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Abstract

The question “what arrests an earthquake rupture?” sits at the heart of any potential prediction of earthquake magnitude.

Here, we use a one-dimensional, thin-elastic-strip, minimal model, to illuminate the basic physical parameters that control the

arrest of large ruptures. The generic formulation of the model allows for wrapping various earthquake arrest scenarios into the

variations of two dimensionless variables $\bar \tau k$ (initial pre-stress on the fault) and $\bar d c$ (fracture energy), valid

for both in-plane and antiplane shear loading. Our continuum model is equivalent to the standard Burridge-Knopoff model,

with an added characteristic length scale, $H$, that corresponds to either the thickness of the damage zone for strike-slip

faults or to the thickness of the downward moving plate for subduction settings. We simulate the propagation and arrest

of frictional ruptures and derive closed-form expressions to predict rupture arrest under different conditions. Our generic

model illuminates the different energy budget that mediates crack- and pulse-like rupture propagation and arrest. It provides

additional predictions such as generic stable pulse-like rupture solutions, stress drop independence of the rupture size, the

existence of back-propagating fronts, and predicts that asymmetric slip profiles arise under certain pre-stress conditions. These

diverse features occur also in natural earthquakes, and the fact that they can all be predicted by a single minimal framework

is encouraging and pave the way for future developments of this model.
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Abstract17

The question "what arrests an earthquake rupture?" sits at the heart of any potential18

prediction of earthquake magnitude. Here, we use a one-dimensional, thin-elastic-strip,19

minimal model, to illuminate the basic physical parameters that control the arrest of large20

ruptures. The generic formulation of the model allows for wrapping various earthquake21

arrest scenarios into the variations of two dimensionless variables τ̄k (initial pre-stress22

on the fault) and d̄c (fracture energy), valid for both in-plane and antiplane shear load-23

ing. Our continuum model is equivalent to the standard Burridge-Knopoff model, with24

an added characteristic length scale, H, that corresponds to either the thickness of the25

damage zone for strike-slip faults or to the thickness of the downward moving plate for26

subduction settings. We simulate the propagation and arrest of frictional ruptures and27

derive closed-form expressions to predict rupture arrest under different conditions. Our28

generic model illuminates the different energy budget that mediates crack- and pulse-29

like rupture propagation and arrest. It provides additional predictions such as generic30

stable pulse-like rupture solutions, stress drop independence of the rupture size, the ex-31

istence of back-propagating fronts, and predicts that asymmetric slip profiles arise un-32

der certain pre-stress conditions. These diverse features occur also in natural earthquakes,33

and the fact that they can all be predicted by a single minimal framework is encourag-34

ing and pave the way for future developments of this model.35

Plain Language Summary36

Untangling the dynamics that governs the propagation and arrest of earthquakes37

is still challenging, mainly because of the few constraints available on the fault zone ge-38

ometry, the constitutive properties of fault materials, as well as fault rheology during the39

rupture event. The present study aims at formulating a model containing a minimal num-40

ber of free parameters to describe the dynamics of large earthquakes. Despite its sim-41

plicity, this minimal model is able to reproduce several salient features of natural earth-42

quakes that are still debated (e.g. various arrest scenarios, stable pulse-like rupture, back-43

propagating front, asymmetric slip profiles). We demonstrate how the proposed model44

can be used to simulate the propagation and arrest of large earthquakes, which are con-45

trolled by local variations of shear stress and material properties on the fault. With this46

simple and generic description, the proposed model could be readily extended to account47

for additional processes controlling the dynamics of large earthquakes.48
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1 Introduction49

Frictional rupture, the process by which a dynamic rupture propagates along a pre-50

existing interface, has been proposed to control many geological processes, including earth-51

quakes, landslides, glacier instabilities, and snow avalanches (e.g., Palmer and Rice (1973);52

Scholz (1998); Viesca and Rice (2012); Gabriel et al. (2012); Scholz (2019); Thøgersen,53

Gilbert, et al. (2019); Weng and Ampuero (2019); Agliardi et al. (2020); Trottet et al.54

(2022)). In these systems, a rupture nucleates at a given location along an interface, ac-55

celerates to a maximum velocity, and then decelerates until final arrest. The entire pro-56

cess is controlled by heterogeneities of the initial (normal and shear) stress conditions,57

roughness of the interface, and material properties along the interface and in the sur-58

rounding volume.59

During frictional rupture, initial elastic strain energy stored in the volume around60

the interface is transformed into several components that involve 1) a transfer of elas-61

tic strain energy between different locations along the interface and in the volume around62

it; 2) near-fault dissipation accounting for co-seismic fracture and damage of the rock63

as well as frictional dissipation and heat production during slip; 3) emission of elastic64

waves (i.e. seismicity).65

The arrest of frictional rupture can be predicted at the scale of laboratory exper-66

iments when rupture arises along the interface between two elastic blocks pressed in fric-67

tional contact (e.g. Kammer et al. (2015); Bayart et al. (2016); Ke et al. (2018)). In this68

setup, the prediction builds upon the analogy to brittle shear fracture and requires to69

know an equivalent fracture energy of the frictional plane, which varies with the normal70

stress. Upscaling these predictions to natural earthquakes remains out of reach due to71

the complexity of the fault geometry (e.g., roughness, bends, segmentation), of the fault72

zone rheology (e.g. damage zone), as well as due to the difficulty in estimating and mea-73

suring how the various components of the earthquake energy budget interplay in trans-74

forming and consuming the initial elastic strain energy available before rupture prop-75

agation (e.g., Abercrombie and Rice (2005); Tinti et al. (2005); Barras et al. (2020); Lam-76

bert and Lapusta (2020); Brener and Bouchbinder (2021); Paglialunga et al. (2021); Ke77

et al. (2022)). Prediction of rupture arrest is made even more difficult by the fact that78

earthquake propagation can arise under two distinct rupture modes; either crack-like or79

pulse-like (e.g., Scholz (2019); Lambert et al. (2021)). In conventional crack-like ruptures,80

also called circular cracks, all points within the growing ruptured area keep sliding un-81
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til arrest (Burridge & Halliday, 1971; Madariaga, 1976; Kostrov & Das, 1988). Conversely,82

for pulse-like ruptures, a rupture front propagates along the interface and heals behind83

it, such that every point of the interface will accelerate, slip and arrest at different times84

(Heaton, 1990).85

This complexity explains why a full comprehensive description of the conditions86

governing the arrest of an earthquake, and therefore its final size and magnitude, is still87

missing. Several scenarios of rupture arrest have been proposed in the literature and could88

be divided into two main categories. On the one hand, a rupture may stop because a lo-89

cal geometrical or mechanical heterogeneity, also called barrier, prevents further prop-90

agation (Das & Aki, 1977; Aki, 1979). On natural faults, a barrier could be related to91

fault segmentation (Sibson, 1985; Sibson & Das, 1986; Wesnousky, 1988; Harris & Day,92

1999), to the fact that, near fault tip, rocks may be stronger and require more energy93

to break (e.g. concept of fault maturity, see Perrin et al. (2016)), or to variations in fric-94

tional properties (Marone & Scholz, 1988). On the other hand, a rupture may stop be-95

cause of a non-local effect related to the preexisting stress along the sliding interface. For96

example, if a fault has been unloaded by a previous earthquake, the shear stress along97

the interface will be lower than for a fault that has not broken for a long period and that98

has been loaded by tectonic stress during that period. In this situation, a frictional rup-99

ture may arrest because of the depletion of available elastic strain energy along a sec-100

tion of the fault. In other words, the rupture stops because it "runs out of steam".101

Here, we explore the dynamics governing the propagation and arrest of frictional102

rupture by using a one-dimensional elastodynamic model that contains only two param-103

eters in its dimensionless form (Thøgersen et al., 2021). A similar approach reproduces104

some observations made on slow, subshear, and supershear earthquakes, such as the scal-105

ing between duration and moment (Thøgersen, Sveinsson, et al., 2019). This minimal106

model builds on the approximation of the earthquake dynamics existing at the later stage107

of the rupture once its size exceeds the width of the seismogenic zone. The resulting one-108

dimensional formulation, summarized in Section 2, considers a thin elastic strip in fric-109

tional contact along a preexisting interface (Fig. 1c), which may represent either a sub-110

duction setting (Fig. 1a) or a strike-slip fault (Fig. 1b) once the earthquake dynamics111

transition from circular crack growth towards the propagation of a planar front. Such112

transition is depicted by the successive dashed red lines in Fig. 1a-b and have been re-113

ported in numerical simulations (Weng & Ampuero, 2019; Day, 1982), as well as from114
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seismic inversion of natural earthquakes (Chen et al., 2022, 2020). The elastic strip is115

defined by its thickness, H, and two elastic parameters, the first and second Lamé co-116

efficients, λ and G. H may represent the plate thickness (Fig. 1a) or the thickness of the117

damage zone (Fig. 1b).118

The model includes inertial effects in the direction of rupture propagation but ne-119

glects them in the normal direction. Along the interface, sliding occurs according to a120

friction law that either considers a sharp drop from static to dynamic friction (Amontons-121

Coulomb model) or accounts for a weakening distance and associated fracture energy (slip-122

weakening model). Rupture arrest is studied and discussed for these two friction mod-123

els and two different rupture modes, crack versus pulse. Our approach is both numer-124

ical (Section 3) and analytical, since the simplicity of our model allows for the reproduc-125

tion of a wide range of rupture arrest scenarios and their description with analytical ex-126

pressions (Section 4). Section 4 compares our one-dimensional continuum model with127

the seminal discrete Burridge-Knopoff model for earthquakes (Burridge & Knopoff, 1967).128

Using our minimal model, we present the boundary conditions that control the selection129

of the rupture mode (either pulse-like or crack-like) and describe the substantial differ-130

ence that exists between these two modes in terms of the rupture energy balance and131

arrest conditions. The study concludes by highlighting how our one-dimensional frame-132

work bridges different earthquake models proposed in the literature and by discussing133

its implications for earthquake arrest in natural fault zones (Section 5).134
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Figure 1. A minimal model to study frictional rupture arising along two types of plate

boundaries, where loading is applied at a distance H from the fault. a) convergent (subduc-

tion zone or continental collision, H is the thickness of the down-moving plate), and b) transform

fault (strike-slip, H is the thickness of the damage zone). In panels a) and b), the direction of

plate motion is shown by a pair of green arrows. Cross-sections reveal the frictional interface

between the two tectonic plates as well as the seismogenic zone of width W that hosts dynamic

ruptures. Earthquake propagation is depicted by the successive red dashed lines, starting from

the nucleation location shown by the red stars, and L is the rupture length. Initially, the earth-

quake grows as a circular crack. As the size of the rupture exceeds H and W , the earthquake

propagates as a planar front. The profile of pre-stress, τ̄k, is sketched in panel c) and has its peak

in the nucleation zone set on the left of the domain. The propagation and arrest conditions are

investigated in this study as the rupture propagates (rightwards) into a region less favorable to

slip (lower pre-stress, higher frictional dissipation, barriers).
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2 A one-dimensional minimal model of frictional rupture135

The present study investigates rupture arrest using a minimal frictional rupture

model that we developed in a previous study (Thøgersen et al., 2021). In this approach,

the elastodynamic equations are reduced to a one-dimensional expression by assuming

a block of finite height H in frictional contact along the plane y = 0, as presented in

Figs. 1c and 2. The elastic fields are further taken constant along the z direction (∂zui =

0) during frictional ruptures that propagate along the x direction. Assuming that the

rupture size L is always much larger than the system height (L � H), the elastody-

namics can be solved in average over H to reduce momentum conservation into a one

dimensional equation (Supplementary Information text S.1). The resulting one-dimensional

equation is expressed here in dimensionless units of space x̄ and time t̄, with the dot ac-

cent denoting a time derivative:

¨̄u =
∂2ū

∂x̄2
− Γγ̄ū+ τ̄ . (1)

Γ is a binary operator being respectively equal to one if Eq. (1) describes a system with

imposed-displacement boundary conditions at the top surface (y = H), or to zero if the

system has imposed-stress at the top boundary. In the equation above, ū(x̄, t̄) is a scalar

dimensionless displacement along the x-direction and τ̄(x̄, t̄) is a scalar dimensionless shear

stress along the interface and defined as

τ̄(x̄, t̄) =
τ0(x̄)− τf (x̄, t̄)

σn(µs − µk)
. (2)

Here, τ̄(x̄, t̄) lumps the initial shear stress acting on the top of the block before the rup-136

ture τ0, the frictional stress at the interface τf , the normal stress σn, the static µs and137

kinematic µk friction coefficients. The static friction coefficient describes the magnitude138

of the shear stress that should be locally exceeded at the interface to initiate frictional139

sliding. The kinematic friction coefficient describes the residual frictional stress observed140

at the interface during sliding. More details about the boundary conditions are given in141

Section S.1 of the Supporting Information. The normal stress is assumed to be constant142

throughout the rupture, such that the model similarly applies to elastic-over-rigid and143

to symmetric frictional contact problems. The momentum equation, Eq. (1), equivalently144

applies to in-plane (mode II) and out-of-plane (mode III) shear loading configurations,145

as summarized in Table S1 that compiles the definitions of the dimensionless variables.146

In its simplest form, the model contains only two free parameters: 1) a dimension-

less ratio of elastic moduli γ̄ defined in Table S1, and 2) a spatial variable referred to as

–7–
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the dimensionless pre-stress in the manuscript

τ̄k(x̄) =
τ0(x̄)/σn − µk

µs − µk
, (3)

which corresponds to the value of τ̄ that will be observed once the frictional stress at the147

interface reaches kinetic friction associated to positive slip velocity. The definition of τ̄k148

allows for lumping spatial variations of initial stress and frictional parameters into a sin-149

gle variable. In the present study, we assume that variations of τ̄k results only from τ0,150

but spatial variations of the other parameters (σn, µs, µk) can similarly be translated151

into a τ̄k(x̄) profile in the one-dimensional model with no loss of generality.152

In the dimensionless form used in the model, static friction is observed as long as

τ̄f (x̄, t̄) = τ̄k(x̄)− τ̄(x̄, t̄) < 1, (4)

where τ̄f is the dimensionless frictional stress, as detailed in the section S.1, Eq. (S.13).153

Upon the onset of sliding, the frictional stress τ̄f (x̄, t̄) locally drops from the static thresh-154

old (τ̄f = 1) to residual friction (τ̄f = 0) following the trajectory prescribed by a fric-155

tion law. In the remainder of the study, we focus on two generic friction laws and we re-156

fer to Section 5 below for further discussions on how to relate more sophisticated fric-157

tion laws to this minimal description. The simplest friction law assumes that the tran-158

sition between static and kinematic friction is instantaneous upon sliding and requires159

no additional parameter. In the rest of the study, it is referred to as Amontons-Coulomb160

friction. Moreover, frictional weakening often comes with an energy dissipation on top161

of residual friction that will be referred to as breakdown work, W̄b. A common and generic162

description of this process assumes that frictional weakening between µs and µk devel-163

ops linearly with slip between ū = 0 and some critical slip distance ū = d̄c. This fric-164

tion law will be referred to as slip-weakening in the manuscript and introduces a third165

free parameter d̄c, which directly relates to the interface fracture energy Ḡc = d̄c/2. Ḡc166

corresponds to the total amount of breakdown work required to reach residual friction.167

See section S.1 and equation (S.13) for more details on the non-dimensional descriptions168

of Amontons-Coulomb and slip-weakening friction laws used in this paper.169

2.1 The crucial role of boundary conditions on the rupture style170

Following the definitions above, τ̄k corresponds to the value of τ̄ in Eq. (1) observed

once the shear stress (or friction) at the interface reaches its residual level. Postulating

a steady-state solution and Amontons-Coulomb friction, Eq. (1) reduces to the follow-

–8–
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ing ordinary differential equation within the rupture (i.e. within the sliding portion of

the interface):

(v̄2
c − 1)

∂2ū

∂ξ̄2
= −Γγ̄ū(ξ) + τ̄k(ξ), (5)

with ξ̄ = x̄− v̄ct̄ being a co-moving coordinate following the rupture (i.e. the position171

of peak velocity) that moves at the propagation velocity v̄c.172

Thøgersen et al. (2021) investigated steady-state rupture solutions governed by Eq.173

(5) and revealed the crucial role of boundary conditions on the rupture style and its sta-174

bility. For imposed-stress boundary condition (Γ = 0), the system promotes crack-like175

rupture and no steady-state pulse solution exists. Pulse-like rupture can be produced176

under the specific condition (τ̄k = 0), which reduces Eq. (5) to a one-dimensional wave177

equation. Such pulse solutions have no specific shape and are unstable, as a local per-178

turbation in the stress or interface conditions δτ̄k either stops the pulse (if δτ̄k < 0) or179

expands it into a crack (if δτ̄k > 0). Such unstable dynamics is reminiscent of the be-180

havior of pulse-like ruptures between two semi-infinite elastic solids that have been re-181

ported in the literature for different type of friction laws (Gabriel et al., 2012; Brener182

et al., 2018; Brantut et al., 2019).183

Conversely, imposed-displacement boundary condition (Γ = 1) enables stable pulse

solutions for τ̄k > 0. Under uniform pre-stress conditions, the equation (5) allows a steady-

state pulse solution with width ω̄ and the following slip profile:

ū(ξ̄) =
τ̄k
γ̄

(
1− sin(πξ̄/ω̄)

)
, (6)

for ξ̄ ∈ [−ω̄/2, ω̄/2]. From the equation above, the final slip, ūp, reached behind the steady-

state pulse rupture corresponds to:

ūp = 2τ̄k/γ̄. (7)

Remarkably, this behavior is also in agreement with the stable pulse-like rupture that184

was reported in previous works studying finite elastic domains, where reflected elastic185

waves at the boundary interplay with the propagating rupture. This includes fault sys-186

tem with a damage zone with more compliant elastic properties (Idini & Ampuero, 2020)187

or earthquake rupture with a large aspect ratio (Weng & Ampuero, 2019). Interestingly,188

train of stable steady-state pulses can be produced also at the interface between unbounded189

elastic domains if an average slip velocity is imposed along the frictional plane instead190

of controlling the far-field stress (Roch et al., 2022). In our model, this second type of191

boundary condition (Γ = 1) corresponds then to large earthquake rupture, whose size192
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saturates two representative dimensions of the fault systems, as depicted in Fig. 1. Thøgersen193

et al. (2021) discusses in details the properties of slip pulses in our one-dimensional model.194

Figure 2. Sketch of the two-dimensional system that is integrated to obtain the one-

dimensional equation of motion used in the manuscript. We model a thin elastic layer of thick-

ness H with shear modulus G and the first Lamé coefficient λ. Two boundary conditions are

considered on the top surface. At y = H we apply either an imposed stress τ0 or an imposed

displacement û0. At y = 0, we apply a friction law. The system is integrated across the y-

coordinate (red rectangle) to obtain a one-dimensional approximation. Modified from Thøgersen

et al. (2021).

2.2 The arrest of frictional rupture in the one-dimensional model195

The one-dimensional model (Eq. 1) used in the present study contains two free pa-

rameters for Amontons-Coulomb friction (γ̄, τ̄k) and an additional third parameter (d̄c)

for slip-weakening friction. γ̄ characterizes the elastic properties of the medium that are

assumed to be macroscopically homogeneous and remain constant in the derivation of

the model. Hence, a propagating rupture in the one-dimensional model can either be ar-

rested by variations of τ̄k or d̄c. The former accounts for the level of shear stress exist-

ing in the system prior the rupture. A sharp reduction of τ̄k can stop a propagating rup-

ture and corresponds to a stress barrier. Moreover, the initial finite amount of strain en-

ergy available in the surrounding bulk of thickness H scales as the square of τ0 and is

therefore proportional to τ̄k. In the one-dimensional system, τ̄k describes the difference

between external shear stress and the lowest value of frictional stress during sliding. If

τ̄k is negative, this implies that the work injected by the external shear stress would be

locally smaller than the frictional dissipation at residual frictional and, therefore, a fric-

–10–
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tional rupture would absorb energy instead of releasing it. Hence, frictional ruptures in

our one-dimensional model are energetically admissible only if somewhere along the in-

terface

τ̄k ≥ 0. (8)

Note that Eq. (8) is a necessary condition for frictional rupture in the one-dimensional196

model but is not sufficient. It only guarantees rupture propagation once it has been nu-197

cleated. A gradual decay of τ̄k as one moves away from the nucleation site can then lead198

to the rupture arrest by a depletion of available energy in the system. Conversely, d̄c de-199

scribes the energy required to transform the interface shear conditions from static to kine-200

matic friction. An increase in d̄c can then arrest the rupture, which corresponds to a frac-201

ture energy barrier. In the Sections 3 and 4, we simulate and study theoretically pulse-202

and crack-like rupture arrest for these different arrest scenarios. Further in Section 5,203

we discuss how variations of physical conditions along natural fault systems can be ex-204

pressed in terms of spatial variations of τ̄k and d̄c.205

3 Numerical simulations of frictional rupture arrest206

Here, Eq. (1) is solved numerically using a finite difference scheme with uniform

grid size ∆x̄ and Euler-Cromer (Cromer, 1981) time-integration scheme with time step

∆t̄, as described in Thøgersen et al. (2021). At each grid point i and time step, the in-

terface can be either stuck ( ˙̄ui = 0) or slipping ( ˙̄ui 6= 0). Static equilibrium in the stuck

region, i.e. Eq. (1) with ¨̄u = 0, leads in combination with the criterion of Eq. (4) to

the following inequality

ūi+1 − 2ūi + ūi−1

(∆x̄)2
− Γγ̄ūi + τ̄k,i < 1. (9)

Conversely, the dynamics of the sliding portions of the interface is integrated from Eq.

(1) as:

¨̄ui =
ūi+1 − 2ūi + ūi−1

(∆x̄)2
− Γγ̄ūi + τ̄i + β̄

˙̄ui+1 − 2 ˙̄ui + ˙̄ui−1

(∆x̄)2
, (10)

where the scalar β̄ is a small numerical parameter used to damp spurious high-frequency207

oscillations and is set to the standard value of β =
√

0.1∆x (Knopoff & Ni, 2001; Amund-208

sen et al., 2012). The set of equations (9)-(10) is closed by the friction law that describes209

the evolution of τ̄i according to Eq. (S.13). More details about the convergence and pa-210

rameters of the numerical scheme are provided in the Supplementary Information, sec-211

tion S.2.212

–11–
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The initial condition of every simulation corresponds to an interface entirely stuck213

under a given initial shear stress defined by τ̄k(x̄). The domain has a finite length L̄ and214

the boundary conditions on the left and the right edges correspond to ū(0) = 0 and ū(L̄) =215

0. In this study, we focus on rupture propagating from the left to the right of the do-216

main. Rupture nucleation is triggered by defining a region of higher shear stress at the217

left edges with τ̄k(0) = 1. Such configuration is depicted in Fig. 1c and describes rup-218

ture nucleation beyond a barrier (as for instance in Gvirtzman and Fineberg (2021)); how-219

ever other nucleation processes could be considered with no loss of generality.220

Figure 3 summarizes the different arrest scenarios and the simulated frictional slip221

observed after a pulse-like and crack-like rupture. Because τ̄k describes the excess of shear222

pre-stress on top of residual friction, a sharp drop of τ̄k toward negative value corresponds223

to a stress barrier and is presented in Fig. 3B. Frictional weakening during rupture can224

also involve additional energy dissipation, which in our one-dimensional slip-weakening225

description corresponds to d̄c/2. A fracture energy barrier can then be simulated by a226

sharp increase in d̄c above some critical value d̄∗c , as presented in Fig. 3C. d̄∗c corresponds227

to the largest value of d̄c that can sustain further rupture propagation and is quantita-228

tively described in the Section 4 below. Finally, frictional ruptures can stop by running229

out of available energy in the system, which is function of the initial shear stress and whose230

depletion can be modelled by a progressive decay of τ̄k, as presented in Fig. 3D.231

The comparison of rupture styles in Fig. 3 sheds light on the significant difference232

in terms of final slip that exists between the two frictional rupture modes. Most notably,233

the profile of slip observed after a pulse-like rupture is much more sensitive to the ar-234

rest scenarios and keeps a precise record of the local variations of bulk and interface con-235

ditions compared to the profile of slip observed after crack-like rupture.236

4 Theoretical description of the arrest of pulse- and crack-like ruptures237

238

4.1 Equivalence to the Burridge-Knopoff approach239

The one-dimensional model expressed in its discretized form in Eqs. (9) and (10)240

is equivalent to Burridge-Knopoff type of models widely used in the literature to describe241

earthquakes rupture and statistics (e.g., Burridge and Knopoff (1967); Olami et al. (1992);242

Carlson et al. (1994); Brown et al. (1991); Braun et al. (2009); Trømborg et al. (2014)).243

Starting from the seminal work of Burridge and Knopoff (1967), the Burridge-Knopoff244
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Figure 3. Slip velocities and three arrest scenarios studied in the present study with the re-

sulting final slip profiles observed after a pulse-like (blue) and a crack-like (red) rupture. Slip

velocities and slip profiles are calculated by solving numerically the Eq. (1). In each column, the

top two panels display the initial profiles of pres-stress and fracture energy along the interface.

Rupture is nucleated by a larger value of pre-stress located near x̄ = 0. A) Steady-state slip

velocities for pulse-like and crack-like ruptures. The increasing color shade of each slip profile

indicates progression in time. B) A sharp drop of τ̄k forms a stress barrier that arrests frictional

rupture. C) The frictional rupture is arrested by a sharp increase in d̄c that corresponds to a

fracture energy barrier. D) A linear decay of τ̄k progressively reduces the available strain energy

to propagate the frictional rupture and eventually arrests it.

model for earthquakes consists of a horizontal array of blocks with identical mass con-245

nected by longitudinal springs. Each block is submitted to a normal force and resists hor-246

izontal sliding by friction. The system is either loaded by applying a lateral forces or by247

connecting each block to a moving support via vertical springs, often referred to as leaf248

springs. Our one-dimensional formulation of Eq. (10) can be obtained from Burridge-249

Knopoff models by setting blocks mass to unity, lateral springs stiffness to (∆x̄)2, and250

the leaf springs stiffness to γ̄. This analogy is exploited later in the present study to de-251

rive pulse and crack equations inspired from Burridge-Knopoff models. Our one-dimensional252

model represents therefore an interesting framework to bridge the discrete description253

of earthquake dynamics provided in Burridge-Knopoff models to continuum models of254
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faults. The main difference of our approach is that we introduce here a characteristic length255

scale H, that does not exist in Burridge-Knopoff models.256

4.2 One-dimensional energy balance257

The different contributions to the energy balance of the one-dimensional system

correspond to the elastic energy Ēel, the kinetic energy Ēkin, and the external work W̄ext.

During the frictional rupture, the work done by the external forces is converted into in-

ternal energy such that: W̄ext = Ēel + Ēkin. In analogy to Burridge-Knopoff models

with N blocks, the elastic energy corresponds to the potential energy stored in the lon-

gitudinal springs and the leaf springs:

Ēel =

N−1∑
1

1

2
(∆x̄)−2(ūi+1 − ūi)2 + Γ

N∑
1

1

2
γ̄ū2

i (11)

or in the continuum form

Ēel =
1

2

∫ L̄
0

(∂ū
∂x̄

)2

dx̄+ Γ
1

2

∫ L̄
0

γ̄ū2dx̄. (12)

Note that the second right-hand-side contribution to the elastic energy in Eq. (12) (i.e.

the leaf springs in the Burridge-Knopoff model) only arises for imposed-displacement bound-

ary condition (Γ = 1, pulses). Similarly, the kinetic energy corresponds to

Ēkin =
1

2

∫ L̄
0

(∂ū
∂t̄

)2

dx̄. (13)

The external work corresponds to

W̄ext =

∫ L̄
0

(
τ̄kū− W̄b(ū)

)
dx̄. (14)

From the definition of τ̄k in Eq. (3), the first term on the right-hand side of Eq. (14) com-

bines the work of the external shear stress τ0 and the work done against residual fric-

tion. The second right-hand side term W̄b accounts for additional dissipation on top of

residual friction in case of slip-weakening friction, the so-called breakdown work, and is

given by

W̄b(ū) =

∫ ū

0

τ̄f (U) dU , (15)

with τ̄f (ū) defined in Eq. (S.13).258

It is important to note that the initial level of internal energy in the one-dimensional

system is set as zero (Ēel + Ēkin = W̄ext = 0). Throughout the rupture, the variation

of elastic strain energy into a three-dimensional solid of dimensions L×H ×W is ac-

counted for in the one-dimensional model by change in W̄ext and Ēel. For the simplic-

ity of the argument, let us assume Amontons-Coulomb friction and homogeneous slip
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along the horizontal extent L̄ of a frictional rupture such that only the second right-hand-

side term of Eq.(12) contributes to the elastic energy. The amount of energy released by

the rupture into the system corresponds to

Ēr = W̄ext − Ēel = L̄
(
τ̄kū−

1

2
Γγ̄ū2

)
, (16)

which is converted into kinetic energy. Frictional rupture is energetically admissible if259

Ēr ≥ 0.260

For imposed-stress boundary conditions (Γ = 0), frictional slip is admissible as261

long as τ̄k ≥ 0, and the larger the slip the more energy is released in the system. Con-262

versely, for imposed-displacement boundary conditions (Γ = 1), part of the work in-263

jected by the pre-stress in the system goes into the leaf spring elastic energy, such that264

frictional slip is only admissible for 0 ≤ ū ≤ 2τ̄k/γ̄, with the upper bound being equiv-265

alent to the steady-state slip solution of Eq. (7). This different energy transfer between266

stress- and displacement-controlled conditions explains why, in the wake of the propa-267

gating rupture, the interface re-stick (i.e pulse-like rupture) for Γ = 1 whereas sliding268

continues in the form of a crack-like rupture for Γ = 0. Physically, this one-dimensional269

energy balance describes the fact that the shear stress τ0 remains constant in the three-270

dimensional solid during the rupture for imposed-stress boundary conditions, whereas271

τ0 progressively drops with frictional slip if the displacement is imposed at the top sur-272

face of the block, according to Figure 2. In the Supplementary Information sections S.3273

and S.4, this one-dimensional energy balance is exploited further to describe frictional274

rupture beyond the homogeneous steady-state simplification in order to propose pulse275

and crack arrest equations which are summarized hereafter.276

4.3 Pulse arrest equations277

First, we follow the approach proposed by Elbanna and Heaton (2012) and derive

a pulse equation by integrating the energy balance between the nucleation site x̄ = 0

to the leading tip of the pulse x̄ = L̄. Next, we assume that the ruptured area is larger

than the width of the pulse L̄� ω̄ to neglect the contribution of the regions within the

pulse width and obtain the following ordinary differential equation:

∂2ūp
∂x̄2

= γ̄ūp − 2τ̄k +
2W̄b(ūp)

ūp
, (17)

with ūp being the final slip reached in the wake of the traveling pulse. The detailed deriva-278

tion of Eq. (17) can be found in the section S.3.279
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ūp = 2τ̄ /γ̄ (Steady-state regime)
ūp (Simulation)

Figure 4. Example of slip pulse simulation. Top: Profile of the initial pre-stress, τ̄k, with

a Gaussian stress concentration introduced on the left side of the domain to nucleate frictional

rupture. Stress barriers with similar amplitude τ̄k,b = −10−4 but various lengths L̄b,i are placed

along the fault at x̄ = 100 and x̄ = 200. Middle: Snapshots of slip velocity at different time steps,

showing slip pulse propagation in the direction of the red arrow. Note that the pulse crossed the

first barrier, but was stopped by the longer second barrier. Bottom: Final slip profile compared

to the steady-state regime. A propagating pulse can cross a barrier of length smaller than the

arrest length L̄arr but is arrested by a barrier that is larger than L̄arr

.

4.3.1 Stress barriers280

This arrest scenario is studied by simulating a steadily propagating pulse under a

given initial stress τ̄k,0 that reaches a region of lower pre-stress at x̄ = x̄b, as shown in

Fig. 4. If the shear stress within the barrier τ̄k,b is still positive, a steady-state pulse so-

lution exists and the final slip evolves toward the new steady-state according to Eq. (7).

If τ̄k,b is negative (as in Fig 4), sustained pulse propagation is no longer possible such

that the rupture will be arrested for barriers that exceed a critical length defined as L̄arr.

The pulse equation (17) can be used to predict the decay of slip observed in Fig. 4 within

a barrier of negative pre-stress. For negligible breakdown work (i.e. Amontons-Coulomb

friction with W̄b = 0), the general solution of Eq. (17) is the sum of two exponential

functions. As shown in Figure S2, the pulse arrest equation Eq. (17) can be used to de-

rive different predictions of the decay of frictional slip within the barrier from its initial

steady-state value up = 2τ̄k/γ̄. For instance, the following solution is obtained by search-

ing for solution where both ūp(x̄′) and its first derivative are equal to zero at the arrest
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location:

ūp(x̄′) =
−2τ̄k,b
γ̄

(
cosh

(
(x̄′ − L̄arr)

√
γ̄
)
− 1
)
, (18)

with x̄′ = x̄ − x̄b, where xb is the position at which the barrier starts. Remembering

that τ̄k,b < 0, the equation above has a positive root ūp(x̄′ = L̄arr) = 0 which can be

used to predict the arrest length:

L̄arr = γ̄−
1
2 arccosh

( τ̄k,0 − τ̄k,b
−τ̄k,b

)
. (19)

Figure 5(A) compares this theoretical prediction with the numerical simulations for var-281

ious stress barriers (−τ̄k,b) with different initial prestress (τ̄k,0) and moduli γ̄. The the-282

oretical prediction of Eq. (19) captures well the trend observed in the simulations but283

systematically underestimates the simulated arrest length. This underestimation comes284

from the simplification behind the pulse arrest equation (17), which neglects the finite285

width of the pulse and associated mechanical energy. As shown in Figure S2, frictional286

slip in the simulations starts decaying before the barrier location due to the finite width287

of the pulse.288

4.3.2 Fracture energy barriers289

If the contribution of the breakdown energy is non-negligible (slip-weakening fric-

tion), two end-member situations can occur. In a first case, frictional weakening is com-

plete in the wake of the rupture, such that the breakdown work is constant and equates

the fracture energy prescribed in the slip weakening friction law, W̄b = Ḡc = d̄c/2.

Equation (17) is a non-linear ordinary differential equation, but the possibility for smoothly

travelling pulse can nevertheless be investigated by neglecting the second-order deriva-

tive, which leads to the following slip solution behind the travelling pulse:

ūp =
τ̄k
γ̄

(
1 +

√
1− d̄cγ̄

τ̄2
k

)
. (20)

Note how Eq. (20) leads to the steady-state solution for Amontons-Coulomb friction of

Eq. (7) as d̄c → 0. Interestingly, neglecting the contribution of the fracture energy in

the steady-state pulse solution leads to an overestimation of the final slip by at most a

factor two. The solution Eq. (20) leads to the definition of a critical value of d̄c, above

which sustained pulse propagation is no longer admissible:

d̄∗c = τ̄2
k/γ̄. (21)
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Figure 5. Arrest length for slip pulse in presence of stress (A) and fracture energy (B) bar-

riers. The solid lines on the plot (A) correspond to the theoretical prediction given by Eq. (19).

Color symbols correspond to simulation results at different initial stresses τk,0 for γ̄ = 0.65

(circle) and γ̄ = 2.0 (cross). The dashed horizontal lines highlight how the stress barrier with

amplitude τ̄k,b = τk,0 − 1 gives the asymptotic value of the arrest length for tough fracture energy

barriers d̄c � d̄∗c .

Using Eqs. (20), one can rewrite the pulse equation (17) and defined ð as

∂2ūp
∂x̄2

= γ̄ūp − 2τ̄k +
d̄c
ūp

= γ̄ūp − τ̄k
(

2− d̄c/d̄
∗
c

1 +
√

1− d̄c/d̄∗c

)
≡ γ̄ūp − ðτ̄k, (22)

with 1 ≤ ð ≤ 2 being a constant that depends on the interface fracture energy. For290

the largest admissible fracture energy (d̄c = d̄∗c), one has ð = 1, whereas for zero frac-291

ture energy ð = 2.292

As in the case of stress barriers, a fracture energy barrier with d̄c > d̄∗c will ar-

rest the rupture if its length is larger than some arrest length L̄arr. This leads to the other

situation for which frictional weakening is incomplete in the wake of the rupture (W̄b <

d̄c/2). The integration of the breakdown work according to Eq. (15) leads to the follow-
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ing ordinary differential equation:

∂2ūp
∂x̄2

=
(
γ̄ − 1

d̄c

)
ūp − 2(τ̄k − 1). (23)

For very large d̄c, the equation above is identical to the one describing a stress barrier

with τ̄k,b = τ̄k − 1. Physically, this means that there is not enough slip and energy to

drive the weakening of the interface within the barrier such that frictional stress stays

close to the static value (corresponding to τ̄ = τ̄k−1) throughout the width of the pulse.

An important implication is that any fracture energy barrier with a length shorter than

L̄∗arr = L̄arr(τ̄k,b = τ̄k,0 − 1) (24)

cannot stop a propagating slip pulse regardless of its fracture energy amplitude. The fig-293

ure 5(B) presents the two asymptotic situations that describe the arrest of pulse-like rup-294

ture by a fracture energy barrier: L̄arr diverges as dc → d̄∗c , whereas for dc → ∞ the295

arrest length converges towards L̄∗arr.296

4.3.3 Progressive decay of available strain energy297

Ruptures can also be arrested by smoothly decaying prestress, τ̄k. Indeed, earth-

quakes typically nucleate in a critically stressed portion of a fault before reaching sub-

critically stressed regions. In the one-dimensional model, stress criticality is described

by the dimensionless variables τ̄k (with critical values corresponding to τ̄k > 1). Pulse

rupture in a smoothly decaying pre-stress can be described using the pulse arrest equa-

tion. For example with a linearized decaying profile of the form τ̄k(x̄) = 1 − ᾱx̄, the

following final slip profile satisfies Eq. (17):

ūp =
2

γ̄

(
1− ᾱx̄− exp(−x̄

√
γ̄)
)
. (25)

Similarly, for a quadratic decay of the prestress profile of the form τ̄k = 1 − λ̄x̄2, the

following profile of slip can be predicted using the pulse equation:

ūp =
2

γ̄

(
(1− 2λ̄γ̄−1)(1− exp(−x̄

√
γ̄))− λ̄x̄2

)
. (26)

Figure 6 validates the theoretical predictions (25) and (26) derived from the pulse equa-298

tion with numerical simulations. Accounting for the contribution of the growing expo-299

nential term ∼ exp(x̄
√
γ̄), which was neglected in the derivation of Eqs. (25) and (26),300

could further improve the predicted slip closed to the arrest position.301
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For slowly decaying prestress (i.e., ᾱ; λ̄ � 1), both equations (25) and (26) pre-302

dict that the rupture arrests at the location where τ̄k = 0, which leads to Lar
∼= ᾱ−1

303

and Lar
∼= λ̄−1/2, respectively for the linear and quadratic prestress. In dimensional units,304

the rupture is then expected to arrest where the initial shear stress τ0 becomes smaller305

than residual friction µkσn.306

Remarkably, these generic decaying loading conditions produce asymmetric, tri-307

angular, slip profiles reminiscent of the slip profiles reported in natural fault zones (Manighetti308

et al., 2005, 2009). After nucleation, the rapid slip rise is governed by elasticity and the309

exponential term (1−exp(−x̄
√
γ̄)). Post peak, the slow decay mimics the profile of ini-310

tial stress and is governed by the linear term of Eq. (25) or the quadratic decay in Eq311

(26).312

Figure 6. Profile of final slip caused by a pulse-like rupture propagating towards a region

with decaying pre-stress: simulations (solid lines) versus the analytical predictions (dashed-lines)

derived from the pulse arrest equation (17). Top: Linearly decaying pre-stress with final slip

predicted by Eq. (25). Bottom: Quadratically decaying pre-stress with final slip predicted by Eq.

(26)
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4.4 Crack arrest equations313

Crack-like rupture in Burridge-Knopoff models have received more attention in the

literature compared to pulses. Past works (e.g. Trømborg et al. (2011); Amundsen et al.

(2012)) showed that the arrest of cracks in these models can be well predicted using the

net shear force acting on the sliding block just ahead of the propagating tip, which cor-

responds, in our one-dimensional model, to the following integral:

K̄(L̄) =

∫ L̄

0

τ̄k(x̄) dx̄. (27)

Crack-like ruptures have different energy budget than pulses. First, kinetic energy dur-314

ing the rupture is not concentrated near the propagating tip but spreads over the en-315

tire ruptured area. Second, there is no contribution from the leaf spring elastic energy316

because Γ = 0 in Eq. (12). Therefore, the work done by the external stress Wext is con-317

verted into strain and kinetic energy within the crack and corresponds to the energy re-318

leased by the rupture.319

To illustrate the difference of energy budget governing pulse and crack dynamics,

we derive the steady-state solution for a propagating crack under homogeneous condi-

tions in the section S.4.1 of the Supplementary Information. Using this steady-state so-

lution, we can compute the energy released by the rupture, which corresponds to

Ēcrack =
τ̄2
k L̄

3

6v̄c(v̄c + 1)
(28)

for a crack of size L̄ propagating at speed v̄c. For homogeneous conditions, K(L̄) = τ̄kL̄

can then be related to Ēcrack by expressing the rate of energy release per unit crack ad-

vance, Ḡ:

Ḡ(L̄, v̄c) =
dĒcrack

dL̄
=

τ̄2
k L̄

2

2v̄c(v̄c + 1)
= K̄2Ā(v̄c). (29)

By analogy with dynamic fracture mechanics (e.g. Freund (1998)), K̄ and Ḡ correspond320

to the one-dimensional stress intensity factor and the energy release rate, whereas Ā is321

some universal function of the rupture speed.322

4.4.1 Stress barriers323

For a stress barrier, the arrest location of crack-like rupture is well predicted by

the first position along the crack path where the net force acting on the sliding element

ahead of the tip becomes zero (Trømborg et al., 2011; Amundsen et al., 2012). Using Eq.

(27), the predicted arrest length L̄arr of crack-like rupture in the one-dimensional model
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can be readily defined as K̄(x̄b + L̄arr) = 0, which implies that

L̄arr = − x̄bτ̄k,0
τ̄k,b

, (30)

recalling that τ̄k,b has to be negative to form a stress barrier. Unlike pulse-like rupture324

(see Eq. (19)), the arrest length of crack also depends on the position of the barrier x̄b.325

This is explained by the fact that the energy released by a crack depends on its size L̄326

to a cubic power (see Eq. (28)), whereas the energy released by a steadily propagating327

pulse is constant and only depends on τ̄k (see Eq. S.30 and Supplementary Information328

section S.3.4 for more details).329

4.4.2 Fracture energy barriers330

As discussed in the context of pulses, the two characteristic quantities d̄∗c and L̄∗arr331

can be similarly defined for cracks. d̄∗c corresponds to the minimal amount of fracture332

energy required to arrest the rupture (sustained rupture growth is admissible for d̄c <333

d̄∗c). L̄∗arr corresponds to the minimum barrier length required to arrest the rupture (no334

fracture energy barrier with size L̄arr < L̄∗arr can arrest a propagating rupture). The335

main difference is that for crack-like rupture both d̄∗c and L̄∗arr depend on the size of the336

crack (L̄ = x̄b).337

As in the case of pulse-like rupture, L̄∗arr corresponds to the arrest length caused

by a stress barriers with τ̄k,b = τ̄k − 1, which leads to the following expression using

(30)

L̄∗arr

(
τ̄k, x̄b

)
=

x̄bτ̄k
1− τ̄k

. (31)

As discussed for pulse-like rupture, L̄∗arr above governs rupture arrest in the asymptotic338

limit d̄c →∞, for which frictional weakening is limited and τ̄f stays near the static value.339

The other end-member situation corresponds to fully developed frictional weaken-

ing such that W̄b = Ḡc = d̄c/2. The one-dimensional dynamic fracture energy bal-

ance (Ḡ = Ḡc) can be used together with Eq. (29) to define critical fracture energy fol-

lowing the derivation detailed in the Supplementary Information, section S.4:

d̄∗c(τ̄k, x̄b) =
(4x̄b

3

)2

(1− τ̄2
k )
(

1−
√

1− τ̄2
k

)
. (32)

Figure 7 tests the predictions of L̄∗arr (31) and d̄∗c (32) against simulations that span sev-340

eral orders of magnitude of fracture energy barrier and arrest length. First, it shows that341

the simplifications behind Eq. (32) gives an accurate prediction for moderate pre-stress.342
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At large pre-stress, dynamical effects associated to fast crack speed tend to overshoot343

the prediction of L̄arr in Eq. (S.44) and, thereby, d̄∗c . Second, the arrest of crack-like rup-344

ture is much sharper than in the case of slip pulse, such that L̄∗arr(x̄b) (31) always pro-345

vides a good approximation of the arrest length by a fracture energy barrier.346

Figure 7. Arrest length of crack-like rupture stopped by a fracture energy barrier simulated

for different values of initial stress τ̄k and fracture energy amplitude d̄c. The markers identify

simulations with barrier size x̄b = 50 (dots) and x̄b = 100 (crosses). The inset shows the raw data

that spans several orders of magnitude in L̄arr and d̄c, and that are collapsed in the main plot

using the definitions of d̄∗c in Eq. (32) and L̄∗
arr in Eq. (31).

4.4.3 Progressive decay of available energy347

As in the case of stress barriers, the one-dimensional stress intensity factor defined348

in Eq. (27) can be readily used to predict the arrest of a crack-like rupture under smoothly349

decaying pre-stress conditions as K̄(L̄arr) = 0. In the case of the linearly decaying shear350

stress τ̄k = 1−ᾱx̄, the arrest length corresponds then to L̄arr = 2/ᾱ and is twice larger351

than in the case of a pulse-like rupture. For quadratic decay of the pre-stress τ̄k = 1−352

λ̄x̄2, the arrest length corresponds then to L̄arr =
√

3/λ̄. Using this arrest prediction,353
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the one-dimensional energy balance can be used to derive a theoretical prediction of the354

profile of the final slip ūp, as detailed in the Supplementary Information, section S.4.2.355

As shown in Figure 8, the solution allows to collapse the final slip profile simulated with356

different values of ᾱ and λ̄. Important differences exist between the slip profile after pulse-357

like rupture shown in Fig. 6 and the slip observed after crack-like rupture in Fig. 8. Slip358

profiles after pulse-like rupture record the initial variations of the prestress before the359

rupture, whereas crack-like rupture tends to homogenize and average local variations of360

prestress. Mechanically, this difference arises because crack releases energy over the en-361

tire rupture length L̄, whereas pulse energy balance is more local and concentrated in362

the thin width ω̄ near the rupture tip. Mathematically, this difference translates into slip363

profile governed by a differential equation for pulses, Eq. (17), versus an integral equa-364

tion that governs ūp for cracks, Eqs. (S.46)-(S.47). Consequently, when propagating to-365

wards decaying pre-stress, slip pulses produce asymmetric slip profiles, whereas crack-366

like ruptures produce slip profiles where the relative position of the maximum slip of-367

ten lies between one third and one half of the arrest distance L̄arr. Consequently, in this368

setup, pronounced asymmetric, triangular, slip profiles are exclusively the signature of369

pulse-like ruptures.370

5 Discussion371

5.1 Connection to existing earthquake models372

The differential equation solved in our one-dimensional model can be related to the373

equation of motion of spring-block systems used in Burridge-Knopoff models (Burridge374

& Knopoff, 1967; Burridge & Halliday, 1971). This analogy is directly used in the present375

study to calculate the energy balance and we propose analytical predictions of the rup-376

ture dynamics. Our one-dimensional system of equations brings an additional length scale377

H that is missing in the classical spring-block models and allows to bridge them to the378

continuum elastic description of faulting. Indeed, the one-dimensional model allows for379

capturing several characteristics of rupture dynamics described in two- and three-dimensional380

models of fault under different boundary conditions.381

Under imposed-stress boundary conditions (Γ = 0), ruptures simulated with the382

one-dimensional model have similar dynamics to that of cracks propagating in unbounded383

elastic domain. In such setup, the most frequent rupture mode corresponds to the prop-384

agation of a shear crack (e.g. Kostrov, 1966; Ida, 1972), whereas slip-pulses are inher-385
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Figure 8. Simulation (solid line) versus theoretical prediction (white dashed-line) of the final

slip profile observed for a crack-like rupture with a linear decay (τ̄k(x̄) = 1 − ᾱx̄) or a quadratic

decay (τ̄k(x̄) = 1 − λ̄x̄2) of the pre-stress. As derived in Supplemental Information, section S.4.2,

L̄arr corresponds respectively to ᾱ/2 and
√

3/λ̄ for the linear and quadratic decays, whereas the

maximum slip ū∗
p is respectively given by 4/(27ᾱ2) and 2/(9λ̄). The position of maximum slip is

most often located near x̄ = L̄arr/3, as highlighted by the vertical black dotted line.

ently unstable and emerge under specific loading and interface conditions (Zheng & Rice,386

1998; Gabriel et al., 2012; Brener et al., 2018; Brantut et al., 2019). As in the one-dimensional387

model under imposed-stress boundary conditions, the system supplies an unlimited amount388

of energy to the propagating rupture and promotes crack-like rupture whose energy re-389

lease rate increases with the rupture size. The one-dimensional setup includes an addi-390

tional length scale H, such that the crack energy release rate scales as G ∼ (∆τ)2G−1L2H−1
391

instead of the scaling G ∼ (∆τ)2G−1L relevant for circular cracks in an infinite domain.392

Apart from this different scaling, the crack arrest criterion predicted by Eq. (27) is the393

one-dimensional analogue of the shear fracture criterion that was successfully used to394
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predict the arrest of frictional rupture in laboratory experiments (Kammer et al., 2015;395

Bayart et al., 2016; Ke et al., 2018).396

Under displacement-controlled boundary conditions (Γ = 1), the rupture dynam-397

ics is substantially different and pulse-like rupture becomes the prominent failure mode.398

This fundamental change is caused by the finite amount of strain energy available for399

rupture under imposed-displacement boundary conditions. Such transition is analogous400

to the change in the rupture dynamics reported in three-dimensional simulations of earth-401

quake ruptures with large aspect ratio L � W (Day, 1982; Weng & Ampuero, 2019)402

or if the fault is surrounded by a damaged region with high elastic contrast (Idini & Am-403

puero, 2020). As depicted in Fig. 1, the relevant type of boundary conditions applied404

at a distance H from the fault corresponds to imposed-displacement. For subduction zones405

(Fig. 1a), the plate is loaded by and coupled to the downward motion of the viscous up-406

per mantle. Due to the no-slip boundary conditions between the elastic plate and the407

viscous upper mantle, a constant displacement at the plate edge is a reasonable approx-408

imation over the duration of the dynamic ruptures. For the strike-slip system (Fig. 1b),409

slip along the fault leads to an associated stress drop in the compliant elastic fault core410

of thickness H. The continuity of displacements and stress at the boundary between the411

compliant fault core and the stiffer wall-rock implies that the associated displacement412

at this boundary will be much smaller than interfacial slip. Therefore, imposed-displacement413

boundary conditions is also relevant in such configurations. (see section C2 of Thøgersen414

et al. (2021) for more details).415

Recently, Weng and Ampuero (2019) showed how the Linear Elastic Fracture Me-416

chanics solution for a thin-strip geometry (Marder, 1998) can accurately describe earth-417

quake dynamics at high aspect ratio L/W . Using the thin-strip solution, they proposed418

a fault rupture potential than can be used to predict the arrest and the size of earthquakes.419

As detailed in Section S.5, their thin-strip solution and associated fault rupture poten-420

tial are complementary to the approach proposed in the present study, which brings es-421

timates of the final slip profile and associated stress drop and generalizes the descrip-422

tion beyond the Linear Elastic Fracture Mechanics assumption (finite fracture energy,423

small scale-yielding conditions, smooth rupture acceleration). Remarkably, the two de-424

scriptions share the same fracture energy criterion to predict rupture deceleration, i.e.425

d̄c/d̄
∗
c = Gc/G0 > 1 and lead to similar arrest length prediction in the limit d̄c → d̄∗c426

(see Fig. S4).427
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5.2 Natural controls on rupture arrest428

Previous studies have proposed that earthquake rupture may be arrested by the429

following situations:430

• Low amount of available elastic strain energy, where the rupture enters a region431

that precludes a stress drop (Husseini et al., 1975). This mechanism is related to432

a stress heterogeneity barrier, where an uneven stress distribution, e.g. as induced433

by the history of past earthquakes, stops the earthquake (Aki, 1979).434

• Barriers along the trajectory of the rupture, such as increase in fracture energy435

or geometrical heterogeneities may arrest a rupture. Such situations can arise when436

the rupture enters a region of intact rock at a fault tip (Husseini et al., 1975)) or437

along fault geometrical barriers such as bends, steps and jogs (Aki, 1979; Harris438

et al., 2002; Magistrale & Day, 1999).439

Our minimal model is able to represent these arrest scenarios with only two con-

trol parameters in case of Amontons Coulomb friction (τ̄k and γ̄), and with three param-

eters (τ̄k, d̄c, and γ̄) in case of slip-weakening friction. The most important parameters

are the pre-stress, τ̄k, and the fracture energy, d̄c. As discussed in the previous section,

the one-dimensional slip pulse solution associated with imposed-displacement boundary

conditions (Γ = 1) provides an accurate description of large planar earthquake rupture

depicted in Fig. 1. In this context, we propose a pulse equation, summarized hereafter,

that describes the propagation and arrest of frictional rupture:

∂2ūp
∂x̄2

= γ̄ūp − ðτ̄k. (33)

We recall that τ̄k describes the pre-stress along the fault before the rupture, ūp corre-440

sponds to the total slip observed along the fault after the rupture, and ð is a parame-441

ters defined in Eq. (22) and whose value lies between 1 (for the largest admissible frac-442

ture energy) and 2 (for negligible fracture energy). We next discuss how to connect the443

natural arrest scenarios presented above, to the different scenarios of uneven distribu-444

tions of pre-stress and fracture energy analysed for our minimal model.445

5.2.1 Geometrical barriers – fault bends446

Fault bends are observed to stop or slow ruptures (e.g. (Elliott et al., 2015; King447

& Nábělek, 1985)). One can parameterize this geometrical structure by a change in pre-448
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Figure 9. Cartoon of arrest scenarios and how they correspond to the different arrest scenar-

ios discussed in Figure 3. a) A fault bend with an angle θ and length L corresponds to a decrease

in τ̄k. b) A fault step with offset of length L corresponds to a fracture energy barrier, and is

represented by a lateral increase of d̄c in our model. c) Top plot shows the profile of slip from

the Mw7.1 2019 Ridgecrest earthquake published by Chen et al. (2020). The bottom plot shows

the corresponding profile of dimensionless prestress computed using our pulse equation (33). See

more details in section S.6.

stress (e.g. (Lozos et al., 2011)). For example, Fig. 9a illustrates a restraining bend. Af-449

ter projection of remotely applied principle stresses on inclined planes, it is readily shown450

that the shear stress, τ0, on the bend segment is reduced relative to the straight fault451

segments, while the normal stress σn on the bend is increased relative to the straight fault452

segment, which we assume is favorably oriented for sliding. Both these trends act to re-453

duce the ratio τ̄0/σn in Eq. (3) on the bend. Therefore, a restraining bend (Fig. 9a) is454

a similar scenario to the stress barrier displayed in Fig. 4B. Since scaling in Eq. (3) as-455

sumed a constant σn, we note that the calculation of τ̄k must be modified to account for456

spatially varying σn(x) and to quantify the reduction of pre-stress over the bend segment.457

As sketched in Fig. 9a, the amplitude of the pre-stress within the barrier depends458

on the angle of the restraining bend θ and its length depends on the bend segment length.459

One can therefore use our minimal model to predict quantitatively at which angles and460

which lengths of bend segments the rupture will stop. Our pulse arrest relationship of461

Eq. (19), and the corresponding Figure 5A, predict that the steeper the bend angle, the462

shorter the arrest length will be because τ̄k,b will decrease with increasing bend angle.463
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Thus, we can qualitatively predict that pulses will traverse relatively long shallowly in-464

clined bends, but will be stopped by much shorter steep bends, in agreement with the465

figure 4b in Lozos et al. (2011).466

For cracks, Eq. (30) predicts a different arrest scenario than for pulses. While pulse467

arrest is independent of where a fault bend is located relative to the hypocenter, under468

constant stress boundary conditions cracks should be able to traverse longer and steeper469

bends the further they are from the hypocenter, since they release more and more en-470

ergy.471

5.2.2 Geometrical barrier – step-overs and offsets472

It is known that earthquakes often stop at fault step-overs or offsets, a situation473

depicted in Fig. 9b, upper panel. Barka and Kadinsky-Cade (1988) suggested that fault474

step-overs and offsets exceeding five kilometers and angles exceeding 30o mostly stop earth-475

quakes. Here, we follow Husseini et al. (1975) and suggest that the region of the step-476

over, which contains unbroken rock, can be described as a region with larger fracture en-477

ergy, as in Fig. 9b. We showed in Fig. 5B that for pulses the arrest length L̄arr increases478

as the material in the step-over between segments becomes weaker, i.e. d̄c decreases. The479

value of L̄arr is shown to range between ∼ 1−10. If we bring this back to dimensional480

terms, the arrest length is in the range H−10H. In the scenario described in Fig. 1B,481

H corresponds to the thickness of the damage zone, which for mature strike-slip faults482

is in the range of few hundreds of meters to few kilometers (Ben-Zion & Sammis, 2003;483

Rockwell & Ben-Zion, 2007). Thus, the observations of Barka and Kadinsky-Cade (1988)484

are consistent with our predictions. Moreover, our model predicts that the thicker the485

damage zone the larger the offsets the earthquake can traverse.486

5.2.3 Variable stress conditions487

In the Earth’s crust, the pre-stress along fault varies continuously due to tectonic488

loading, spatially and temporally varying slip, and earthquake-induced Coulomb stress489

transfer to and from neighboring faults. These processes increase or decrease pre-stress490

magnitude and heterogeneity with time. For example, Mildon et al. (2019) showed that491

the magnitude of pre-stress heterogeneity on faults in the Apennines exceeds 5 MPa, due492

to cumulative addition of Coulomb stress transfer of known earthquakes from the last493

660 years, and an additional strong pre-stress heterogeneous component arising from ir-494
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regular fault geometry, in particular from bends on faults, as discussed in the Section495

5.2.1 above. Other works also find that pre-stress varies due to fault geometrical hetero-496

geneities such as fault bends (e.g. Duan and Oglesby (2005)), fault roughness (e.g. Fang497

& Dunham, 2013; Cattania & Segall, 2021), or fault segmentation (e.g. Harris et al. (2002)).498

Examples of pre-stress variations unrelated to fault geometry include the 1966 Parkfield499

earthquake arrest, attributed to a seismic velocity anomaly in the lower crust (Aki, 1979),500

and pore pressure injections that may extend induced earthquake size (Galis et al., 2017).501

On top of the initial variability in pre-stress, each subsequent rupture event further evolves502

the pre-stress (Duan & Oglesby, 2005)).503

Remarkably, the pulse equation (33) proposed in the present study allows for de-504

ducing the initial stress at the interface from the final slip profile. As example, Fig. 9c505

shows an application of equation (33) to slip data from the Mw7 Ridgecrest earthquake506

in 2019. As presented in the figure 2 of Chen et al. (2020), the rupture dynamics in the507

later stage of the rupture becomes similar to the one-dimensional planar pulse discussed508

in the present study. Therefore, we use the the profile of surface slip caused by the earth-509

quake computed by Chen et al. (2020) using optical correlation of satellite images (shown510

in the top panel of Fig. 9c) and plug it into our pulse equation (33) to get an estima-511

tion of the stress profile before the rupture (shown in the bottom panel of Fig. 9c). The512

section S.6 provides additional information on the slip inversion process and the param-513

eters used to produce Fig. 9c.514

5.3 Planar pulse versus circular crack515

The one-dimensional pulse rupture discussed in the present study has some impor-516

tant differences with the dynamics of circularly growing crack, each of them represent-517

ing two end-member situations of the earthquake cycle: the circular crack model describes518

the early stage of a seismic rupture (radial growth, rupture size much smaller than the519

domain, unbounded available strain energy) whereas the planar pulse regime corresponds520

to the advanced stage of the rupture (planar front, rupture size larger than the domain521

dimensions H and W , limited available strain energy). Such a transition from crack to522

pulse once the crack saturates the seismogenic layer, is observed to occur in large strike-523

slip earthquakes, for example the 2019 Mw7.1 Ridgecrest earthquake (Chen et al., 2020),524

and the 2021 Mw7.4 Madoi earthquake (Chen et al., 2022). Apart from stable pulse-like525

solution discussed previously, planar rupture produces some interesting features of earth-526
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quake dynamics that remains debated in the circular-crack framework and could be ex-527

plored in prospective works.528

5.3.1 Stress drop529

Using the pulse equation (33), the state of stress after the rupture can be predicted

from the slip profile ūp. As detailed in Eqs. (S.57)-(S.58), the stress drop in the one-dimensional

model is given by ðτ̄k or, in dimensional units,

∆τ = ð(τ0 − µkσn), (34)

Unlike circular cracks, planar pulse-like ruptures have then a stress drop independent530

of the rupture radius/size and proportional to the initial state of shear stress τ0 acting531

on the fault before the event. Interestingly, this property of one-dimensional planar rup-532

ture implies that the final slip profile measured along fault zones after an earthquake pro-533

vides information both on the initial shear stress before the rupture (as described in Fig-534

ure 9c) but also after the rupture by subtracting the stress drop predicted in Eq. (34).535

5.3.2 Back-propagating fronts at the arrest location536

During the rupture arrests simulated in this paper, back-propagating fronts are some-

times observed after the sharp arrest of the main pulse front (e.g. by a stress or fracture

energy barriers). As displayed in Figure S6, such fronts correspond to pulses of negative

slip velocity that nucleate at the arrest location and propagate back to the nucleation

zone. Back-propagating fronts are direct consequences of the stress drop described in Eq.

(34) and the fact that one-dimensional planar rupture can reverse the sign of the shear

stress along the interface. If the resulting negative shear stress is below the kinetic fric-

tion for negative slip (i.e. τ0−∆τ < −µkσn), the interface is critically loaded and can

host back-propagating fronts. Section S.7 and Figure S6 discuss how these secondary rup-

tures can be described by the same pulse theory presented in this paper and arise if the

initial shear stress satisfies the following criterion:

τ0 >
ð + 1

ð− 1
µkσn ≥ 3µkσn. (35)

Recently, Idini and Ampuero (2020) reported travelling back-propagating fronts in nu-537

merical simulations of earthquake cycles within a low-velocity fault zone and discuss how538

recent progress in seismic monitoring allowed to detect secondary rupture fronts prop-539

agating with a reverse slip direction compared to the main rupture event. The presence540
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of this low-velocity fault core (as shown in Fig. 1) and the pulse-like nature of these back-541

propagating fronts suggest some direct analogies with the response of our one-dimensional542

model.543

5.3.3 Triangular slip profile544

Slip profiles of faults and earthquakes often display a triangular shape (Manighetti545

et al., 2001, 2004, 2005; Scholz, 2019). These profiles have been observed to have a char-546

acteristic asymmetry, where the short edge of the triangle is usually closer to the hypocen-547

ter of the earthquake, the position of the maximum slip position is not constant, and the548

ratio between the two edges of the triangle varies among earthquakes (Manighetti et al.,549

2005). So far only a few models have been proposed to explain this observation. Manighetti550

et al. (2004) suggested that off-fault damage and plasticity account for the triangular551

slip distribution. Because, the presence of damage decreases the elastic moduli, Cappa552

et al. (2014) suggested that the moduli of the off-fault damaged zone varies along the553

fault. They demonstrated that this variation produces a triangular profile. In fact, this554

variation of moduli will produce a variation in available strain energy stored along the555

fault, and therefore this is equivalent to the slip pulse evolution when there is a deple-556

tion of strain energy scenario, that we describe in Figs. 3D and 6. Thus, τ̄k in our model557

encapsulates the backbone physics of the scenario of Manighetti et al. (2004) and Cappa558

et al. (2014), yet offers a larger set of scenarios for obtaining triangular slip: any slip pulse559

that propagates into regions of decreasing pre-stress or elastic strain energy will produce560

such a profile. In fact, our work suggests that triangular slip profiles may be a signature561

of pulse-like earthquakes that have been stopped by a depletion in available strain en-562

ergy, which translates into depletion in τ̄k.563

6 Conclusion564

To study frictional rupture arrest, we present a one-dimensional model that brings565

a characteristic length scale H to the standard Burridge-Knopoff model and bridges it566

to continuum fault models. The model captures the two types of boundary conditions567

relevant at the early and late stage of earthquake rupture and reveals their fundamen-568

tal impact on the style of the rupture (crack versus pulse), its energy balance, and the569

arrest conditions. Under imposed-displacement boundary conditions, the proposed one-570

dimensional model provides a good approximation for the dynamics of large earthquake571
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ruptures that saturate the width of the seismogenic zone and propagate as planar front572

(as sketched in Figure 1). In this context, the main conclusions are:573

• The formulation of the model is minimal and generic and allows to wrap various574

earthquake arrest scenarios into the variations of two dimensionless variables τ̄k575

(initial pre-stress on the fault) and d̄c (fracture energy).576

• Using these two parameters, we propose simple scaling relationships to character-577

ize the arrest length of earthquakes.578

• The stress drop is directly proportional to the initial pre-stress.579

• The regions of the fault that will arrest the next large earthquake can be predicted580

independently of where the rupture will nucleate.581

• The transition from circular crack growth to the propagation of planar pulse brings582

new insight on unsettled features of natural earthquakes such as the observed asym-583

metric, triangular, slip profile along fault zones, the conditions for back-propagating584

ruptures, and the prevalence of the pulse-like rupture style for large earthquakes.585

• The present paper focuses on earthquake dynamics, but the generality of the pro-586

posed one-dimensionless formulation may find applications in other geological set-587

tings where the size of the rupture exceeds the width of the surrounding bulk, such588

as landslides, glacier surge, and snow avalanches (Thøgersen, Gilbert, et al., 2019;589

Trottet et al., 2022).590
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List of main symbols598

x̄ Position along the fault
t̄ Time
ū Slip
τ̄ Shear stress
τ̄f Frictional stress
Γ̄ Boundary conditions: imposed-stress (Γ = 0) or imposed-displacement (Γ = 1)
γ̄ Elastic modulus parameter
τ̄k Pre-stress
d̄c Critical weakening distance

Ḡc = d̄c/2 Fracture energy
K̄ One-dimensional stress intensity factor
W̄b Breakdown work
Ēel Elastic energy
Ēkin Kinetic energy
W̄ext External work
v̄c Rupture propagation speed
ūp Final slip (i.e. after rupture arrest)
β̄ Numerical damping
L̄ Length of the domain
L̄ Rupture length
L̄arr Arrest length
x Position
t Time
ui Displacement
û0 Imposed displacement at the top boundary
〈ui〉 Average displacement over the block height
σij Cauchy stress tensor
σn Normal stress at the interface
τf Frictional (shear) stress at the interface
H Height of the solid block
λ Lamé first coefficient
G Shear modulus
ρ Solid density
µs Static friction coefficient
µk Dynamic friction coefficient
dc Critical slip weakening distance

Table 1. List of variables used in the manuscript and the Supplementary Information. The

dashed line separates the dimensionless variables (above) and the variables with dimensions (be-

low). See also Table S1 for further information on how to relate these variables to dimensional

quantities.
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List of main symbols

x̄ Position along the fault
t̄ Time
ū Slip
τ̄ Shear stress
τ̄f Frictional stress
Γ̄ Boundary conditions: imposed-stress (Γ = 0) or imposed-displacement (Γ = 1)
γ̄ Elastic modulus parameter
τ̄k Pre-stress
d̄c Critical weakening distance

Ḡc = d̄c/2 Fracture energy
K̄ One-dimensional stress intensity factor
W̄b Breakdown work
Ēel Elastic energy
Ēkin Kinetic energy
W̄ext External work
v̄c Rupture propagation speed
ūp Final slip (i.e. after rupture arrest)
β̄ Numerical damping
L̄ Length of the domain
L̄ Rupture length
L̄arr Arrest length
x Position
t Time
ui Displacement
û0 Imposed displacement at the top boundary
〈ui〉 Average displacement over the block height
σij Cauchy stress tensor
σn Normal stress at the interface
τf Frictional (shear) stress at the interface
H Height of the solid block
λ Lamé first coefficient
G Shear modulus
ρ Solid density
µs Static friction coefficient
µk Dynamic friction coefficient
dc Critical slip weakening distance
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S.1. One-dimensional elastodynamic model

Let us consider the linear elastic block and associated system of coordinates presented

in Figure 2. For each coordinate (i = x, y, z), the balance of linear momentum writes:

ρ
∂2ui
∂t2

=
∂σxi
∂x

+
∂σyi
∂y

+
∂σzi
∂z

, (S.1)

where σij are the components of the Cauchy stress tensor and ui is the displacement field.

Next, we assume that the normal stress is homogeneous and constant (σyy(x, y, z, t) ≡ σn)

and that the elastic fields are invariant in the out-of-plane direction (∂ui/∂z = 0), such

that the momentum balance equation becomes

ρ
∂2ui
∂t2

= Λ
∂2ui
∂x2

+
∂σyi
∂y

. (S.2)

The equation above applies equivalently to mode II displacement, for which i corresponds

to x and Λ = λ + 2G, and to mode III displacement, for which i corresponds to z and

Λ = G. The height of the system H is assumed to be small compared to the other

dimensions of the problem, such that variations of ui over y are small and the momentum

balance can be solved in average across the height (Bouchbinder et al., 2011; Bar-Sinai

et al., 2013). At time t = 0, the system is initially at rest, such that one can define the

height-averaged displacement field as

〈ui〉y(x, t) =
1

H

∫ H

0

(
ui(x, y, t)− ui(x, y, 0)

)
dy, (S.3)

with ui(x, y, 0) corresponding to the initial static displacement field. Using the definition

of 〈ui〉y, both sides of Eq. (S.2) are integrated between zero and H to obtain the following

one-dimensional formulation:

Hρ
∂2〈ui〉y
∂t2

= HΛ
∂2〈ui〉y
∂x2

+ σyi(x,H, t)− σyi(x, 0, t). (S.4)
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Next, the boundary conditions on the top and bottom surfaces need to be applied. The

shear stress on the bottom surface corresponds to the frictional stress:

σyi(x, 0, t) ≡ τf (x, t). (S.5)

On the top surface, two kinds of boundary conditions can be considered:

stress− controlled : σyi(x,H, t) ≡ τ0(x) (S.6)

displacement− controlled : ui(x,H, t). ≡ û0(x) (S.7)

For imposed stress, the value of the shear stress at the top boundary is fixed, whereas for

imposed displacement σyi(x,H, t) evolves with interfacial slip. To estimate this evolution,

the displacement field through the height of the block can be expressed as the following

Taylor expansion

ui(x, y, t) = ui(x,H, t) + (y −H)
∂ui(x, y, t)

∂y
|y=H +O

(
(y −H)2

)
. (S.8)

In the right-hand side of the equation above, the first term corresponds to the imposed-

displacement û0, the derivative in the second term corresponds to σyi(x,H, t)/G and the

third term accounts for higher-order contributions that can be neglected as variations of

ui through H are small. Invoking that the initial static displacement field corresponds to

ui(x, y, 0) = û0(x)y/H, the height-averaged displacement can be integrated following Eq.

(S.3) as:

〈ui〉y(x, t) =
1

2
û0(x)− H

2G
σyi(x,H, t). (S.9)

From the equation above, σyi(x,H, t) can then be expressed as an initial shear stress τ0

related to the imposed displacement minus the elastic relaxation resulting from slip:

σyi(x,H, t) =
G
H

(
û0(x)− 2〈ui〉y(x, t)

)
≡ τ0(x)− 2G

H
〈ui〉y(x, t). (S.10)
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Using Eqs. (S.5), (S.6) and (S.10), the momentum equation (S.4) can be re-written as:

∂2〈ui〉y
∂t2

=
Λ

ρ

∂2〈ui〉y
∂x2

− Γ
2G
ρH2
〈ui〉y +

1

ρH

(
τ0(x)− τf (x, t)

)
, (S.11)

where Γ is a binary parameter being equal to zero for stress boundary condition, and

equal to one for displacement boundary condition on the top surface.

Following the normalization procedure summarized in Table S1, the one-dimensional

momentum equation above can be re-written in the dimensionless form:

∂2ū

∂t̄2
=
∂2ū

∂x̄2
− Γγ̄ū+ τ̄ , (S.12)

which is Eq. (1) in the main text. In Table S1, the dimensionless shear stress is defined

with respect to the static µs and kinematic µk coefficient of friction. For the example

of linear slip-weakening friction with only positive slip velocities, the shear stress can be

expressed as function of the deviation from residual friction τ̄f :

τ̄(x̄, t̄) = τ̄k(x̄)− τ̄f (x̄, t̄)


> τ̄k − 1 , if ˙̄u = 0

= τ̄k − (1− ū/d̄c) , if 0 ≤ ū ≤ d̄c

= τ̄k , if ū > d̄c

, (S.13)

with d̄c being the critical slip distance and τ̄k the dimensionless residual friction defined in

Eq. (3). Equation (S.13) also describes Amontons-Coulomb friction in the limit d̄c = 0.
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S.2. Parameters and convergence of the numerical scheme

As described in Section 3 of the main text, the one-dimensional model is solved in space

using a central finite-difference scheme with uniform grid size ∆x̄ and integrated in time

following Euler-Cromer scheme (Cromer, 1981), with uniform time step ∆t̄. At time step

j and element i, the integration of a slipping portion of the interface writes

¨̄uji =
ūji+1 − 2ūji + ūji−1

(∆x̄)2
− Γγ̄ūji + τ̄i + β̄

˙̄uji+1 − 2 ˙̄uji + ˙̄uji−1

(∆x̄)2
,

˙̄uj+1
i = ˙̄uji + ¨̄uji∆t̄,

ūj+1
i = ūji + ˙̄uj+1

i ∆t̄.

(S.14)

The one-dimensional model in its discretized model (S.14) is similar to the dynamics of

Burridge-Knopoff models whose governing equation has the generic form:

mü− k(ui+1 − 2ui + ui−1) + lui − η(u̇i+1 − 2u̇i + u̇ki−1) = fi, (S.15)

with m being the mass of the block, k, l respectively the longitudinal and leaf spring

constants and fi the driving force. As described by Knopoff and Ni (2001), at the tip

of a propagating rupture, the moving boundary between sticking and slipping portion

of the fault creates numerical oscillations that can be removed by introducing a viscous

damping term η. A spectral analysis of Eq. (S.15) shows that setting η =
√
km implies

that the spurious oscillations with grid-size wavelength are critically damped (Amundsen

et al., 2012). In practice, Burridge-Knopoff models typically use a value of η =
√

0.1km

which provides the best compromise between reducing the numerical oscillations and not

damping the physical rupture dynamics (Knopoff & Ni, 2001; Amundsen et al., 2012).

This value is adopted in our one-dimensional simulations with Amontons-Coulomb fric-

tion law. Using the analogy between Eqs. (S.14) and (S.15), this corresponds to m = 1,

k = (∆x̄)−2 and β = η(∆x̄)2 =
√

0.1km(∆x̄)2 =
√

0.1∆x̄. This relative viscous damping
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term reduces the convergence rate from quadratic to linear but guarantees the stability of

the numerical scheme for discontinuous problems as shown in Figure S1. ∆x̄ ≤ 4 ·10−3 to-

gether with the Courant-Friedrichs–Lewy condition (Courant et al., 1928), ∆t̄ ≤ 0.1∆x̄,

have been adopted in the simulations reported in the present study to guarantee the

numerical convergence.

S.3. Pulse equations

The pulse equation can be expressed by integrating the total energy between the nucle-

ation position x̄ = 0 and the position of the leading head of the pulse L̄(t̄) at time t̄ using

Eqs. (12) to (14). Next, we assume that the width of the pulse is much smaller than the

total ruptured length. This assumption allows us 1) to neglect the contribution of the

kinetic energy which is only non-zero within the pulse and 2) to substitute ū(x̄, t̄) by the

final slip ūp(x̄) observed in the wake of the pulse. The total energy at time t̄ writes then:

Ē(t̄) =

∫ L̄(t̄)

0

{
τ̄kūp − W̄b −

1

2

(∂ūp
∂x̄

)2

− 1

2
γ̄ū2

p

}
dx̄. (S.16)

We next use integration by parts and the fact that ūp is zero at the two bounds of the

integral above to rewrite the equation as:

Ē(t̄) =

∫ L̄(t̄)

0

{
τ̄kūp − W̄b +

1

2
ūp
∂2ūp
∂x̄2

− 1

2
γ̄ū2

p

}
dx̄ (S.17)

Finally, the total energy should be conserved throughout pulse propagation, which implies

that:

dĒ

dL̄
= 0 = τ̄kūp − W̄b +

1

2
ūp
∂2ūp
∂x̄2

− 1

2
γ̄ū2

p. (S.18)

This pulse equation can be used to predict the final slip observed in the wake of pulse-

like rupture as function of the profile of shear stress lumped in τ̄k(x̄) and the interface

breakdown energy described by W̄b.
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S.3.1. Amontons-Coulomb friction

With Amontons-Coulomb friction, the breakdown work is negligible (W̄b = 0). Exclud-

ing the trivial solution ūp = 0, the final slip is given by the following second-order linear

pulse equation:

∂2ūp
∂x̄2

= γ̄ūp − 2τ̄k. (S.19)

This pulse equation can be used for example to predict how ūp decays within a stress

barrier by defining the initial value problem up(x̄
′ = 0) = 2τk,0/γ̄ with x̄′ = x̄− x̄b, which

has a general solution given by two constants C1 and C2:

ūp(x̄
′) =

2τ̄k,b
γ̄

+ C1 exp(−x̄′
√
γ̄) + C2 exp(x̄′

√
γ̄). (S.20)

Neglecting the growing exponential C2, the following exponential decay can be predicted

ūp(x̄
′) =

2

γ̄

(
τ̄k,b + (τ̄k,0 − τ̄k,b) exp(−x̄′

√
γ̄)
)
. (S.21)

Remembering that in the case of stress barrier τ̄k,b < 0, the equation above has a positive

root ūp(x̄′ = L̄arr) = 0 which can be used to predict the critical barrier length:

L̄arr = γ̄−
1
2 ln

( τ̄k,0 − τ̄k,b
−τ̄k,b

)
. (S.22)

Another prediction can be made by searching C1 and C2 such that both ūp(x̄′) and its

first derivative are zero at x̄′ = L̄arr and corresponds to:

ūp(x̄
′) =

−2τ̄k,b
γ̄

(
cosh

(
(x̄′ − L̄arr)

√
γ̄
)
− 1
)
. (S.23)

In such case, the theoretical prediction of the arrest length becomes

L̄arr = γ̄−
1
2 arccosh

( τ̄k,0 − τ̄k,b
−τ̄k,b

)
. (S.24)

The two predictions (S.21) and (S.23) are compared to the the slip profile obtained from

numerical simulation in Figure S2.
November 17, 2022, 6:26pm
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S.3.2. Slip-weakening friction with ūp ≤ d̄c

Such case describes frictional weakening which does not reach a residual value. The

breakdown work depends on the final slip ūp

W̄b(ūp) =

∫ ūp

0

τ̄f (ū) dū =

∫ ūp

0

(1− ū

dc
) dū = ūp

(
1− ūp

2d̄c

)
, (S.25)

and leads to a similar pulse equation:

∂2ūp
∂x̄2

=
(
γ̄ − 1

d̄c

)
ūp − 2(τ̄k − 1). (S.26)

S.3.3. Slip-weakening friction with ūp > d̄c

If one assumes that frictional weakening and associated breakdown work reach constant

values (W̄b = d̄c/2), the pulse equation becomes non-linear:

∂2ūp
∂x̄2

= γ̄ūp − 2τ̄k +
d̄c
ūp
. (S.27)

S.3.4. Steady-state energy balance

Thøgersen, Aharonov, Barras, and Renard (2021) derived the steady-state pulse solution

for Amontons-Coulomb friction and homogeneous stress condition. The steady-state pulse

has a width

ω̄ = π

√
v̄2
c − 1

γ̄
=

πτ̄k√
γ̄(1− τ̄ 2

k )
(S.28)

over which the slip evolves as

ū(ξ̄) =
τ̄k
γ̄

(
1− sin(πξ̄/ω̄)

)
, (S.29)

with ξ̄ ∈ [−ω̄/2, ω̄/2] being a co-moving frame of reference centered at the position of

peak slip velocity. Integrating the steady state solution between −ω̄/2 and ω̄/2 following

Eqs. (12) and (13), one can compute the mechanical (reversible) energy stored within the
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steadily travelling pulse:

Epulse =
1

2

∫ ω̄/2

−ω̄/2

{(∂ū
∂x̄

)2

+ γ̄ū2 +
(∂ū
∂t̄

)2}
dx̄ =

πτ̄k(1 + τ̄ 2
k )

2γ̄3/2
√

1− τ̄ 2
k

. (S.30)

S.4. Crack equations

S.4.1. Steady-state solution under homogeneous stress conditions

A crack-like rupture involves different energy transfer than the pulse-like rupture dis-

cussed in the previous section. To complement the steady-state pulse solution (S.29) from

Thøgersen et al. (2021), we derive hereafter an equivalent self-similar crack solution un-

der homogeneous prestress τ̄k. Figure S3 presents three different simulations of crack-like

rupture (Γ = 0) under three different homogeneous pre-stress conditions. Under such con-

ditions, the crack reaches constant propagation speed such that, in the co-moving frame

ζ̄ = x̄/L̄, self-similar profiles are observed for the acceleration ¨̄u, the rescaled velocity ˙̄ut̄−1

and the rescaled displacement ū t̄−2. From these results, one can postulate the following

self-similar solution:

ū = t̄ 2F(ζ̄), with ζ̄ =
x̄

v̄ct̄
,

˙̄u = t̄H(ζ̄), with H(ζ̄) = 2F(ζ̄)− ζ̄F ′(ζ̄),

¨̄u = J (ζ̄), with J (ζ̄) = 2F(ζ̄)− 2ζ̄F ′(ζ̄) + ζ̄2F ′′(ζ̄),

(S.31)

where F(ζ̄) is the self-similar crack displacement solution to be determined. First, this

solution needs to satisfy the one-dimensional momentum balance Eq. (1), which becomes

in the new frame of reference:

2F − 2ζ̄
dF
dζ̄

+ (ζ̄2 − 1

v̄2
c

)
d2F
dζ̄2

= τ̄k. (S.32)

Eq. (S.32) is a Cauchy-Euler equation that reduces to

2C − 2A

v̄2
c

= τ̄k, (S.33)
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for homogeneous τ̄k and if F has a quadratic form F = Aζ̄2 +Bζ̄ +C. A single quadratic

solution could not match the simulation profiles, such that the following bi-quadratic

solution was postulated:

F(ζ̄) =


A1ζ̄

2 +B1ζ̄ + C1, if ζ̄ < ζ̄c

A2ζ̄
2 +B2ζ̄ + C2, if ζ̄ > ζ̄c

(S.34)

Next, the following conditions are imposed

• Zero slip and slip velocity at the fixed boundary on the left of the domain: F(ζ̄ =

0) = H(ζ̄ = 0) = 0;

• Zero slip and slip velocity at the tip of the crack: F(ζ̄ = 1) = H(ζ̄ = 1) = 0;

• Continuity of slip and slip velocity at ζ̄ = ζ̄c;

• The two polynomials should satisfy the momentum balance relationship of Eq. (S.33).

They provide seven conditions to determine the seven unknowns of the self-similar

solution which becomes

F(ζ̄) =


τ̄kv̄

2
c

(
− 1

2
ζ̄2 +

ζ̄

v̄c + 1

)
, if ζ̄ <

1

v̄c
τ̄kv̄

2
c

2(v̄2
c − 1)

(
ζ̄2 − 2ζ̄ + 1

)
, if ζ̄ >

1

v̄c
.

(S.35)

Note that ζ̄c = v̄−1
c corresponds to the characteristic line x̄ = t̄ describing the wave speed

propagation. The crack solution corresponds then to the combination of a subsonic and a

supersonic contribution. For Amontons-Coulomb friction, supersonic rupture speeds are

in agreement with the prediction of Amundsen et al. (2015):

v̄c =
1√

1− τ̄ 2
k

, (S.36)

which is used in Figure S3 to validate the self-similar solution against the different simula-

tions with no free parameter. Next, the crack energy balance can be studied by inserting
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the self-similar solution of Eq. (S.31) into Eqs. (12), (13), and (14):

Eel + Ekin = Wext (S.37)

1

2

∫ L̄

0

(∂ū
∂x̄

)2

dx̄+
1

2

∫ L̄

0

(∂ū
∂t̄

)2

dx̄ =

∫ L̄

0

τ̄kūdx̄ (S.38)

⇔ t̄3

2v̄c

∫ 1

0

(
F ′(ζ̄)

)2

dζ̄ +
t̄3v̄c
2

∫ 1

0

(
H(ζ̄)

)2

dζ̄ = t3v̄cτ̄k

∫ 1

0

F(ζ̄)dζ̄ (S.39)

⇔ τ̄ 2
k v̄

2
c t̄

3

6(v̄c + 1)2
+

τ̄ 2
k v̄

3
c t̄

3

6(v̄c + 1)2
=

τ̄ 2
k v̄

2
c t̄

3

6(v̄c + 1)
. (S.40)

Equation (S.40) is satisfied for any rupture speed v̄c and at any time step t̄ and confirms

the validity of the self-similar solution of Eq. (S.31). The left-hand side of Eq. (S.40)

corresponds to the mechanical energy stored in the crack that can be defined as,

Ēcrack =
τ̄ 2
k L̄

3

6v̄c(v̄c + 1)
, (S.41)

which is equivalent to Eq. (S.30) for slip pulse. Ēcrack corresponds to the amount of

external work that is released by the rupture and converted into internal energy.

As discussed in the main text, Ēcrack can be used to derive Ḡ, the fracture mechanics

energy release rate (see Eq. (29)). Next, the one-dimensional dynamic fracture energy

balance (Ḡ = Ḡc) can be used to define the crack propagation criterion:

d̄c ≤
τ̄ 2
k x̄

2
b

v̄c(v̄c + 1)
≡ d̄0

c . (S.42)

If satisfied, the condition Eq. (S.42) implies that the rupture releases enough energy to

advance through the barrier. In practice, d̄0
c systematically underestimates the fracture

energy d̄c required to arrest the rupture. Indeed, if the condition of Eq. (S.42) is violated,

the propagating crack dissipates more energy than it releases such that rupture will arrest

once the internal energy available in the 1D system is dissipated. The arrest condition

should also account for the length over which the crack stops, such that the crack arrest
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condition rather writes

d̄c >
τ̄ 2
k (x̄b + L̄arr)

2

v̄c(v̄c + 1)
≡ d̄∗c . (S.43)

In the equation above, L̄arr can be estimated as the ruptured length required for the

fracture energy to dissipate the internal energy. Unlike rupture in infinite domain, the

energy released by the one-dimensional rupture remains close to the interface and the

internal energy is given by Ēcrack defined in Eq. (S.41), such that

L̄arr =
τ̄ 2
k x̄

3
b

3d̄cv̄c(v̄c + 1)
∼=

τ̄ 2
k x̄

3
b

3v̄c(v̄c + 1)

v̄c(v̄c + 1)

τ̄ 2
k x̄

2
b

=
1

3
x̄b, (S.44)

where the last approximation corresponds to d̄c ≈ d̄0
c . Combining equation (S.43) and

(S.44) together with the relationship (S.36) between rupture speed and prestress derived by

Amundsen et al. (2015), the minimal value of d̄c required to arrest a steadily propagating

crack corresponds then to

d̄∗c(τ̄k, x̄b) =
(4x̄b

3

)2

(1− τ̄ 2
k )
(

1−
√

1− τ̄ 2
k

)
. (S.45)

S.4.2. Linearly decaying pre-stress

In this section, we aim to derive a solution for the final slip observed after the prop-

agation of a crack-like rupture through decaying profile of pre-stress. Both linear decay

τ̄k = 1− ᾱx̄ and quadratic decay τ̄k = 1− λ̄x̄2 are discussed. First, we use the crack ar-

rest conditions in absence of fracture energy (K̄(L̄arr) = 0) to predict the arrest position

being respectively L̄arr = 2/ᾱ and L̄arr =
√

3/λ̄. Next we define the following system of

coordinates ψ̄ = x̄/L̄arr and consider the following cubic slip profile ūp(ψ̄) = Cψ̄(1− ψ̄)2,

which is defined to satisfy the no-slip boundary condition (ūp(0) = 0) as well as zero slip

(ūp(1) = 0) and zero longitudinal stress (∂ūp(1)/∂ψ̄ = 0) at the arrest position. The

remaining constant C is set such that ūp satisfies the crack energy balance, which implies
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that the elastic strain energy present in the system after the rupture

Ēel =
1

2

∫ 1

0

(∂ūp
∂ψ̄

)2

L̄−1
arr dψ̄ =


ᾱ

30
C2√
λ̄

3

C2

15

(S.46)

corresponds to the work injected in the system by the external forces during the rupture

W̄ext =

∫ 1

0

τ̄k(ψ)ūp(ψ)L̄arr dψ̄ =


ᾱ−1 C

30√
3

λ̄

C
30

(S.47)

The rupture energy balance leads then to respectively C = ᾱ−2 and C = 1.5λ̄−1 and the

following slip profile

ūp(ψ̄)

ū∗p
=

27ψ

4
(1− ψ)2, (S.48)

with the peak value of frictional slip corresponding respectively to ū∗p = 4ᾱ−2/27 and

ū∗p = 2λ̄−1/9 and being observed at one third of the total rupture length (ψ̄max = 1/3).

The solution (S.48) is shown by the white dashed line in Fig. 8 in comparison with

simulations.

S.5. Connection with existing linear elastic fracture mechanics models

Linear elastic fracture mechanics provides an elegant and robust framework to describe

the arrest of frictional rupture in lab experiments. The small-scale yielding assumption

behind linear elastic fracture theory implies that the material behavior is everywhere linear

elastic, apart from a region near the fracture tip which is of negligible size compared to any

other representative length scale of the problem. The most frequent boundary conditions

assumed unbounded elastic domain under constant stress, which allows for expressing the

crack arrest criterion as function of the energy released at the tip of the crack per unit

crack surface growth:

G ∼ K2

2G
. (S.49)
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G is often referred to as the energy release rate and is function of the stress intensity

factor K that characterises the amplitude of the stress concentration near the crack tip.

For example, the stress intensity factor of a mode-II crack of size L at the edge of a

semi-infinite domain is given by the integration of the pre-stress (Kammer et al., 2015):

K(L) =
2√
πL

∫ L

0

(τ0 − µkσn)M(ξ/L)√
1− (ξ/L)2

dξ, (S.50)

with M(ξ/L) = 1 + 0.3(1 − (ξ/L)5/4). Using the two equations above, crack arrest is

predicted as soon as the fracture energy of the interface exceeds the energy release rate:

G(L) ≤ Gc. (S.51)

Such dynamics is similar to the one predicted in the one-dimensional domain under stress-

controlled boundary conditions. Two notable differences arise from the small-H approxi-

mation. First, the energy release rate scales as Ḡ ∼ L̄2 (see Eq.(29)) whereas it scales as

G ∼ L in the unbounded domain approximation. This difference is caused by the introduc-

tion of an additional characteristic length scale (H) in the one-dimensional system. The

same quadratic scaling is also observed in the energy release rate controlling the tensile de-

lamination of double cantilever beam with similarly large aspect ratio (Anderson, 2005).

Second, the tip singularity is regularized over the thickness H in the one-dimensional

model, such that K̄ does not describe the stress singularity, but rather the resultant

stress at the tip, as evident in the integration of K̄(L̄) in Eq. (27), the one-dimensional

equivalent of Eq. (S.50).

Another useful type of boundary conditions assumes rupture propagating between two

thin-strips loaded by an imposed-displacement at the boundary (Marder, 1998; Weng &
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Ampuero, 2019). In such geometry, the energy release rate rather writes:

G0 =
(τ0 − µkσn)2H

G
. (S.52)

Assuming small acceleration, Marder (1998) derives an approximate equation of motion

for linear elastic tensile fracture in the thin-strip setup, which was recently adapted to

frictional rupture by Weng and Ampuero (2019):

Gc = G0

(
1− v̇rH

A(vr)

)
, (S.53)

with vr being the rupture speed and A a positive function of vr. An important differ-

ence is that ruptures in the thin-strip geometry are pulse-like, whereas crack-like ruptures

are promoted in the unbounded elastic domain. Another difference with the unbounded

configuration described in Eq. (S.51) is that the thin-strip introduces some inertia in the

crack equation of motion in Eq. (S.53) that stretches the arrest of the rupture over some

finite arrest length. Such configuration is then equivalent to the displacement-controlled

boundary conditions of the one-dimensional model. Whereas the analogy between un-

bounded domain and one-dimensional stressed-controlled setup was qualitative, the one-

dimensional model under displacement-controlled boundary conditions directly describes

the thin-strip geometry and the analogy is quantitative. For example, both in Eq. (S.53)

and Eq. (21), the rupture will decelerate and ultimately arrest if

(τ0 − µkσn)2H

G
≤ Gc. (S.54)

Moreover, the predictions of the two models show a similar trend in the limit d̄c → d̄∗c .

Figure S4 compares the arrest length of one-dimensional simulations discussed in Fig. 5B

of this paper to the following approximation proposed in the equation (22) of Weng and

Ampuero (2019) to describe the rupture arrest observed in 2.5-dimensional earthquake
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simulations, which can be written in our dimensionless formulation as:

L̄arr =
α−0.6
s − 1

0.72(d̄c/d̄∗c − 1)
, (S.55)

with αs =
√

1− v̄2
c defined for subsonic rupture velocity in two- and three-dimensions

elastodynamics. As discussed by (Amundsen et al., 2015), one-dimensional elastodynam-

ics promotes rupture speed which are faster than the one-dimensional wave speed (see Eq.

(S.36)), which explains the large value (v̄c = 0.975) that should be used in Eq. (S.55)

to describe the one-dimensional simulations in Fig. S4. For large d̄c → d̄∗c , the small-

scale yielding assumption is no longer valid such that linear elastic fracture mechanics

prediction does not capture the plateau observed with the one-dimensional model.

S.6. Seismic data from 2019 Ridgecrest Mw7.1 earthquake

The data plotted in the panel (c) of Figure 9 are computed from the surface fault slip

caused by theMw7.1 Ridgecrest earthquake and inverted from optical image correlation by

Chen et al. (2020). First, the strike parallel slip profile inverted from images of Sentinel-1

shown in the figure 2c of Chen et al. (2020) are digitized. Next, the non-dimensional

variables ūp and x̄ are computed respectively from the slip and the distance along strike

using Table S1 (mode-II column) and assuming the following parameters: H = 1 [km],

σn = 200 [MPa], (µs − µk) = 0.7 [-], G = 35 [GPa] and the Poisson’s ratio ν = 0.25 [-].

As shown in Figure S5, ūp(x̄) is then interpolated by a cubic spline used to evaluate its

second derivative and to compute τ̄k from the pulse equation Eq. (33) with ð set as 2

(negligible fracture energy).
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S.7. Stress drop and back-propagating front with displacement-controlled

boundary conditions (Γ = 1)

The displacement field along the interface before ū = 0 and after ū = ūp should sat-

isfy the momentum equation (1) with zero acceleration. Before the rupture, this static

equilibrium implies that the dimensionless stress τ̄ = 0, which means that the frictional

stress at the interface equates the initial stress in the bulk (τ̄f = τ̄k). After the rupture,

the dimensionless stress becomes

τ̄ = τ̄k − τ̄f = γ̄ūp −
∂2ūp
∂x̄2

. (S.56)

Moreover, one knows that the final slip should approximately satisfy the pulse equation

(33), which implies that

γ̄ūp −
∂2ūp
∂x̄2

= ðτ̄k. (S.57)

Combining Eqs. (S.56-S.57), one obtains that the frictional stress at the interface after

the rupture corresponds to τ̄f = (1− ð)τ̄k, which leads to the following stress drop:

∆τ̄f = ðτ̄k. (S.58)

For the largest admissible fracture energy (i.e. d̄c = d̄∗c and therefore ð = 1), the stress

drop corresponds to ∆τ̄f = τ̄k, which means that the rupture completely releases the

initial shear stress (τ̄f = 0). Conversely, for negligible fracture energy, ð = 2 and the

frictional stress after failure becomes τ̄f = −τ̄k. In dimensional unit, such overshoot can

inverse the sign of the shear loading at the interface after the rupture.

If at the end of the rupture, the interface is strained with negative shear stress, it can

host a secondary rupture with reverse (i.e. negative) slip and slip velocity. The same 1D

pulse theory can be used to describe the propagation of this reverse secondary rupture.
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First, one need to define the negative pre-stress, the equivalent of Eq.(3) but for negative

slip velocity:

τ̄−k (x̄) =
τ0(x̄)/σn + µk

µs − µk

= τ̄k(x̄) +
2µk

µs − µk

≡ τ̄k(x̄) + ϑ̄. (S.59)

Second, one defines the displacement due to the secondary rupture front only, ū− =

−(ū− ūp), where the minus sign is there to ensure that ū− > 0. With this two ingredients,

the momentum equation within the secondary rupture writes:

−¨̄u− =
∂2(ūp − ū−)

∂x̄2
− γ̄(ūp − ū−) + τ−k , (S.60)

which can be further simplified using Eqs. (S.57) and (S.59) into

¨̄u− =
∂2ū−

∂x̄2
− γ̄ū− + (ð− 1)τ̄k − ϑ̄. (S.61)

In the equation above both ū− and ¨̄u− are positive such that the theory developed in this

paper to describe slip pulse can be applied to describe the dynamics of secondary slip

fronts governed by Eq. (S.61). From the original one-dimensional momentum equation

(1), frictional rupture are possible if τ̄k = 0. Similarly, using the updated momentum

equation above (S.61), secondary rupture front are possible if:

τ̄k(ð− 1)− ϑ̄ > 0. (S.62)

The equation above only guarantees that the rupture is energetically admissible. As dis-

cussed for Eq. (8), the criterion (S.62) is a necessary condition for back-propagating

rupture but is not sufficient. To observe secondary rupture fronts, a local stress concen-

tration is also required to trigger nucleation and typically arises once the main front is

arrested by a sharp barrier. Figure S6 shows examples of secondary fronts nucleating at

the location of a stress barrier and propagating backward following the prediction of Eq.

(S.62).
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Physical quantities Variables Mode II rupture Mode III rupture

Characteristic wave speed c =

√
Λ

ρ

√
λ+ 2G
ρ

√
G
ρ

Characteristic displacement U = Hσn
µs − µk

Λ
Hσn

µs − µk

λ+ 2G
Hσn

µs − µk

G

Characteristic time T =

√
H2ρ

Λ

√
H2ρ

λ+ 2G

√
H2ρ

G

Dimensionless distance x̄ x
1

H
x

1

H

Dimensionless displacement ū =
〈ui〉y
U

〈ux〉y
U

〈uz〉y
U

Dimensionless shear stress τ̄ =
T 2

ρUH
(τ0 − τf )

σ0
xy/σn − τf/σn
µs − µk

σ0
yz/σn − τf/σn
µs − µk

Dimensionless stiffness γ̄ =
2G
Λ

2G
λ+ 2G

2

Table S1. Summary of the non-dimensionalization procedure used in the present

study. The elastic parameter Λ is equal to λ + 2G for Mode II rupture, and G for Mode

III rupture.
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Figure S1. Convergence study of the arrest length L̄arr for a pulse like rupture

stopped by a stress barrier with τk,0 = 0.6 and τk,b = −0.3. The black stars show the

set of parameters chosen in this paper. (A) Simulated arrest length for different mesh

sizes ∆x̄ and damping parameter β̄. (B) Evolution of the absolute error (using L̄arr for

∆x̄ = 10−3 as the reference value of each case). The purple curves show linear and

quadratic convergence rates.
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x̄′

0.0
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ū
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2τ̄k/γ̄ (steady-state regime)
Simulation
ūp ∼ exp(−x̄′√γ̄)
ūp ∼ cosh ((x̄′ − L̄arr)

√
γ̄)

Figure S2. Decay of the final slip observed when a pulse-like rupture is arrested by a

stress barrier. The simulation (blue line) is compared to two theoretical predictions derived

from the pulse arrest equation (17). The red and yellow curves correspond respectively

to Eq. (S.21) and (S.23).
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Figure S3. The three rows correspond to crack-like ruptures under three different

homogeneous pre-stress τ̄k of 0.25, 0.5, and 0.75 from top to bottom. Space-time maps

of the rupture are shown on the left column, with the red dashed line highlighting the

steady state velocity v̄c used in the theoretical predictions. The color coding shows the

slip velocity. In the right column, the associated slip profile along the interface is shown at

different time steps by the solid lines. Curves are collapsed by using the spatial coordinates

ζ̄ and rescaling the slip by t̄2. The red dashed lines show the self-similar solution ū =

t2F(ζ̄) according to Eq. (S.35) with no adjustable parameter.
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Figure S4. Evolution of the arrest length for pulse-like ruptures that arrest on a

fracture energy barrier. The colored data are identical to the one displayed in Fig. 5B.

The black line shows the prediction of Weng and Ampuero (2019) using Eq. (S.55) and

v̄c = 0.975.
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Figure S5. Dimensionless slip versus distance along the fault used to generate Fig.

9c. The blue curve shows the raw data digitized from the figure 2c of Chen et al. (2020)

after non-dimensionalization. The yellow curve shows the cubic spline interpolation used

to evaluate the second-order derivative of ūp.
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Figure S6. Secondary rupture fronts causing negative slip and propagating from the

arresting barrier towards the hypocenter (a.k.a. back-propagating fronts). Snapshot are

all taken at the same time step after the arrest of the main rupture front by a stress

barrier. The same background stress (black dashed line) is used for the four simulations

and corresponds to τ̄k = 0.6 as well as d̄c = 0. The colored lines show the slip velocity

profiles observed at the same time step after the arrest of the main front for different

values of ϑ̄. As predicted by Eq. (S.62), back propagating fronts nucleate when τ̄k > ϑ̄.
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