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Abstract

Previous studies suggest that boreal summer intraseasonal variations along the subtropical westerly jet (SJ), featuring quasi-

biweekly periodicity, frequently modulate downstream subseasonal variations over East Asia (EA). Based on subseasonal

hindcasts from six dynamical models, this study discovered that the leading two-three-week prediction skills for surface air

temperature (SAT) are improved significantly in summer when the SJ has strengthened intraseasonal signals, which are best

demonstrated over the eastern Tibetan Plateau, Southwest Basin, and North China. The reasons are that the enhanced

quasi-biweekly wave and the associated energy dispersion along the SJ cause more regular quasi-biweekly periodic variations

of downstream SAT, which potentially increase regional predictability. This study suggests not only that intraseasonal varia-

tions along the SJ could provide a window of opportunity for achieving better subseasonal prediction over EA, but also that

intraseasonal waves along the SJ are crucial for improving EA subseasonal prediction.
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Abstract 22 

Previous studies suggest that boreal summer intraseasonal variations along the 23 

subtropical westerly jet (SJ), featuring quasi-biweekly periodicity, frequently modulate 24 

downstream subseasonal variations over East Asia (EA). Based on subseasonal 25 

hindcasts from six dynamical models, this study discovered that the leading two–three-26 

week prediction skills for surface air temperature (SAT) are improved significantly in 27 

summer when the SJ has strengthened intraseasonal signals, which are best 28 

demonstrated over the eastern Tibetan Plateau, Southwest Basin, and North China. The 29 

reasons are that the enhanced quasi-biweekly wave and the associated energy dispersion 30 

along the SJ cause more regular quasi-biweekly periodic variations of downstream SAT, 31 

which potentially increase regional predictability. This study suggests not only that 32 

intraseasonal variations along the SJ could provide a window of opportunity for 33 

achieving better subseasonal prediction over EA, but also that intraseasonal waves 34 

along the SJ are crucial for improving EA subseasonal prediction. 35 

 36 

Key Points 37 

⚫ Subseasonal prediction skill over three key regions of China exhibits strong 38 

dependence on the intensity of intraseasonal variations along the subtropical 39 

westerly jet (SJ). 40 

⚫ Enhanced intraseasonal waves and intensified energy dispersion along the SJ 41 

increase regional surface air temperature predictability by strengthening local 42 

periodic variations. 43 

⚫ The intraseasonal signal along the SJ provides a window of opportunity for 44 

subseasonal prediction of regional surface air temperature during boreal summer.  45 
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Plain Language Summary 46 

Conventional opinion considers extratropical atmospheric perturbation as noise for 47 

subseasonal-to-seasonal predictions. However, based on six state-of-the-art 48 

subseasonal-to-seasonal hindcasts, this study established the groundbreaking result that 49 

the subseasonal surface air temperature prediction skill, in three regions of China, 50 

depends strongly on the intensity of extratropical intraseasonal variation along the 51 

subtropical westerly jet. Breaking with the established perspective that the subseasonal 52 

prediction source mainly comes from the tropical region, this study was the first to 53 

propose that extratropical intraseasonal variation could provide a window of 54 

opportunity for subseasonal prediction in regions of East Asia. The results suggest that 55 

accurately capturing and predicting periodic extratropical atmospheric signals in 56 

operational predictions will be of great importance for improving subseasonal 57 

predictions of East Asian monsoon regions.  58 
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1. Introduction 59 

Subseasonal prediction, which is crucial for many sectors of society and for 60 

decision makers in terms of improved planning and preparations for saving lives, 61 

protecting property, and increasing economic vitality (National Academies of Sciences 62 

report 2016), is a challenging task in operational service (Robertson et al. 2015; Vitart 63 

et al. 2017). One current barrier to improved subseasonal prediction is the obscure 64 

prediction sources on this time scale. Previous studies have attempted to elucidate the 65 

subseasonal prediction sources, including tropical intraseasonal oscillations (e.g., the 66 

Madden–Julian Oscillation (MJO) and boreal summer intraseasonal oscillation 67 

(BSISO)), anomalous signals from land (soil moisture and soil temperature), snow 68 

cover, sea ice, the stratosphere, and the ocean (e.g., the El Niño–Southern Oscillation 69 

(ENSO), local sea surface temperature, and mesoscale sea surface temperature 70 

variability), which have all been reviewed comprehensively in the National Academies 71 

of Sciences report (2016) and Merryfield et al. (2020). 72 

Skillful subseasonal prediction is particularly important over East Asia (EA), 73 

which is one of the most densely populated regions globally, accounting for 22% of the 74 

world’s population (Leung 2012). Subseasonal prediction in boreal summer over EA is 75 

challenging owing to complex interactions between tropical monsoon variability and 76 

mid–high-latitude circulation systems (Liang and Lin 2017). Previous studies proved 77 

that subseasonal prediction sources over EA include preferable phases of the MJO (Lin 78 

2018) and BSISO (Wu et al. 2022), the ENSO state (Martin et al. 2019), snowpack 79 

(Orsolini et al. 2013; Li et al. 2020), land surface conditions (Zeng and Yuan 2018; Xie 80 

et al. 2019; Xue et al. 2021) and stratospheric signals (Yu et al. 2021). Conventional 81 

perspective considers the extratropical atmospheric perturbation as noise for prediction 82 

(Vimont et al. 2001; Zhang et al. 2018). However, along the subtropical westerly jet 83 

(SJ), remarkable periodic atmospheric intraseasonal signals, such as a quasi-biweekly 84 

oscillation, have been proven to have significant influence on the weather and climate 85 

of EA (Watanabe and Yamazaki 2012; Yang et al. 2017; Zhong et al. 2022) and even 86 

to trigger extreme events (Chan et al. 2002; Fujinamij and Yasunari 2004; Li et al. 2021). 87 



manuscript submitted to Geophysical Research Letters 

5 

 

Meanwhile, a number of recent studies have found that subseasonal prediction biases 88 

over EA are affected substantially by extratropical intraseasonal oscillations along the 89 

SJ (EISO-SJ) (Qi and Yang 2019; Yan et al. 2021, 2022). Therefore, it is worth 90 

investigating whether the atmospheric EISO-SJ, similar to the MJO/BSISO, is one of 91 

the subseasonal prediction sources over EA. 92 

Considering the atmospheric EISO-SJ features remarkable year-to-year variation 93 

in boreal summer (Fig. S1 in the supplementary materials presents a simple example 94 

examining the year-to-year variation of the intraseasonal SJ index, calculated in 95 

accordance with the definition of Yang and Zhang (2007)), the objective of this study 96 

was to investigate whether there exists remarkable dependence of EA subseasonal 97 

prediction on the atmospheric EISO-SJ from the perspective of comparing summers 98 

with strong and weak EISO-SJ intensity, primarily based on the subseasonal-to-99 

seasonal (S2S) hindcast dataset. The results presented in this paper are analyzed in an 100 

attempt to identify another important window of opportunity for EA subseasonal 101 

prediction. 102 

2. Data and methods 103 

Daily atmospheric circulation fields were retrieved from the ERA-Interim dataset 104 

provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) 105 

(Dee et al., 2011). The horizontal resolution of the gridded data was 1.5° × 1.5° and the 106 

historical record covered 1982–2018. Daily surface air temperature (SAT) and 107 

precipitation data (1982–2018) recorded at 2479 observing stations in China were 108 

obtained from the China Meteorological Administration. Here, boreal summer is 109 

defined as May 1 to August 31. 110 

For the S2S reforecast data, the hindcast from the database of the S2S prediction 111 

project was used (Virart et al. 2017), in which six models were analyzed: the China 112 

Meteorological Administration (CMA), the European Center for Medium-Range 113 

Forecast (ECMWF), the Environment and Climate Change Canada (ECCC), the 114 

Institute of Atmospheric Sciences and Climate of the National Research Council 115 

(ISAC-CNR), the Meteo-France/Centre National de Recherche Meteorologiques 116 
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(Meteo-France), and the National Centers for Environmental Prediction (NCEP). A 117 

detailed description of each of the six models is presented in Table S1 in the 118 

supplementary materials. Note that the purpose of this study was not to compare model 119 

prediction skill, but to understand the dependence of EA subseasonal prediction on the 120 

atmospheric EISO-SJ. Therefore, there was no requirement for the reforecast period, 121 

frequency of initialization, and ensemble size of the models to be uniform. Also note 122 

that the prediction skills for weekly SAT and precipitation were our targets, for which 123 

the weekly hindcast data could be obtained from the 7-day mean of the raw prediction 124 

data. For example, a two-week (three-week) prediction corresponds to the average of 125 

the forecast 11–17 (18–24) days. 126 

The intraseasonal component of a particular variable can be obtained by the 127 

following two steps: I) subtracting the climatological mean and the first three harmonics, 128 

and II) taking a 5-day running mean. The quasi-biweekly (8–25 days in this study) 129 

component can be retrieved easily using the Butterworth bandpass filter. The statistical 130 

methods used in this study included empirical orthogonal function analysis and power 131 

spectrum analysis. A two-tailed Student’s t test was used to assess statistical 132 

significance. Evaluation methods included the temporal correlation skill (TCC), root 133 

mean square error (RMSE), and relative operating characteristics (ROC) curve, which 134 

are the primary and most commonly used methods for evaluating the prediction skill of 135 

S2S models (Black et al. 2017; Wu et al. 2017; Osman and Alvarez 2018). A larger 136 

(smaller) TCC (RMSE) value represents better deterministic prediction skill, and a 137 

larger value of the area under the ROC curve (named ROCA), denotes better 138 

probabilistic prediction skill. Full details of the calculation methods can be found in 139 

Table S2 and Eqs. (S1) and (S2) in the supplementary materials. Two-dimensional 140 

wave activity flux, which is used to represent the energy dispersion of a Rossby wave, 141 

was calculated with reference to Takaya and Nakamura (2001). 142 

3. Remarkable year-to-year variation in EISO-SJ intensity 143 

Similar to some previous studies on the year-to-year variation of intraseasonal 144 

oscillation (e.g., Teng and Wang 2003; Moon et al. 2011; Qin et al. 2022), EISO-SJ 145 
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intensity is measured by the standard deviation of boreal summer quasi-biweekly 200 146 

hPa meridional wind (V200) averaged over the SJ core region (35°–43°N, 83°–98°E; 147 

shown by the black rectangle in Fig. 1b), i.e., the maximum center of both quasi-148 

biweekly V200 variance and fractional variance (nearly 45% of the total variance) (Figs. 149 

1a and 1b). In this study, V200 was chosen as the typical variable for representing the 150 

EISO-SJ because it features more prominent intraseasonal signals than other circulation 151 

fields (e.g., 200 hPa geopotential height (GHT200) and zonal wind (U200)) along the 152 

SJ (Figs. S2a–f in the supplementary materials). The quasi-biweekly component was 153 

extracted to represent intraseasonal V200 because it is the most dominant intraseasonal 154 

periodicity according to the power spectra of the circulation fields along the SJ (Fig. 155 

S2g in the supplementary materials). 156 

Figure 1c displays the year-to-year variation of EISO-SJ intensity. First, EISO-SJ 157 

intensity exhibits significant year-to-year variation, in which the difference between the 158 

maximum and minimum value is 3.18, which represents 72.5% of the total V200 159 

intensity (4.39). Second, EISO-SJ intensity has a significant relationship with the year-160 

to-year change in total V200 intensity along the SJ, for which the correlation coefficient 161 

is up to 0.51, far exceeding the 99% significance level. Meanwhile, the year-to-year 162 

fractional variance of EISO-SJ intensity (variance: 0.56 m2 s−2) against the total V200 163 

intensity (variance: 0.87 m2 s−2) is 64.0%. The above results show that EISO-SJ 164 

intensity has large year-to-year variation that is highly consistent with the year-to-year 165 

variation of total V200 intensity. 166 

To probe the dependence of EA subseasonal prediction on the atmospheric EISO-167 

SJ, two contrasting groups of summers were evaluated for each specific S2S model: 168 

strong EISO-SJ summers (EISO-SJ-S) and weak EISO-SJ summers (EISO-SJ-W). 169 

Taking the ECMWF as an example, because the reforecast period is 1996–2015 and the 170 

frequency of initialization is twice a week, the five strongest EISO-SJ intensity 171 

summers (2004, 2007, 2009, 2011, and 2013) in terms of the observations were chosen 172 

for the EISO-SJ-S group, and the five weakest EISO-SJ intensity summers (1998, 2003, 173 

2008, 2010, and 2012) in terms of the observations were taken as the EISO-SJ-W group. 174 
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The sample size of each group was 175 (5 years × 35 times year−1). Analysis for the 175 

other models followed similar methods and detailed descriptions can be found in Table 176 

S1 in the supplementary materials. To ensure distinct differences between the two 177 

groups and to maintain adequate sample sizes, the selected EISO-SJ-S and EISO-SJ-W 178 

summers exceeded a threshold of at least 0.7 times the standard deviation. 179 

4. Dependence of subseasonal prediction for EA SAT on the EISO-SJ 180 

Previous observational studies reported that atmospheric EISO-SJ is crucial for 181 

subseasonal variation in EA SAT (Watanabe and Yamazaki 2014; Gao et al. 2017). 182 

Therefore, in this section, we first focus on exploring the differences in the subseasonal 183 

prediction skill for EA SAT between the EISO-SJ-S and EISO-SJ-W summers. 184 

Comparison is made for both deterministic (TCC and RMSE) and probabilistic 185 

prediction (ROC) to verify the results. Two- and three-week lead predictions are the 186 

focuses of this study because the skill beyond four weeks is poor for both groups of 187 

summers. Three typical regions are chosen (eastern Tibetan Plateau (ETP): 29°–37°N, 188 

89°–104°E, Southwest Basin (SWB): 24°–29°N, 101°–109°E, and North China (NC): 189 

38°–44°N, 109°–119°E; black frames in Fig. S3 in the supplementary materials) 190 

because the raw SAT anomaly over these regions exhibits significant correlation with 191 

the domain-averaged quasi-biweekly V200 over the SJ core. 192 

4.1 Better subseasonal deterministic prediction for EA SAT in summers with strong 193 

EISO-SJ intensity 194 

The TCC and RMSE were calculated to measure the similarity and magnitude of 195 

the error between the predicted and observed weekly SAT anomaly (Harnos et al. 2019). 196 

Figures 2a–c shows the TCCs between the observed weekly SAT anomaly and the 197 

predicted ensemble-mean anomalies with two- and three-week lead times from the six 198 

S2S models over the ETP, SWB, and NC in EISO-SJ-S and EISO-SJ-W summers. The 199 

TCCs for all six S2S models are larger for EISO-SJ-S summers than for EISO-SJ-W 200 

summers in all three regions. For a three-week lead prediction over the ETP, the TCCs 201 

are 0.34 (ECMWF), 0.15 (CMA), 0.44 (Meteo-France), 0.34 (NCEP), 0.17 (ECCC), 202 

and 0.23 (ISAC-CNR) for EISO-SJ-S summers, while 0.23 (ECMWF), 0.08 (CMA), 203 
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0.13 (Meteo-France), 0.11 (NCEP), 0.10 (ECCC), and 0.05 (ISAC-CNR) for EISO-SJ-204 

W summers (green bars in Fig. 2a). Similarly, the TCCs for EISO-SJ-S summers 205 

decrease from 0.50 to 0.01 (ECMWF), 0.17 to 0.01 (CMA), 0.34 to 0.12 (Meteo-206 

France), 0.20 to 0.17 (NCEP), 0.29 to 04 (ECCC), and 0.19 to −0.02 (ISAC-CNR) for 207 

EISO-SJ-W summers over the SWB (green bars in Fig. 2b), and the TCCs are reduced 208 

from 0.36 (ECMWF), 0.12 (CMA), 0.32 (Meteo-France), 0.27 (NCEP), 0.17 (ECCC) 209 

and 0.14 (ISAC-CNR) for EISO-SJ-S summers to 0.29 (ECMWF), 0.09 (CMA), 0.21 210 

(Meteo-France), 0.12 (NCEP), 0.04 (ECCC), and 0.06 (ISAC-CNR) for EISO-SJ-W 211 

summers over NC (green bars in Fig. 2c). Similar differences can be seen clearly in the 212 

two-week lead predictions, although the differences between EISO-SJ-S and EISO-SJ-213 

W summers are not as significant as those in three-week lead predictions (see red bars 214 

in Figs. 2a–c). 215 

The RMSEs of the six S2S models for the predicted weekly SAT anomaly against 216 

the observations over each of the three domains are shown in Figs. 2d–f. The RMSEs 217 

for all six S2S models are smaller for EISO-SJ-S summers than for EISO-SJ-W 218 

summers. Quantitatively, for a three-week lead prediction over the ETP, the RMSEs 219 

are 0.92 (ECMWF), 1.16 (CMA), 0.92 (Meteo-France), 1.03 (NCEP), 1.13 (ECCC), 220 

and 1.15 (ISAC-CNR) for EISO-SJ-S summers. In contrast, for EISO-SJ-W summers, 221 

the RMSEs are 0.96 (ECMWF), 1.18 (CMA), 1.03 (Meteo-France), 1.12 (NCEP), 1.14 222 

(ECCC), and 1.16 (ISAC-CNR) (blue bars in Fig. 2d). Over the SWB, the increase in 223 

RMSEs from EISO-SJ-S summers to EISO-SJ-W summers is from 1.03 to 1.13 224 

(ECMWF), 1.34 to 1.35 (CMA), 1.08 to 1.14 (Meteo-France), 1.13 to 1.27 (NCEP), 225 

1.33 to 1.36 (ECCC), and 1.15 to 1.41 (ISAC-CNR) (blue bars in Fig. 2e). Over NC, 226 

the RMSEs are increased from 1.23 (ECMWF), 1.49 (CMA), 1.21 (Meteo-France), 227 

1.30 (NCEP), 1.62 (ECCC), and 1.52 (ISAC-CNR) for EISO-SJ-S summers to 1.36 228 

(ECMWF), 1.61 (CMA), 1.30 (Meteo-France), 1.42 (NCEP), 1.71 (ECCC), and 1.61 229 

(ISAC-CNR) for EISO-SJ-W summers (green bars in Fig. 2f). Similarly, two-week lead 230 

predictions show similar contrasting features (yellow bars in Figs. 2d–f). The unified 231 

differences over the three regions for all six S2S models, based on both TCCs and 232 
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RMSEs, demonstrate that the deterministic prediction skills for the weekly SAT 233 

anomaly over EA are significantly better in summers with strong EISO-SJ intensity 234 

than in summers with weak EISO-SJ intensity. 235 

4.2 Better subseasonal probabilistic prediction for EA SAT in summers with strong 236 

EISO-SJ intensity 237 

The ROC curve is used to comprehensively evaluate model performance in 238 

simulating the probability of occurrence of above-normal SAT events. Here, an above-239 

normal SAT event is defined as a weekly SAT warm anomaly of >1 °C (Wu et al. 2017). 240 

The ROC curves for the six S2S models for predicted above-normal SAT events over 241 

the ETP, SWB, and NC are shown in Fig. 3, respectively, in EISO-SJ-S and EISO-SJ-242 

W summers. Obviously, the six S2S models have larger ROCAs for EISO-SJ-S 243 

summers than for EISO-SJ-W summers over each of the three regions. In terms of the 244 

three-week lead prediction over the ETP, the ROCAs are 0.62 (ECMWF), 0.57 (CMA), 245 

0.65 (Meteo-France), 0.65 (NCEP), 0.61 (ECCC), and 0.61 (ISAC-CNR) for EISO-SJ-246 

S summers, while 0.61 (ECMWF), 0.54 (CMA), 0.57 (Meteo-France), 0.60 (NCEP), 247 

0.55 (ECCC), and 0.58 (ISAC-CNR) for EISO-SJ-W summers (green solid and dotted 248 

lines in Fig. 3a). Over the SWB, the ROCAs decrease from 0.64 (ECMWF), 0.57 249 

(CMA), 0.59 (Meteo-France), 0.60 (NCEP), 0.66 (ECCC), and 0.56 (ISAC-CNR) for 250 

EISO-SJ-S summers to 0.52 (ECMWF), 0.52 (CMA), 0.52 (Meteo-France), 0.58 251 

(NCEP), 0.45 (ECCC), and 0.55 (ISAC-CNR) for EISO-SJ-W summers (green solid 252 

and dotted lines in Fig. 3b). Over NC, the ROCAs decrease from 0.74 (ECMWF), 0.54 253 

(CMA), 0.67 (Meteo-France), 0.65 (NCEP), 0.54 (ECCC), and 0.58 (ISAC-CNR) for 254 

EISO-SJ-S summers to 0.53 (ECMWF), 0.53 (CMA), 0.60 (Meteo-France), 0.55 255 

(NCEP), 0.50 (ECCC), and 0.49 (ISAC-CNR) for EISO-SJ-W summers (green solid 256 

and dotted lines in Fig. 3c). The two-week lead ROCAs show similar differences 257 

between EISO-SJ-S and EISO-SJ-W summers (red solid and dotted lines in Fig. 3). We 258 

also performed similar analysis for below-normal and normal SAT events, and the 259 

results revealed similar differences (Fig. S4 in the supplementary materials). The results 260 

from the evaluation of probabilistic prediction also clearly exhibited that the prediction 261 
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skills with two- and three-week lead times are evidently improved when EISO-SJ 262 

intensity is enhanced in summer. 263 

4.3 Dependence of subseasonal prediction for EA SAT on the EISO-SJ is independent 264 

of ENSO/MJO/BSISO 265 

Considering that subseasonal prediction for EA SAT is likely modulated by the 266 

mean state such as ENSO (Martin et al. 2019) and tropical intraseasonal oscillation such 267 

as the MJO (e.g., Liang and Lin 2017; Lin 2018) and BSISO (Wu et al. 2022), we 268 

reexamined the robustness of the above results by removing ENSO/MJO/BSISO-269 

associated summers (Table S3 in the supplementary materials lists the new samples of 270 

each model after the elimination of ENSO/MJO/BSISO-associated summers). 271 

Excluding the impact from ENSO, MJO, and BSISO, the subseasonal prediction for 272 

SAT also exhibits better skill in EISO-SJ-S summers than in EISO-SJ-W summers 273 

(Figs. S5–6 in the supplementary materials). The results indicate that the strong 274 

dependence of subseasonal prediction for EA SAT on the EISO-SJ, identified as a new 275 

finding in this study, is independent of ENSO/MJO/BSISO. 276 

Therefore, the high level of agreement among the six S2S models and three target 277 

regions, with respect to better prediction skill in summers with strong EISO-SJ intensity 278 

in comparison with that in summers with weak EISO-SJ intensity, strongly suggests 279 

that the amplified quasi-biweekly periodic signals along the SJ evidently increase the 280 

regional subseasonal predictability over EA. 281 

5. Discussion 282 

Previous studies reported that the EISO-SJ mainly features a zonal quasi-biweekly 283 

Rossby wave in boreal summer (Fujinami and Yasunari 2004; Yang et al. 2014, 2017). 284 

We therefore considered the empirical orthogonal function for the quasi-biweekly V200 285 

over the SJ region in EISO-SJ-S and EISO-SJ-W summers, and regressed the 286 

corresponding quasi-biweekly V200 and 200 hPa wave activity flux on the first 287 

principal component, as shown in Figs. 4a and 4b, respectively. There are clear Rossby 288 

waves in both EISO-SJ-S and EISO-SJ-W summers along the SJ, but the stronger wave 289 

activity fluxes propagate eastward along the SJ toward EA, significantly enhancing the 290 
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quasi-biweekly signals in that regions in EISO-SJ-S summers in comparison with those 291 

in EISO-SJ-W summers. Furthermore, the variances of quasi-biweekly SAT are larger 292 

over the ETP, SWB, and NC in EISO-SJ-S summers than in EISO-SJ-W summers (Fig. 293 

4c). The results suggest that the quasi-biweekly Rossby wave and the associated energy 294 

dispersion along the SJ are enhanced (reduced) over EA in EISO-SJ-S (EISO-SJ-W) 295 

summers, causing stronger (weaker) quasi-biweekly periodic variations in the target 296 

regional SAT. This can explain why the two- and three-week lead predictions in the 297 

S2S hindcast are improved remarkably in EISO-SJ-S summers. 298 

We also performed similar analysis for precipitation, but failed to find significant 299 

dependence on EISO-SJ (not shown). We investigated the reason why subseasonal 300 

prediction of EA precipitation might be insensitive to EISO-SJ intensity. Table S4 in 301 

the supplementary materials lists the fractional variances of quasi-biweekly and 302 

synoptic (i.e., below-8-day) components for SAT and precipitation over the ETP, SWB, 303 

and NC. Interestingly, for SAT, the fractional variance of the quasi-biweekly 304 

component is much larger than that of the synoptic component (e.g., the three region-305 

averaged quasi-biweekly fractional variance is 39.1%, which is twice that of the 306 

synoptic component). For precipitation, however, the fractional variance of the quasi-307 

biweekly component is smaller than that of the synoptic component (31.9% versus 39.2% 308 

on average). The above results indicate that the footprint of the atmospheric EISO-SJ 309 

on the subseasonal variation of precipitation is not as significant as that on the SAT 310 

over EA, which also suggests that subseasonal prediction for EA precipitation is more 311 

difficult than that for EA SAT. 312 

6. Conclusions 313 

Using hindcast data from six S2S models, this study found that the subseasonal 314 

prediction skill for EA SAT exhibits evident dependence on the intensity of 315 

intraseasonal variations along the SJ. In summers with strong EISO-SJ intensity, the 316 

two–three-week prediction skills for SAT over the ETP, SWB and NC are significantly 317 

better than those in summers with weak EISO-SJ intensity. Moreover, the strong 318 

dependence of subseasonal prediction for EA SAT on EISO-SJ intensity is proven 319 
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independent of ENSO/MJO/BSISO. Further analysis indicated that the SJ-related 320 

quasi-biweekly Rossby wave and the associated energy dispersion are significantly 321 

strengthened downstream in strong EISO-SJ summers, resulting in stronger quasi-322 

biweekly signals propagating toward EA. These enhanced periodic signals would cause 323 

more regular quasi-biweekly periodic variations in EA SAT, and increase regional 324 

subseasonal predictability. However, subseasonal prediction for EA precipitation is 325 

more difficult than that for EA SAT primarily because of the stronger internal synoptic 326 

variability. This study demonstrated that intraseasonal variations along the SJ provide 327 

a window of opportunity for subseasonal prediction of SAT over some regions of EA. 328 

Meanwhile, this study suggests that accurately capturing and predicting extratropical 329 

periodic atmospheric waves along the SJ in dynamic predictions will be of great 330 

importance for improving subseasonal prediction over EA. 331 
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 487 

FIG. 1. (a) Variance (shading; unit: m2 s−2) and (b) fractional variance (shading; unit: %) of quasi-488 

biweekly V200 against total V200 variance in boreal summer. Green lines are the summer–mean 489 

U200 contour of 18, 23 and 28 m s−1, which broadly denote the SJ’s location. (c) Time series 490 

(unit: m s−1) of domain-averaged quasi-biweekly V200 intensity over the SJ core region. Values 491 

greater (less) than 0.7 times the standard deviation are shaded yellow (green).  492 
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 493 

FIG. 2. Temporal correlation coefficient (TCC) between the observed weekly SAT anomaly and 494 

the predicted ensemble-mean weekly SAT anomaly over the (a) ETP, (b) SWB, and (c) NC with 495 

two- and three-week lead times. (d–f) As in (a–c), but for Root Mean Square Error (RMSE).  496 
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 497 

FIG. 3. Relative operating characteristics (ROC) curve for predicting above-normal SAT events 498 

over the (a) ETP, (b) SWB, and (c) NC from the six S2S models with two- and three-week lead 499 

times.  500 
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 501 

FIG. 4. Regression maps of boreal summer quasi-biweekly V200 (shading; unit: m s−1) and 200 502 

hPa wave activity flux (WAF; vectors; unit: m2 s−2) on the first principal component in (a) EISO-503 

SJ-S and (b) EISO-SJ-W summers. Only values passing the 95% confidence level are plotted. (c) 504 

Variance of quasi-biweekly SAT over the ETP, SWB, and NC in EISO-SJ-S (blue bars; unit: °C2) 505 

and EISO-SJ-W summers (orange bars; unit: °C2). 506 
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1. Four Tables, six Figures, and two equations  
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Table S1. Description of the S2S models. 

 
Time 

range 
Resolution Re-forecast Rfc length Rfc frequency Rfc size 

CMA 
Days 0–

60 
~1° × 1°, L40 Fixed 1994–2014 Daily 4 

ECCC 
Days 0–

32 

0.45° × 0.45°, 

L40 
On the fly 1995–2014 Weekly 4 

ECMWF 
Days 0–

46 
T639/319 L91 On the fly 1996–2015 2/week 11 

ISAC-

CNR 

Days 0–

31 

0.8° × 0.56°, 

L54 
Fixed 1981–2010 Every 5 days 5 

Meteo-

France 

Day 0–

60 

~0.5° × 0.8°, 

L85 
On the fly 1993–2014 4/month 15 

NCEP 
Days 0–

44 
~1° × 1°, L64 Fixed 1999–2010 Daily 4 



Table S2. ROC contingency table for defining event probabilistic prediction parameters. 

Bin number 
Prediction 

probabilities 
Observed occurrences 

Observed  

non-occurrences 

1 0–P2 (%) O1 NO1 

2 P2–P3 (%) O2 NO2 

3 P3–P4 (%) O3 NO3 

…… …… …… …… 

n Pn–Pn+1 (%) On NOn 

…… …… …… …… 

N PN–100 (%) ON NON 

 

In ROC contingency table, n is the number of the nth probability interval or bin n. n goes from 1 to N. Pn is 

the lower probability limit for bin n; Pn+1 is upper probability limit for bin n; N is the number of probability 

intervals or bins. The prediction probabilities are the member sizes in each model that predict the event 

occurrence in this study. 

𝑂𝑛 = ∑ 𝑤𝑖(𝑂)𝑖; 𝑁𝑂𝑛 = ∑ 𝑤𝑖(𝑁𝑂)𝑖 

where 𝑂𝑛/𝑁𝑂𝑛 is the observed occurred/non-occurred frequency in nth probability interval, i is the 

samples, and 𝑤𝑖 is cos𝜃𝑖, representing the weight coefficient of the ith, in which 𝜃𝑖 is the latitude of ith. 𝑂𝑖 

is 1 when an event corresponding to a prediction in nth probability interval, is observed as an occurrence, 

otherwise 𝑂𝑖 is 0. 𝑁𝑂𝑖 is 1 when an event corresponding to a predicion in nth probability interval, is not 

observed, otherwise 𝑁𝑂𝑖 is 0. 

The curve formed by the hit rate (HR) and false alarm rate (FAR) is the ROC curve, in which the HR and 

FAR are calculated as 

𝐻𝑅𝑛 = ∑ 𝑂𝑖/𝑁
𝑖=𝑛 ∑ 𝑂𝑖

𝑁
𝑖=1 ; 𝐹𝐴𝑅𝑛 = ∑ 𝑁𝑂𝑖/𝑁

𝑖=𝑛 ∑ 𝑁𝑂𝑖
𝑁
𝑖=1  

  



Table S3. Sample sizes in EISO-SJ-S and EISO-SJ-W summers before and after removing the ENSO/MJO/BSISO-

associated summers. 

Name EISO-SJ-S EISO-SJ-W 

Sample numbers for 

EISO-SJ-S and 

EISO-SJ-W 

EISO-SJ-S– EISO-SJ-W– 

Sample numbers for 

EISO-SJ-S– and EISO-SJ-

W– 

ERA-Interim 

1986, 1988, 

2004, 2005, 

2007, 2009, 

2011, 2013 

1984, 1994, 

1995, 1998, 

2003, 2008, 

2010, 2012, 

2018 

\ 
2005, 2009, 

2013 

1984, 1994, 

1998, 2003, 

2012, 2018 

\ 

CMA 

2004, 2005, 

2007, 2009, 

2011, 2013 

1994, 1995, 

1998, 2008, 

2010, 2012 

738 (6 year × 123 

times year-1) 

2005, 2009, 

2013 

1994, 1998, 

2012 

369 (3 year × 123 times 

year-1) 

ECCC 

2004, 2005, 

2007, 2009, 

2011, 2013 

1995, 1998, 

2003, 2008, 

2010, 2012 

102 (6 year × 17 times 

year-1) 

2005, 2009, 

2013 

1998, 2003, 

2012 
51 (3 year × 17 times year-1) 

ECMWF 

2004, 2007, 

2009, 2011, 

2013 

1998, 2003, 

2008, 2010, 

2012 

175 (5 year × 35 times 

year-1) 

2005, 2009, 

2013 

1998, 2003, 

2012 

105 (3 year × 35 times year-

1) 

ISAC-CNR 

1986, 1988, 

2004, 2005, 

2007, 2009 

1984, 1994, 

1995, 1998, 

2008, 2010 

150 (6 year × 25 times 

year-1) 
2005, 2009 1984, 1998 50 (2 year × 25 times year-1) 

Meteo-France 

2004, 2005, 

2007, 2009, 

2011, 2013 

1994, 1995, 

1998, 2008, 

2010, 2012 

96 (6 year × 16 times 

year-1) 

2005, 2009, 

2013 

1994, 1998, 

2012 
48 (3 year × 16 times year-1) 

NCEP 
2004, 2007, 

2009 

2003, 2008, 

2010 

369 (3 year × 123 

times year-1) 
2009 2003 

123 (1 year × 123 times 

year-1) 

 

*EISO-SJ-S– and EISO-SJ-W– are the strong and weak EISO-SJ intensity summers, respectively, without the 

ENSO/MJO/BSISO-associated summers. ENSO-related summers are defined as the absolute values of the 

boreal summer averaged Oceanic Niño Index (ONI) index are larger than 0.5, MJO-related summers are that 

the absolute values of the normalized boreal summer averaged MJO amplitude, calculated by 

√𝑅𝑀𝑀12 + 𝑅𝑀𝑀22 , are large than 1, and BSISO-related summers are that the absolute value of the 

normalized boreal summer averaged BSISO amplitude (i.e., BSISO1 index), is large than 1. ONI index is 

obtained via https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php, RMM1 

and RMM2 are via http://www.bom.gov.au/climate/mjo/, and BSISO1 index is via 

https://apcc21.org/ser/meth.do?lang=en.  



Table S4. The fractional variance of quasi-biweekly and synoptic SAT and precipitation over the ETP, SWB and NC. 

 SAT Precipitation 

 quasi-biweekly synoptic quasi-biweekly synoptic 

ETP 36.0% 13.0% 35.2% 33.3% 

SWB 45.3% 19.9% 33.3% 41.1% 

NC 36.1% 23.2% 27.2% 43.1% 

  



 

FIG. S1. Time series of the intraseasonal SJ index during each boreal summer (MJJA) of the 37 years.   



 

FIG. S2. (a) Variance (shading; unit: m2 s–2) and (b) fractional variance (shading; unit: %) of intraseasonal V200 against 

total V200 variance in boreal summer. Green lines are the summer–mean U200 contour of 18, 23 and 28 m s–1, which 

broadly denote the SJ’s location. (c, d)/(e, f) As in (a, b), but for GHT200/U200. (g) The point-by-point power spectrum of 

intraseasonal V200 over the SJ region. The red dashed line denotes the Markov red noise spectrum, and the blue/green 

dashed line represents the a priori/a posteriori 99% confidence. The grid point is chosen at intervals of 4.5 degrees of 

longitude and 3 degrees of latitude.   



 

FIG. S3. Correlation coefficients (shading) between the quasi-biweekly V200 and anomalous SAT obtained from the (a) 

ERA Interim (ERAI) and (b) 2479-gauge stations. Black dots in (a) and blue “x” in (b) show the results above the 90% 

confidence level.   



 

FIG. S4. Relative operating characteristics (ROC) curve for predicting below-normal SAT events over the (a) ETP, (b) 

SWB and (c) NC from S2S models with two- and three-week lead times. (d–f) As in (a–c), but for normal SAT events. 

Here the below-normal SAT events are defined as the weekly SAT anomaly of <–1 °C, and the normal SAT event is the 

weekly SAT anomaly between –1 °C and 1 °C.  



 

FIG. S5. Temporal correlation coefficient (TCC) between the observed weekly SAT anomaly and predicted ensemble-mean 

weekly SAT anomaly over the (a) ETP, (b) SWB and (c) NC with two- and three-week lead times. EISO-SJ-S– and EISO-

SJ-W– samples are the prediction results in strong and weak EISO-SJ intensity summers, respectively, without the 

ENSO/MJO/BSISO-associated summers. (d–f) As in (a–c), but for Root Mean Square Error (RMSE).  



 

FIG. S6. ROC curve for predicting above-normal SAT events over the (a) ETP, (b) SWB and (c) NC from S2S models with 

two- and three-week lead times. EISO-SJ-S– and EISO-SJ-W– samples are the prediction results in strong and weak EISO-

SJ intensity summers, respectively, without the ENSO/MJO/BSISO-associated summers.  



𝑇𝐶𝐶 =
∑ (𝑥𝑖×𝑁

𝑖=1 𝑓𝑖)

√∑ 𝑥𝑖
2𝑁

𝑖=1 √∑ 𝑓𝑖
2𝑁

𝑖=1

                 (S1) 

RMSE =  √
1

𝑁
∑ (𝑥𝑖 − 𝑓𝑖)2𝑁

𝑖=1         (S2) 

where 𝑁, 𝑥𝑖 and 𝑓𝑖 are the sample numbers, observed and predicted ensemble-mean weekly anomaly 

(SAT & precipitation), respectively. 


