolina, to Atlanta, Georgia, megaregion (Charlanta), the Atlanta metropolitan area has been

shown to augment proximal cloud-to-ground (CG) lightning occurrence. Although numerous studies have documented this

“urban lightning effect” (ULE) with regard to CG lightning, relatively few have investigated urban effects on distributions

of total lightning (TL). Moreover, there has yet to be a study of the ULE using TL observations from the Geostationary

Lightning Mapper (GLM). In an effort to fill this gap, we investigated spatial distributions of TL around the cities of Atlanta,

GA, Greenville, SC, and Charlotte, NC, using GLM data collected during the warm seasons of 2018–2021. Analyses reveal

augmentation of total lightning intensity and frequency over the major cities of Atlanta and Charlotte, with a diminished urban

signal over the smaller city of Greenville. This work also demonstrated the potential efficacy of the emerging satellite-based TL

climatology in ULE studies.

1



manuscript submitted to Geophysical Research Letters 

 

The Urban Lightning Effect Revealed with Geostationary Lightning Mapper 1 

Observations 2 

 3 

J.D. Burke1, Marshall Shepherd2 4 

1Department of Geography, University of Georgia, Athens, GA, United States 5 

2Department of Geography, University of Georgia, Athens, GA, United States 6 

 7 

Corresponding author: Marshall Shepherd (marshgeo@uga.edu) 8 

 9 

Key Points: 10 

• The urban lightning effect is detectable in Geostationary Lightning Mapper total lightning 11 

observations 12 

• The urban lightning effect is most discernible in the larger metropolitan areas of the 13 

Charlotte, NC, to Atlanta, GA, urban corridor 14 

• The emerging Geostationary Lightning Mapper dataset enables a new generation of urban 15 

lightning studies as the record lengthens  16 

mailto:marshgeo@uga.edu


manuscript submitted to Geophysical Research Letters 

 

Abstract 17 

Within the Charlotte, North Carolina, to Atlanta, Georgia, megaregion (Charlanta), the Atlanta 18 

metropolitan area has been shown to augment proximal cloud-to-ground (CG) lightning 19 

occurrence. Although numerous studies have documented this “urban lightning effect” (ULE) with 20 

regard to CG lightning, relatively few have investigated urban effects on distributions of total 21 

lightning (TL). Moreover, there has yet to be a study of the ULE using TL observations from the 22 

Geostationary Lightning Mapper (GLM). In an effort to fill this gap, we investigated spatial 23 

distributions of TL around the cities of Atlanta, GA, Greenville, SC, and Charlotte, NC, using 24 

GLM data collected during the warm seasons of 2018–2021. Analyses reveal augmentation of total 25 

lightning intensity and frequency over the major cities of Atlanta and Charlotte, with a diminished 26 

urban signal over the smaller city of Greenville. This work also demonstrated the potential efficacy 27 

of the emerging satellite-based TL climatology in ULE studies. 28 

Plain Language Summary 29 

Studies using ground-based lightning detection networks have revealed an “urban lightning effect” 30 

(ULE) around major cities. Recently, the U.S. launched a weather satellite with a unique lightning 31 

mapping instrument. This study, possibly for the first time, demonstrated the ability to utilize 32 

space-based observation of total lightning to detect the ULE within the Charlotte, North Carolina, 33 

to Atlanta, Georgia, urban corridor. The study also paves the way for future ULE analyses as the 34 

satellite lightning data record lengthens. 35 

1 Introduction 36 

The “urban lightning effect” (ULE) describes the observed tendency of large urban areas to 37 

augment proximal flash occurrence through a variety of hypothesized mechanisms (Shepherd et 38 

al., 2015; Stallins and Rose, 2008). Most prominently, major cities display a propensity to modify 39 

the convective intensity and associated lightning production of weakly-forced thunderstorms 40 

(Ashley et al., 2012; Rose et al., 2008; Stallins and Rose, 2008).  As described by Stallins and Rose 41 

(2008), anthropogenic influences on flash production can be broadly grouped into two inter-42 

connected categories: (i) enhancement of local surface convergence and convective instability 43 

arising from the characteristics of the urban boundary layer heat island (BLHI) and surface 44 

morphology and (ii) modification of the microphysical conditions driving cloud electrification by 45 
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anthropogenic aerosols. More generally, these can be summarized as thermodynamic, 46 

morphological, and microphysical “urban effects.” 47 

The Charlanta megaregion consists of a rapidly developing Urban Climate Archipelago (UCA) 48 

roughly following Interstate-85 between Atlanta, GA, Greenville, SC, and Charlotte, NC. 49 

Shepherd et al. (2014) defined a UCA as a chain or aggregate of urban areas that modify aspects 50 

of the climate system. As the focus of numerous studies, the city of Atlanta exhibits strong urban 51 

augmentation of lightning intensity and frequency (Rose et al., 2008; Stallins and Bentley, 2006; 52 

Stallins et al. 2006; Stallins and Rose, 2008). Stallins et al. (2006) found that average annual CG 53 

flash densities in Atlanta between 1992–2003 were 50%–75% higher than in surrounding rural 54 

areas. Rose et al. (2008) observed a clear relationship between anomalies of precipitation, 55 

lightning, and the prevailing wind direction. In an integrated study of radar reflectivity and 56 

lightning data focused on Atlanta, Ashley et al. (2012) found statistically significant increases in 57 

aggregate (1997–2006) warm season CG flash counts and flash days between defined urban-rural 58 

boundaries of 34%–42% and 14%–20%, respectively. A key finding of their study was the linkage 59 

between patterns of lightning, precipitation, and the geometry of the urban footprint. Increasing 60 

contiguity of impervious surfaces and rapid expansion of urban sprawl are predicted to 61 

dramatically alter the spatial footprints of individual cities and the structure of the entire Charlanta 62 

UCA in the coming years (Stone et al., 2013; Terando et al., 2014), emphasizing the need for 63 

continued investigation and monitoring of the ULE. 64 

Though global networks detecting total lightning flashes have been widely operated for many 65 

years, regional and continental CG detection networks have been the preferred sources of flash 66 

data due to a number of undesirable characteristics associated with lightning detection at a global 67 

scale, namely, low detection efficiencies and spatio-temporal variations in accuracy (Hayward et 68 

al., 2020; Lay et al., 2005). The now defunct spaceborne Lightning Imaging Sensor (LIS) and its 69 

antecedent prototype aboard MicroLab-1, known as the Optical Transient Detector (OTD), 70 

suffered from similar data accuracy and consistency issues due to the low earth orbit (LEO) of the 71 

Tropical Rainfall Measuring Mission (TRMM) satellite, which resulted in discontinuous spatio-72 

temporal coverage and middling detection efficiencies, though still offering substantial 73 

improvement over ground-based global networks (Boccippio et al., 2000, 2002; Hayward et al., 74 

2020). In an effort to remedy the known pitfalls of lightning detection via satellites in LEO, NASA 75 
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and NOAA jointly launched the GLM aboard the Geostationary Operational Environmental 76 

Satellite (GOES) R-series in 2016, marking the advent of spatially and temporally continuous 77 

lightning detection from space (Goodman et al., 2013; Medici et al., 2017). This novel availability 78 

of high-resolution TL data from the GLM presents contemporary researchers of the ULE with a 79 

convenient source for reliable TL observations. Nevertheless, there has yet to be an urban lightning 80 

study that utilizes data from the GLM in its analysis. 81 

As possibly the first study to utilize observations from the GLM to investigate the ULE, the 82 

overarching purpose of this study was to provide insight into the utility of GLM data for future 83 

analyses of the ULE. Consequently, we used warm season (June, July, August; JJA) flash data 84 

from the first four years of GLM observation (2018–2021) to develop and analyze a set of TL 85 

climatologies for the Charlanta UCA. A stated objective of the GLM is to provide spatio-86 

temporally continuous lightning observations for use in long-term climatological analyses 87 

(Rudlosky et al. 2019; Rudlosky et al. 2020). As it is well established that TL serves as a robust 88 

proxy for convective intensity due to the overwhelming predominance of IC flashes relative to CG 89 

strikes (MacGorman et al., 2011), we hypothesize that the ULE will be resolvable in TL 90 

observations from the GLM.  91 

2 Data 92 

2.1 GLM observations 93 

The GLM 1372 by 1300 pixel charge-coupled device (CCD) detects near-infrared (NIR) emissions 94 

within a narrow 1 nm band centered at 777.4 nm, providing an at-nadir spatial resolution of 95 

approximately 8 km (Goodman et al., 2013). Downstream processing by the Lightning Cluster 96 

Filter Algorithm (LCFA) clusters the detected lightning “events” into higher order data classes of 97 

“groups” and “flashes” (Goodman et al., 2012; Thiel et al., 2020), each containing spatial 98 

information in the form of latitude-longitude coordinates.  The purpose of a GLM group is to serve 99 

as a proxy for the individual return strokes (current discharges) that make up a ground (cloud) 100 

flash, while a GLM flash is intended to correspond to a conventional lightning flash (Goodman et 101 

al., 2012). Final GLM products have a daytime (nighttime) flash detection efficiency (DE) greater 102 

than 70% (90%) and location accuracy of approximately 4 km (Koshak et al., 2018; Rudlosky et 103 

al., 2019). 104 
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Recently, Oda et al. (2022) performed an initial climatological analysis of total flash rate density 105 

(FRD) in Brazil using GLM data. In collaboration with the Center for Weather Forecasting and 106 

Climate Studies (CPTEC) within Brazil’s National Institute for Space Research (INPE), 107 

processing by Oda et al. (2022) accumulated more than 6 million provisionally mature 20-second 108 

Level 2 (L2) GLM packets into 5-minute bins and spatially aggregated the included events, groups, 109 

and flashes on a 0.08° x 0.08° latitude-longitude grid. Quality control measures were taken by 110 

filtering GLM observations to those only with a Data Quality Flag of “good,” as recommended by 111 

Rudlosky et al. (2019). Each gridded file contains the centroid density of the variables produced 112 

by the LCFA, representing the total number of flash, group, and event centroids detected within 113 

each grid cell over the 5-minute time interval. These products are made publicly available through 114 

a managed archive (CPTEC/INPE, 2022). 115 

Facilitating the objectives of our study, warm season (JJA) GLM observations were acquired from 116 

CPTEC’s public archive in their native netCDF format for a 4-year period (2018–2021). The 117 

Climate Data Operators (CDO; Schulzweida, 2022) suite of command line tools was utilized to 118 

aggregate the 5-minute files, filter to the desired geographic region, and to derive a set of metrics 119 

aimed at quantifying TL intensity and frequency over the 4-year period of record: 1) the total FRD 120 

(i.e., total flashes km-2 year-1), 2) the total number of active flash days (i.e., days where total flash 121 

count ≥ 1), and 3) the average flashes per flash day (i.e., total flashes / flash days). 122 

2.2 Physiographic data 123 

Land cover data was obtained from the United States Geological Survey (USGS) National Land 124 

Cover Database (NLCD 2011), which provides access to spatially explicit land cover and per-pixel 125 

impervious surface products derived from 30 meter Landsat imagery (Dewitz, 2021; Yang et al., 126 

2018). Additionally, 7.5-arc-second Global Multi-resolution Terrain Elevation Data 127 

(GMTED2010) was obtained from the USGS Earth Resources Observation and Science (EROS) 128 

Center archive (Danielson and Gesch, 2011; EROS, 2017). 129 

3 Methods 130 

Maps of the derived GLM TL flash metrics were created in ArcGIS Pro 2.9 by converting the 131 

gridded latitude-longitude point dataset to raster format and projecting to the Albers Equal-Area 132 

Conic (AEAC) projection (Snyder, 1987), resulting in a spatial resolution of approximately 8 km 133 
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(ESRI, 2021). The following sections describe the steps taken to construct and analyze four-year 134 

warm season TL flash climatologies across the Charlanta megaregion. 135 

3.1 Defining the Charlanta megaregion and constituent domains 136 

Three city-scale domains centered on Atlanta, Greenville, and Charlotte were constructed using 137 

geometric buffers with radii of 100 km, 75 km, and 87.5 km, respectively. These buffers were 138 

based around each city’s administratively defined center to define the outer boundaries of their 139 

domains. A rectangular polygon feature representing the entire Charlanta megaregion was defined 140 

using ArcGIS Pro’s Minimum Bounding Geometry tool with the three geometric buffers of 141 

Charlanta’s major cities as the input features (displayed in Figure 1 below). These boundary 142 

features were used to clip the GLM dataset to the Charlanta megaregion and its constituent city-143 

scale domains before mapping each TL metric for visual analysis. 144 

 145 

Figure 1.   (a): Aggregated 2011 NLCD layer overlaid with the geometric buffers and NLCD-146 

derived urban delineations constructed to define the domains of Atlanta (ATL), Charlotte (CLT), 147 

and Greenville (GVL). (b) The topography of the Charlanta megaregion (average elevation (m) 148 

within each pixel). 149 

3.2 Statistical analysis 150 

Providing a more objective assessment of the ULE’s presence in GLM TL observations, two 151 

statistical analyses were conducted using the R statistical programming language (R Core Team, 152 

2022). To construct the sampling schema for these analyses, a binary classification method was 153 
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implemented in ArcGIS Pro using 2011 NLCD land cover areal coverage data to delineate a 154 

contiguous urban core sample for each city included in the study. The four developed land cover 155 

classes (Developed, Open Space (21); Developed, Low Intensity (22); Developed, Medium 156 

Intensity (23); Developed, High Intensity (24)) included in the NLCD raster dataset were spatially 157 

aggregated and summarized within the bounds of the vectorized GLM grid cells to form a broad 158 

urban/rural percentage. For each GLM grid cell polygon, if the areal coverage of the developed 159 

classes was greater than or equal to 50% of the total cell area, the cell was classified as urban, 160 

while cells with less than 50% coverage were classified as “rural.” Cells that were classified as 161 

urban but disconnected from the urban core were removed, resulting in a conterminous delineation 162 

of the urban footprint nested within the outer domain boundary of each city. These delineations 163 

served as the urban vs. rural sampling schema for subsequent statistical analyses. 164 

Similar to the methodology of Ashley et al. (2012), the averages of the urban and rural TL metrics 165 

were compared for each city to assess the magnitude of urban enhancement. Additionally, 166 

inferential statistical analyses in the form of independent two-sample t tests were conducted for 167 

each city’s urban and rural samples (Student, 1908). An alpha level of 0.05 was used for these 168 

tests. Formally, the hypothesis tested was: 169 

H0 = There is no significant difference between the urban and rural samples. 170 

H1 = There is a significant difference between the urban and rural samples. 171 

4 Results 172 

Figure 2 displays city-focused maps of the TL metrics derived from GLM observations during the 173 

summers of 2018–2021. Figure 3 displays the warm season TL maps created for the Charlanta 174 

megaregion and the results of the statistical analyses conducted for each city. 175 

The maps of the Atlanta domain (shown in Figures 2a-c and 3a-c) highlight many of the 176 

conspicuous patterns observed in past work. Similar to the CG flash distributions examined by 177 

Rose et al. (2008) and Ashley et al. (2012), a broad area of TL enhancement is spatially correlated 178 

with Atlanta’s sprawling urban footprint and main interstate arteries. Pronounced hotspots in total 179 

flash rate density and flash days are visible inside the NLCD-based urban core delineation, though 180 

the latter are more strongly clustered within 40 km of the city-center. Average flashes per flash 181 

day are also elevated within the urban core delineation, though the most prominent hotspots are 182 
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located in an arc beginning to the west and ending to the northeast of the city at distances between 183 

40–80 km from the city-center. 184 

A few distinct features present in all three TL metrics are the hotspots at the intersection of I-85 185 

and I-985 near the northeastern extent of the urban delineation and along I-20 between 40-80 km 186 

from the city-center. The former was described as the “Gwinnett hotspot” (referring to Gwinnett 187 

County) by Stallins and Bentley (2006) in their analysis of warm season CG flash distributions. 188 

Diem and Mote (2005) and Diem (2008) also documented nearly coincident enhancement of 189 

rainfall in Norcross, GA, within Gwinnett County. Another notable feature is the southwest-to-190 

northeast oriented band of elevated flash rate densities and average flashes per flash day extending 191 

approximately 70 km from the city-center, within the corridor of I-85 and I-20. This corridor 192 

contains the Chattahoochee River Valley (depicted in Figure 1b), which has been hypothesized to 193 

enhance proximal convective activity (McLeod et al., 2017). There is also a hotspot in flash days 194 

near the northernmost extent of the domain, likely associated with the rising terrain of the Blue 195 

Ridge mountains. 196 

 197 
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 198 

Figure 2.   Maps of the total flash rate density (flashes km-2 year-1), total flash days, and average 199 

flashes per flash day derived from GLM observations (JJA, 2018–2021) for the cities of Atlanta 200 

(a-c), Greenville (d-f), and Charlotte (g-i). 201 

Within the Atlanta domain, assessment of each TL metric’s average between the urban and rural 202 

regions (displayed in Figure 3e) revealed increases of 14.3%, 8.3%, and 5.5% for total flash rate 203 

density, flash days, and average flashes per flash day, respectively. The independent samples t tests 204 

(results displayed in Figure 3f) found statistically significant (α = 0.05) increases in the averages 205 

of total flash rate density and flash days within Atlanta’s urban core, but not for average flashes 206 
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per flash day (t = 1.88, p = .060). In conjunction with the visual assessment, these results suggest 207 

that during the warm season, the urban effects associated with Atlanta’s core area of development 208 

are strong enough to stimulate both storm-scale flash production and the initiation of 209 

thunderstorms that would not have otherwise occurred. 210 

In Figures 2d-f and 3a-c, the more moderately sized city of Greenville exhibits a less conspicuous 211 

urban influence than that observed in Atlanta. The most prominent areas of elevated total flash rate 212 

density and flash days are distributed broadly across the northern half of the domain. These 213 

distinctly non-urban features are driven by the local topography as this area of the Greenville 214 

domain contains portions of the Blue Ridge Escarpment. Most notable, though, are the hotspots in 215 

total flash rate density and average flashes per flash day to the immediate west of Greenville’s 216 

city-center and along I-85 near the northeastern extent of the domain. Although the latter are well 217 

outside the demarcated urban core of Greenville, this section of the I-85 corridor is often downwind 218 

of considerable urban sprawl between the twin-cities of Greenville and Spartanburg. 219 

Statistical assessment of the Greenville domain found minute differences between the delineated 220 

urban and rural regions (shown in Figure 3e), with 1.1% and 2.2% higher average total flash rate 221 

density and flash days, respectively, and 1.1% lower average flashes per flash day within the urban 222 

core. The t tests found none of these differences to be statistically significant (displayed in Figure 223 

3f). The smaller size and spatial density of the Greenville metro area underlie an expectation that 224 

its influences will be weaker relative to the dominant geophysical controls on TL production, 225 

though Greenville’s urban effects are likely to still be a supplementary factor. Nevertheless, it is 226 

apparent that our “one-size-fits-all” method of constructing the analysis domains around individual 227 

city-centers fails to capture the true urban footprint of the twin-cities arrangement, resulting in 228 

contamination of the “rural” sample. This situation also highlights the inadequacy of the GLM’s 229 

nominal spatial resolution (8 km at-nadir) for analyses of the ULE around small-to-moderately 230 

sized cities such as Greenville and Spartanburg, as it lacks the granularity required for finer-scale 231 

analysis. Furthermore, the coarse resolution of the utilized GLM dataset results in a limited number 232 

of cells being included in the NLCD-based urban delineation. 233 

The Charlotte domain (shown in Figures 2g-i and 3a-c) contains hotspots in total flash rate density 234 

and average flashes per flash day within the NLCD-based delineation of the urban core and along 235 

the west-southwestern periphery of the domain. The latter is an extension of those noted near the 236 
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northeastern extent of the Greenville domain. Distinct hotspots in total flash rate density and 237 

average flashes per flash day are also visible to the northeast of the urban delineation, roughly 238 

following the I-85 corridor. While it is quite possible that these anomalies are associated with the 239 

typical downwind augmentation process, the heterogeneity of the underlying surface 240 

characteristics must be considered as another contributor. Likewise, TL flash days are heavily 241 

influenced by the terrain features of the Blue Ridge Mountains across the northwestern extent of 242 

the domain. Increases of 9.8% and 15.9% were calculated for the averages of total flash rate density 243 

and flashes per flash day, respectively, within the urban core, while the average number of flash 244 

days was 4.1% lower (displayed in Figure 3e). Hypothesis testing only found a statistically 245 

significant increase in TL flashes per flash day (t = 2.82, p = .005), while no significant difference 246 

was found for flash rate density and flash days (results displayed in Figure 3f). 247 

These results indicate that Charlotte’s ULE is manifested most prominently at the storm-scale, 248 

with the average TL flash day near the urban core tending to be more electrically active than in the 249 

surrounding areas. Similar to the Greenville domain, the urban forcing provided by Charlotte is 250 

largely supplementary to natural geophysical factors (e.g., orographic preferences) which act as 251 

the dominant controls on the distributions of TL intensity and frequency. While Atlanta’s spatially 252 

dense and vast urban sprawl displays an ability to initiate thunderstorms that would not have 253 

otherwise occurred, Charlotte’s smaller urban core likely precludes it from serving as a dominant 254 

forcing in thunderstorm initiation and resultant lightning production. As mentioned by McLeod et 255 

al. (2017) and Miller et al. (2015), the complex interaction between terrain-related boundary layer 256 

processes (e.g., downslope circulations due to differential heating, orographic forcing for ascent) 257 

and urban-induced mesocirculations, among other factors, warrant further investigation with 258 

improved methods and resources. 259 
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 260 

Figure 3.   Maps of the (a) total flash rate density (flashes km-2 year-1), (b) flash days, and (c) 261 

average flashes per flash day derived from GLM observations during the warm seasons of 2018–262 

2021. (d) Population characteristics and buffer size information for each city. (e) Percentage 263 

change in the average of each TL flash metric between the NLCD-derived urban delineation and 264 

surrounding rural region. (f) Results from the independent two-sample t tests (α = 0.05) for each 265 

domain. 266 

5 Conclusions 267 

This is possibly the first study of the ULE to utilize data collected by the GLM, and therefore, the 268 

first to utilize spatio-temporally continuous TL observations from a satellite platform in 269 

geostationary orbit. Consequently, our primary objective was to determine the utility of GLM data 270 
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for urban lightning research by analyzing spatial distributions of TL during the warm seasons of 271 

2018–2021 around the constituent cities of the Charlanta UCA: Atlanta, GA, Charlotte, NC, and 272 

Greenville, SC. Visual and statistical analyses of the aggregated GLM dataset found that several 273 

of the spatial patterns noted in previous research were resolvable. Most prominently, significant 274 

augmentation of total lightning intensity and frequency was apparent over the major cities of 275 

Atlanta and Charlotte, with a diminished urban signal over the smaller city of Greenville. These 276 

observations echo the findings of Ashley et al. (2012) and a number of earlier studies (Huff and 277 

Changnon, 1973; Oke, 1982; Bentley et al., 2012) that urban morphological characteristics, 278 

namely, extent, density, and orientation, are key factors in determining the degree to which 279 

lightning occurrence is modified. The products of this study underscore the promise of utilizing 280 

TL observations from the GLM in future urban lightning research, while also highlighting certain 281 

limitations, the need for improvements to the implemented methodology, and the development of 282 

more sophisticated approaches to investigating the ULE. 283 

 5.1 Brief discussion of methodological improvements 284 

Though GLM data gridded at its nominal spatial resolution is shown to be less than ideal for robust 285 

analyses of the ULE around small-to-moderately sized cities, our work supports its use at the scales 286 

of major cities and urban megaregions. This outcome was not entirely unexpected based on the 287 

work of Stallins and Rose (2008), which detailed optimal resolutions for such analyses. Though 288 

there is precedent for the use of coarser resolution data (e.g., Pinto et al. (2004) used 9 km x 9 km 289 

grid cells), it remains insufficient for analyses focused on smaller-scale cities in which the 290 

attendant urban effects are predominantly supplementary factors relative to geophysical drivers of 291 

total lightning production. In this regard, there are two apparent strategies that could be 292 

implemented to improve the effectiveness of future analyses: 1) utilization of the “glmtools” open-293 

source software package, which allows for re-sampling of GLM data to the 2 km x 2 km fixed grid 294 

of the Advanced Baseline Imager (Bruning, 2019; Bruning et al., 2019), and 2) the use of more 295 

innovative methodologies such as that of Forney et al. (2022), which employed a random forest 296 

approach to control for relevant geophysical factors (e.g., elevation, distance from coastline). 297 

Despite the acknowledged deficiencies, our analysis documented clear patterns of the ULE 298 

observed in past studies, providing the initial support for continued and improved use of GLM data 299 

in urban lightning research. 300 
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