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Abstract

Vegetation turnover time (τ) is a central ecosystem property to quantify the global vegetation carbon dynamics. However,

our understanding of vegetation dynamics is hampered by the lack of long-term observations of the changes in vegetation

biomass. Here we challenge the steady state assumption of τ by using annual changes in vegetation biomass that derived from

remote-sensing observations. We evaluate the changes in magnitude, spatial patterns, and uncertainties in vegetation carbon

turnover times from 1992 to 2016. We found that the forest ecosystem is close to a steady state at global scale, contrasting with

the larger differences between τ under steady state and τ under non-steady state at the grid cell level. The observation that

terrestrial ecosystems are not in a steady state locally is deemed crucial when studying vegetation dynamics and the potential

response of biomass to disturbance and climatic changes.

Hosted file

essoar.10512910.1.docx available at https://authorea.com/users/564158/articles/611126-

evaluation-on-the-steady-state-assumption-of-the-global-vegetation-carbon-from-multi-

decadal-space-borne-observations

Hosted file

NSSA_supplementary.docx available at https://authorea.com/users/564158/articles/611126-

evaluation-on-the-steady-state-assumption-of-the-global-vegetation-carbon-from-multi-

decadal-space-borne-observations

1

https://authorea.com/users/564158/articles/611126-evaluation-on-the-steady-state-assumption-of-the-global-vegetation-carbon-from-multi-decadal-space-borne-observations
https://authorea.com/users/564158/articles/611126-evaluation-on-the-steady-state-assumption-of-the-global-vegetation-carbon-from-multi-decadal-space-borne-observations
https://authorea.com/users/564158/articles/611126-evaluation-on-the-steady-state-assumption-of-the-global-vegetation-carbon-from-multi-decadal-space-borne-observations
https://authorea.com/users/564158/articles/611126-evaluation-on-the-steady-state-assumption-of-the-global-vegetation-carbon-from-multi-decadal-space-borne-observations
https://authorea.com/users/564158/articles/611126-evaluation-on-the-steady-state-assumption-of-the-global-vegetation-carbon-from-multi-decadal-space-borne-observations
https://authorea.com/users/564158/articles/611126-evaluation-on-the-steady-state-assumption-of-the-global-vegetation-carbon-from-multi-decadal-space-borne-observations


Evaluation on the Steady-state Assumption of the Global Vegetation
Carbon from Multi-Decadal Space-borne Observations

Naixin Fan1,2*, Maurizio Santoro3, Simon Besnard4, Oliver Cartus3, Sujan
Koirala1 and Nuno Carvalhais1,5*

1Max Planck Institute for Biogeochemistry, Hans Knöll Strasse 10, 07745 Jena,
Germany
2Technische Universität Dresden, Institute of Photogrammetry and Remote
Sensing, Helmholtzstr. 10, 01069, Dresden, Germany
3Gamma Remote Sensing, 3073 Gümligen, Switzerland
4Laboratory of Geo-Information Science and Remote Sensing, Wageningen Uni-
versity & Research, The Netherlands
5Departamento de Ciências e Engenharia do Ambiente, DCEA, Faculdade de
Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica,
Portugal

* Corresponding authors: Naixin Fan (nfan@bgc-jena.mpg.de) and Nuno Car-
valhais (ncarvalhais@bgc-jena.mpg.de)

Key Points:

• Using global annual above-ground vegetation biomass data from 1992 to
2016, we estimate vegetation carbon turnover times globally in a non-
steady state.

• At the grid cell level, the assumption of steady-state in vegetation biomass
can cause substantial biases, especially in regions where there are distur-
bances from anthropogenic activities or natural causes.

• Despite these local differences, we found that the steady-state assumption
can be made at large spatial scales (greater than approximately 15º) as
the changes in biomass proportional to the total biomass decrease with
the increasing spatial scales.

Abstract

Vegetation turnover time (�) is a central ecosystem property to quantify the
global vegetation carbon dynamics. However, our understanding of vegetation
dynamics is hampered by the lack of long-term observations of the changes
in vegetation biomass. Here we challenge the steady state assumption of � by
using annual changes in vegetation biomass that derived from remote-sensing
observations. We evaluate the changes in magnitude, spatial patterns, and
uncertainties in vegetation carbon turnover times from 1992 to 2016. We found
that the forest ecosystem is close to a steady state at global scale, contrasting
with the larger differences between � under steady state and � under non-steady
state at the grid cell level. The observation that terrestrial ecosystems are not
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in a steady state locally is deemed crucial when studying vegetation dynamics
and the potential response of biomass to disturbance and climatic changes.

Plain Language Summary

The lack of observations hampers the current understanding of forest vegeta-
tion temporal dynamics. In this study, we use long-term global observations of
vegetation biomass retrieved from satellite observations to estimate vegetation
carbon turnover times. Our results show that the assumption of a steady state
is robust at the global scale, but does not hold at the local scale.

1 Introduction

One of the largest uncertainties in Earth system models is in quantifying how
the carbon uptake by terrestrial ecosystems will respond to changes in climate
(Friedlingstein et al. 2006; Friend et al., 2014). As an emergent ecosystem
property that partially determines carbon sequestration capacity, the vegetation
biomass turnover times (�) have been used as a diagnostic metric to quantify
the feedback between the carbon cycle and climate (Carvalhais et al., 2014;
Thurner et al., 2016). However, there is a large uncertainty in the simulations
of vegetation carbon stock as well as � across earth system models, indicating
different representations of the response of vegetation to future climate change
(Friend et al. 2014). Furthermore, our current understanding of � and the
dynamic of vegetation is limited due to the lack of long-term observations of
changes in vegetation. As a result, the estimation of � has relied so far on the
assumption that the vegetation carbon in an ecosystem will eventually reach a
steady state (steady state assumption, hereafter SSA) at which the net change
of vegetation biomass becomes zero (�Cveg=0), or so small compared to the
total biomass that becomes negligible. The SSA has been shown to be a useful
assumption at a large spatial scale. However, at local scales, an ecosystem is
unlikely to maintain a steady state due to the influences from external factors
such as disturbances and climate variability (Ge et al., 2019). It is still unknown
whether the SSA can hold at local spatial domains and how much the difference
it can make to the � estimation if one neglects the temporal changes in vegetation
carbon.

In this study, we used estimates of annual changes in vegetation carbon derived
from a multi-decadal dataset and global estimations of gross primary productiv-
ity (GPP) that are driven by meteorological observations (Besnard et al., 2021;
Santoro et al., 2022; Tramontana et al. 2016; Jung et al. 2020), for estimating
and comparing � estimates that are derived from SSA and non-steady-state as-
sumption (hereafter NSSA), respectively, at local, biome and global scales. The
validity of SSA was evaluated in different spatial domains to better quantify the
effect of spatial scales on the patterns of carbon turnover times.

2 Data and Methods

In this section, we first introduce the datasets we used to estimate � including
above-ground vegetation biomass, below-ground biomass and gross primary pro-
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ductivity. We used a forest canopy cover dataset to examine the relationship
between the changes in � and tree canopy cover. Then the calculations of � using
three methods are introduced next with detailed explanations.

2.1 The multi-decadal estimates of AGB dataset

Annual AGB estimates were derived from C-band satellite radar signals between
1992 and 2016 with a pixel size of 25 km (Santoro et al., 2022). The very dense
time series of observations by the European Remote Sensing (ERS) WindScat-
terometer, the MetOp Advanced SCATterometer (ASCAT), and the Envisat
Advanced Synthetic Aperture Radar (ASAR) were used to maximize the infor-
mation content of forest structure in the signal, allowing for AGB estimates of
higher accuracy compared to values obtained from a single observation (Santoro
et al., 2022). The annual estimation of AGB is obtained by synthesizing all daily
observations of the radar backscatter at one location in a pixel (0.25º×0.25º), en-
abling the inference of a continuous time series of AGB estimation. By adapting
the AGB retrieval method in time and space and computing a weighted average
of individual AGB estimates, the annual AGB estimates were less impacted by
data noise, instantaneous moisture conditions, precipitation, and snow cover
(Santoro et al., 2011).

2.2 Estimation of total vegetation carbon stock

The stock of total vegetation biomass consists of AGB and BGB. Therefore, we
estimated BGB from the AGB time series by scaling with the root-shoot ratio,
Rrs:

𝐵𝐺𝐵 = 𝐴𝐺𝐵 × 𝑅rs (1)

In this study, we used a spatially explicit global dataset of root-shoot ratio,
which was derived from a machine learning model that is trained on a large
number of ground field measurements of forest root biomass as a function of
shoot biomass, tree height, age, species, topography, land management, edaphic
and climate covariates (Huang et al., 2021).

The total vegetation carbon was obtained by summing the carbon in both AGB
and BGB under the assumption that the carbon stock is 47% of the total dry
biomass (IPCC, 2006):

𝐶veg = 𝐴GB × (1 + 𝑅rs) ∗ 0.47 (2)

2.3 GPP dataset

We used estimations of GPP from the FLUXCOM project in which different
machine learning approaches were applied to upscale global energy and carbon
fluxes from eddy covariance flux measurements (Tramontana et al., 2016; Jung
et al., 2020). In this study, GPP annual estimates driven by meteorological ob-
servations and remote sensing observations at the spatial resolution of 0.5º and
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the time period from 1992 to 2016 are used as carbon influx into the vegetation
carbon pool. The dataset was resampled to the spatial resolution of 0.25º to
match the AGB dataset.

2.4 Forest tree canopy cover change

Tree canopy cover (vegetation that is greater than 5 meters in height) was de-
rived from the Advanced Very High Resolution Radiometer (AVHRR) remote-
sensing measurements (Song et al., 2018). The version 4 Long Term Data Record
(LTDR) was used to generate the data on tree canopy coverage from 1982 to
2016. Daily LTDR surface reflectance data were used to compute the normal-
ized difference vegetation index (NDVI) at each pixel (0.05º×0.05º). Maximum
NDVI composition was then used to obtain adjusted annual phenological met-
rics, which were used as input to supervised regression tree models to generate
the annual product of tree canopy coverage.

2.5 Estimation of � under steady state

Changing Cveg over time is determined by the uptake of carbon and turnover
times:

dCveg
dt = 𝐺𝑃𝑃 − 𝐶veg

𝜏 (3)

Cveg is the vegetation carbon stock. Assuming that the vegetation carbon pool
is in a steady state, i.e., the change in Cveg over time (dCveg/dt) equals zero,
then vegetation carbon turnover times can be calculated as the ratio between
vegetation carbon stock and GPP:

𝜏SSA = 𝐶veg
GPP (4)

Here �SSA is calculated pixel-wise by using annual mean Cveg and GPP over
the period of 1992-2016.

2.6 Estimation of � under non-steady state

Compared with the estimations of � under steady-state assumption, the changes
in Cveg over time are considered (dCveg/dt � 0) when estimating � under non-
steady state (�NSSA). To derive a robust estimation of �NSSA at each grid cell,
we calculated �NSSA using three different methods to assess the uncertainty built
in the � estimations.

2.6.1 Method 1

We estimate ΔCveg by calculating the annual difference of Cveg between year
t and year t – 1. Then, a � estimate can be derived for each year by applying
GPP and ΔCveg at year t. Finally, we derive the � under a non-steady state by
averaging over time:
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𝜏NSSA = 𝐶𝑣𝑒𝑔,𝑡−1
GPP𝑡 − �𝐶𝑣𝑒𝑔,𝑡

(5)

2.6.2 Method 2

In the second method, we estimated the mean ΔCveg using the trend of Cveg in
a certain period to avoid the influence of outliers on the results. In this way, �
can be inferred as:

𝜏NSSA = 𝐶veg

GPP − �𝐶𝑣𝑒𝑔, 𝑡𝑟𝑒𝑛𝑑
(6)

Here the �𝐶𝑣𝑒𝑔, 𝑡𝑟𝑒𝑛𝑑 is inferred by applying a simple linear regression model
(least-square robust fitting) between the response variable Cveg and time (Cveg
~ T). The coefficient of T is, therefore, the average annual ΔCveg over the whole
period. Thus, the � under a non-steady state can be estimated with the annual
mean values of Cveg, GPP, and ΔCveg.

2.6.3 Method 3

In the third method, we infer � from Eq.3 by applying a linear regression model
(least-square robust fitting) at each grid cell in which (GPP - ΔCveg) is the
target variable while Cveg is the predictor, enabling annual turnover time to be
inferred from the coefficient of Cveg (1/ �NSSA):

𝐺𝑃𝑃 − �𝐶veg ∼ 1
𝜏NSSA

•𝐶veg (7)

Here ΔCveg is the difference of Cveg between year t and year t - 1. GPP is
the carbon input in year t and Cveg is the total carbon density in year t - 1,
respectively.

3 Results

3.1 Comparison of � under NSSA and SSA at grid cell level and
global scale

The � values (Figure 1) represent the turnover time of the entire
forest living vegetation biomass, averaged over the whole period of
the observations. The comparison between estimates of �NSSA using
three different methods and �SSA shows a consistent pattern that
carbon turnover processes are far from a steady state at the grid
cell level (Figure 1, first row). Although there is a high correla-
tion in the global spatial patterns (R2>0.98, bottom off-diagonal
plots in Figure 1), differences between �NSSA and �SSA are character-
ized by high spatial heterogeneity. Although there are differences in
the estimations of �NSSA that derived from the three methods, the
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high global correlation and similar patterns of the difference between
�NSSA and �SSA shows high consistency in the estimated �NSSA. Our
results show a high spatial variability of � values ranging from 0 to
15 years. The longest turnover times are located in the northern
boreal forest ecosystem, where part of the biome has � values longer
than ten years, whereas carbon in the temperate forest ecosystem
turnovers over much faster where the � values are mostly under five
years (Figure 2a). The assumption that vegetation biomass is in
steady state results in an overall bias of � by 10% (90th percentile),
compared to the � estimates under a non-steady state at the grid cell
level (Figure 1). This finding indicates that the majority of global
forest ecosystems are not in a steady state, although the degree of
deviation from a steady state differs from one region to another. The
discrepancies between �SSA and �NSSA are substantially higher in the
boreal forest (4.33%) ecosystem than in the tropical forest 10.99%)
ecosystems indicating that the forests in the tropics are closer to a
steady state, whereas assuming SSA in the boreal forest may cause
large bias (Figure 2). Although the difference can be large at the grid
cell level, there is a high global correlation (r > 0.98) between �SSA
and �NSSA at the global scale, indicating an overall similar spatial
pattern with or without considering the changes in annual biomass
at the global scale. Here we show that the forest biomass at the
global scale is roughly in a steady state whereas the SSA is largely
violated at the grid cell level, especially in the northern boreal forest
ecosystems where the � values can be substantially underestimated
or overestimated if assuming SSA.

In line with a previous study in which the SSA-induced biases are
assessed at site level (Ge et al., 2019), we show that SSA causes
significant underestimations of � up to 40% (99th percentile) in China
during the period of 2005-2015 (Figure S1). However, our results
show a high heterogeneity where SSA can also cause overestimation
of � up to -12% (1th percentile). Further analysis shows that the
pattern also changes across different periods of time. For instance,
there is a contrasting pattern between 2001-2005 and 2009-2013 in
which the former is characterized by overestimation of � induced by
SSA whereas there is a widespread underestimation of � in the latter.
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Figure 1. Comparison of � under SSA and NSSA using different
methods. The upper off-diagonal subplots show the relative differ-
ence between each pair of datasets (column/row). The bottom off-
diagonal subplots show the density plots and major axis regression
line between each pair of datasets (m: slope, b: intercept, r: corre-
lation coefficient). The ranges of both of the color bars are between
the 1st and the 99th percentiles of the data.
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Figure 2. Spatial distribution of the relative difference (in percent)
between �NSSA and �SSA. The histograms show the probability dis-
tribution of �NSSA - �SSA (in years) in tropical forest, temperature
forest and boreal forest. The �NSSA shown here was estimated using
Method 1.

3.2 The effect of large-scale disturbances on carbon turnover times

The disturbance from natural causes or anthropogenic activities can
make an ecosystem deviate from a steady state. By estimating car-
bon turnover times at different periods, we quantified the degree
of deviation if disturbances, e.g., deforestation, happened in a forest
ecosystem. Figure 3 shows that the pervasive deforestation in the 90s
primarily affected the carbon turnover times in the southeast part
of the Amazon, which is known as the ‘arc of deforestation’ (here-
after AOD, Durieux et al., 2003). Our results clearly show �NSSA is
approximately 20% lower than �SSA in the AOD region from 1993 to
1998, indicating anthropogenic activity (mostly deforestation) accel-
erated the carbon turnover rates to a large extent. Compared with
the AOD, forests in the middle of Amazon, where there are less pop-
ulation and disturbances are closer to a steady state, as shown by
the much less difference between �NSSA and �SSA. Further analysis
shows that tree canopy cover (Figure 3, Row 2) and Cveg (Figure 3,
Row 3) changes decreased mainly during the same period of 1993-
1998, whereas the changes in GPP does not follow the trend in the
arc of deforestation. These results indicate that the acceleration
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of turnover times during this period is directly caused by the large
decrease in the vegetation biomass, which is intimately associated
with a decrease in forest cover in this region. On the other hand,
our findings show that the forest ecosystems started to recover dur-
ing the 1999-2004 period as the vegetation biomass increased by 10%
to 20%, in line with the increased tree canopy cover in the AOD re-
gion. As a result, the carbon turnover times increased by 10% to
30% during the same period. From 2011 to 2016, the magnitude
of changes in �, Cveg and tree canopy cover significantly decreased,
indicating the forest ecosystems are closer to a steady state due to
less disturbances. These findings indicate that turnover times and
the steady state of the forest ecosystem can be largely affected by
anthropogenic activities.

Figure 3. Regional changes in the relative difference between �NSSA
and �SSA ((�NSSA - �SSA)/ �SSA*100) from 1993 to 2016, row 1, forest
cover change (%), row 2, vegetation biomass change (%), row 3, GPP
change (%), row 4 at different time periods in Amazon region.

3.3 The effect of spatial scale on the steady-state assumption

We further investigate the effect of spatial scale on the difference
between �NSSA and �SSA in different biomes by gradually changing
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the spatial scale from 0.25º (grid cell level) to 25º (continental scale).
Here the difference between �NSSA and �SSA at each spatial scale is
quantified by the 10, 50 and 90 percentiles of the relative difference
between �NSSA and �SSA (Q10, Q50, Q90, Figure 4). We find that
the difference between �NSSA and �SSA substantially decreases with
increasing spatial scales. The Q10 and Q90 tropical forests decrease
by approximately 5%, whereas it decreases by approximately 10% in
temperate and boreal biomes when the spatial scale increases from
grid cell to ecosystem scale. Globally, the difference between �NSSA
and �SSA is approximately 3% at ecosystem scale, indicating that
steady state assumption will cause less errors in estimating carbon
turnover times at larger spatial scales.

Figure 4. Effects of spatial scale on the difference between �SSA and
�NSSA. The x-axis represents the increase of spatial scales from grid
cell level (0.25º) to continental level (25º). The y-axis represents the
10th (absolute value) and 90th relative difference between �NSSA and
�SSA.

4 Discussion

Our findings imply that the two different assumptions, i.e., SSA and
NSSA, should be applied based on different ecological principles and
spatial scales. The common approach of defining � as the ratio be-
tween carbon stock and carbon influx based on SSA can be justified
and properly applied when the changes in net carbon flux are neg-
ligible relative to the total carbon stock (Carvalhais et al., 2014).
Although disturbances from nature or human beings could cause
non-steady-state behavior, neglecting the changes, in some cases,
only make a little difference to the quantification of the spatial pat-
tern of �, which does not hamper the understanding of the dynamics
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of the terrestrial ecosystem carbon cycle. However, at a grid cell
level, neglecting the changes in vegetation carbon (assuming vege-
tation is in a steady state) may result in a large bias. Using three
methods, we provide robust estimations of � under a non-steady state.
The comparisons between �SSA and �NSSA show high heterogeneity in
both space and time. A pioneer study (Ge et al., 2019) showed large
SSA-induced biases on � estimation in varied ecosystems of China
by using the data at ten FLUXNET sites from 2005 to 2015 which
is consistent with our results. However, we further show that the
magnitude and the signs of the SSA-induced biases are characterized
by high spatial heterogeneity and can change in time. This is mainly
caused by the changes in vegetation biomass due to climate change
or disturbances (Figure 3).

We have shown substantial heterogeneity in the degree of validity
of the steady-state assumption across space. The comparison be-
tween �SSA and �NSSA quantitatively shows that most global forest
ecosystems are far from steady-state, especially in the temperate
and boreal forests. Even at regions of high biomass density such as
Amazon Forest where the changes in vegetation carbon is relatively
small, i.e., closer to steady-state, disturbances such as deforestation
or fire could drive the forest ecosystem away from steady-state, as
our results clearly show that the arc of deforestation in Amazon For-
est have large difference between �SSA and �NSSA caused by drastic
changes in vegetation biomass (Figure 3). These results indicate
that applying SSA at the grid cell level is likely to cause substantial
errors, potentially leading to misleading conclusions based on poor
estimation of carbon turnover times.

Furthermore, our study quantified the link between spatial scales and
the validity of SSA. Our results imply that SSA is approximately
valid at large spatial scales (>15º or 1500km), at which scale the
differences are much lower (~5%) than grid cell level. The current
understanding of the temporal dynamics of the terrestrial carbon
cycle nearly all relies on earth system models in which the carbon
turnover rates are retrieved under the SSA, which results in large
discrepancies in carbon pools and turnover among different models
(Friend et al., 2014; Todd-Brown et al., 2013). The estimation of
� under NSSA with observational long-term biomass data provides
insights into better understanding and thus modeling turnover rate
and its spatial patterns.

5 Conclusions

Our findings suggest that the steady state assumption is robust at
a global scale yet becomes much less realistic at the grid cell level
as the difference between regional �SSA and �NSSA can be as large
as 20%. The usage of the steady state assumption would result in
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a substantial bias of �, especially in the region with a high degree
of disturbance, either from human beings or natural causes. How-
ever, at a larger spatial scale, the differences in � estimations at
SSA and NSSA significantly decrease because the annual changes
in vegetation biomass are small compared with the total amount
of biomass. With the novel long-term observations of vegetation
biomass, we revealed a detailed picture of the spatial distribution of
carbon turnover times under different assumptions and its relation-
ship with spatial scales, which will guide the proper application of
the two assumptions on different conditions.
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