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Abstract

Coastal watersheds are vulnerable to compound flooding associated with intense
rainfall, storm surge, and high tide. Coastal compound flooding (CCF) simula-
tion, in particular for low-gradient coastal watersheds, requires a tight-coupling
procedure to represent nonlinear and complex flood processes and interconnec-
tivity among multidimensional hydraulics and hydrologic models. This calls for
the development of a fully-coupled CCF modeling framework. Here, the mod-
eling framework is centered around the development of interconnected meshes
of the node-link-basin using the Interconnected Channel and Pond Routing
(ICPR) model. The modeling framework has been built for a complex drainage
network, consisting of tidal creeks, tidal channels, underground sewer networks,
and detention ponds in Charleston Peninsula, SC. The floodplain dynamics of
the urbanized peninsula are modeled by a high-resolution LiDAR-derived Dig-
ital Elevation Model (DEM) and Digital Surface Model (DSM), and overland
flow is simulated by energy balance, momentum balance, or diffusive wave meth-
ods. The performance of the CCF model is tested for the 2015 SC major flood
and 2021 tidal flood events. The momentum balance-based CCF model shows
98.35% efficiency in capturing street-level flooding location and the CCF model
depicts that using the DSM potentially improves the simulation accuracy of the
flood by 15-33% compared to LiDAR DEM. Moreover, it is found the momen-
tum balance between surge arrival from a tidally influenced river and rainfall
runoff plays an important role in flood dynamics in urbanized catchments. This
study contributes to the existing knowledge of fine-scale floodplain dynamics
in urban areas by enhancing the fully-coupled numerical representation of CCF
processes.

Keywords: Compound flooding; Fully coupled modeling; Flood Inundation Map-
ping; ICPR; DSM

1. Introduction

The coastal compound flood (CCF) is a multi-driver (high river discharge, high
tides, and intense rainfall) inundation process that happens in coastal areas
(Bilskie and Hagen, 2018). Many coastal cities around the world (e.g., Cork
(Ireland, 2009); Charleston (USA, 2015); Ravenna (Italy, 2015); Shoalhaven
estuary (Australia, 2016)) are currently experiencing severe damages caused by
CCF. A large number of these CCF events are caused by the combination of
hurricane-induced intense precipitation, high sea level, high river discharge, and
tides (Bevacqua et al. 2020). For instance, a highly populated area of Houston
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suffered from a severe CCF incident in 2017, when Category 4 hurricane Harvey
brought more than a meter of rainfall (~1,000-year return period) along with
high storm surges from the ocean (Zhang et al., 2018). The damage caused by
the multi-variate flood drivers, simultaneously or in close succession, exceeds
the probable impacts of the univariate flood drivers (Ikeuchi et al., 2017). It
is expected that more flood exposures and damages will be caused by CCF in
the future, in particular in urban coastal areas with a more historical, cultural,
ecosystem, and real-estate assets.

The magnitude of a CCF event is mainly governed by the nearshore surge char-
acteristics, the coincident phase and amplitude of tides and the timing of the
hurricane’s landfall, the relative elevation of the coast with respect to sea level,
and the rainfall intensity (Tanim and Goharian 2020a). On the other hand, cli-
mate change, by increasing the frequency and magnitude of heavy precipitation,
river discharges, and sea level rise, intensifies the frequency of CCF events. For
example, by the end of this century, the percentage of coastal areas experienc-
ing CCF in Europe is expected to increase from 3% to 11% (Bevacqua et al.,
2019). This fact brought to scientists’ attention the importance of considering
the CCFs risk in flood resilience infrastructures. Recent studies have focused
to provide a better perspective on compound flooding and estimating the prob-
ability of simultaneous occurrence of storm surges and intense rainfalls during
the past few decades (Santiago-Collazo et al. 2019). However, there is a clear
lack of multi-driver CCF inundation process-based modeling which undertakes
a fully-coupled modeling framework.

An extensive review of previous studies shows that there has been only one
study (Tang et al., 2013) that truly used a tight-coupling procedure for CCF
simulation (Santiago-Collazoet al. 2019). Other “arguably fully-coupled models”
are in fact loose or one-way coupling techniques. A fully-coupled CCF model
requires a complete representation and true spatial and temporal integration of
the complex physical process and their mathematical equations devoted to fine-
scale floodplain dynamics, and computational power, standards, and capacity
required for modeling.

Fine-scale flood dynamics in densely urbanized regions, particularly the over-
land flow simulation, are mainly ruled by the drainage pattern, land use, and
soil type. Fine-scale CCF modeling through an enhanced CCF model is vital
for the simulation of the CCF factors’ interactions and dynamic feedback be-
tween those, as well as for assessing the impact of flooding. Coarse-scale flood
modeling underperforms in providing necessary flood hazard information for
densely populated urban areas (Sanders et al., 2020). Thus, fine-scale flood
inundation maps (FIM) provide more informative flood hazard information for
emergency managers and urban planners, which in turn prevents delays in emer-
gency responses and evacuations, better access to care facilities and organizing
emergency operations, and reduces disruptions and road closure (Navid et al.,
2022).

The modeling accuracy of CCF also depends on the integration/coupling tech-
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niques used for linking hydrologic or hydrodynamic models and trading infor-
mation between them. The CCF modeling can be performed using the hydrody-
namic model or hydrologic model as a base model, which is linked to the other
through a one-way coupling procedure (Tanim and Goharian 2020b). The one-
and two-way coupling systems are defined by the exchange of information be-
tween 1D/2D overland flow module and the hydrologic model on specified time
intervals for running models. Two-way coupling is often used for continental-
scale hydrodynamic models (e.g., CaMa-Flood and GTSR, LISFLOOD-FP) to
advance the understanding of CCF by taking into account the backwater ef-
fects from river discharge in coarse-scale CCF modeling (Ikeuchi et al., 2017).
Previous studies employed a 2D hydrodynamic model (e.g. Delft3D Flexible
Mesh (Muñoz et al., 2022) and SCHISM for creek-to-ocean scale 3D baroclinic
model (Ye et al., 2020)), coarse distributed hydrologic model (e.g. Gridded Sur-
face/Subsurface Hydrologic Analysis (GSSHA) model (Karamouz et al., 2017)),
or 1D-2D coupled models (e.g. HEC-RAS 2D (Pasquier et al., 2019); TUFLOW
2D (Shen et al., 2019)) for CCF modeling. These models are either 1D-2D cou-
pled or 2D coupled hydrodynamic models which refine complex land use con-
figurations using flexible triangular mesh or rectangular grids using energy or
momentum-based continuity equations. However, in order to achieve a fully cou-
pled model, all of the physical processes’ governing equations should be solved
at the same time (Santiago-Collazo et al. 2019). Still, a real fully coupled
model for CCF simulation for a complex coastal setup is missing to represent
the uncertainty associated with the models’ boundary conditions.

CCF includes non-linearity in its physical processes. Prior studies have engaged
1D/2D flood models and statistical methods therewithal to estimate the uncer-
tainty and interdependency of the boundary conditions of CCF among the flood
hazard drivers e.g., storm surges and extreme rainfall. The CCF events have sig-
nificant interdependence on rainfall extremes and storm surges in coastal cities
(Wahl et al. 2015). The hydrodynamic models cannot accurately simulate CCF
systems because hydrodynamic models assume that channel or overland flow
routing is only a function of boundary conditions, roughness factors, and ter-
rain elevation; thus, the importance of rainfall-runoff effect has been ignored
(Saksena et al., 2020). Moreover, the river reaches or links do not interact with
the subsurface flow, which can play a dominant role in the momentum balance
during a CCF. Simulating floods using a hydrodynamic model requires both up-
stream and downstream flood boundary conditions to be updated continuously
and it is very sensitive to the lateral flows generated by adjacent surface and
vertical fluxes from precipitation and evapotranspiration. Even incorporating
the rain-on-grid options with 2D hydrodynamic models, such as LISFLOOD-
FP, HEC-RAS 2D, and FLO-2D, have limited applications in CCF due to their
inability to integrate the hydrologic flux and processes which account for all
physical process of CCF. The hydrodynamic models for CCF simulation, on
their own, cannot provide realistic estimates of fluxes at boundaries (Jafarzade-
gan et al., 2021). Thus, a fully coupled modeling system is required to represent
a rain-on-grid alternative that is capable of capturing the non-linearity of CCF
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physics (Jafarzadegan et al., 2021). A successful example of a tightly coupled
CCF model, offered by Tang et al. (2013), deployed a hydrologic model and
linked it into an existing loosely-coupled hydraulic/ocean circulation model for
the New Jersey (US) coastline (i.e. FVCOM and Shallow Water Model). How-
ever, this model still has several limitations, which is later addressed in this
study, in particular for hydrologic modeling, as it does not consider any infiltra-
tion, precipitation losses, or routing mechanism (Santiago-Collazo et al. 2019).

Table 1 shows newly developed models and offered modeling frameworks since
the comprehensive review of compound inundation models conducted in 2019 by
Santiago-Collazo et al. (2019). Another alternative for coupling, still one-way
or loose coupling, is when a hydrologic model has been mainly used for CCF
simulation and a hydrodynamic or ocean circulation model is linked to it (Table
1). However, this one- or two-way coupling system is not adequate to represent
the nonlinearity of the CCF overland flow process. Lumped hydrologic models
are also inadequate in capturing the runoff process of highly urbanized coastal
watersheds because the land cover features are complex and the runoff process
has significant influence from complex land use systems. Results from the hydro-
logic model would be oversimplified by assuming homogenous soil profiles, and
land cover types throughout a watershed (Kuchment and Gelfan, 2002; Leander
and Buishand, 2007; Paquet et al., 2013).

The nonlinearity involved in momentum, energy, and mass balance in CCF re-
sults in improper FIM, which is mostly the case for conventional hydrodynamics
models, because of the neglect of the acceleration components for flood routing
processes in overland flow generation. The tidal flood propagation in 1D hy-
drologic models routing process (SWMM, HEC-HMS) for CCF modeling allows
water to exit just at drainage/channel outlets and neglects the coastline bound-
ary as a whole. This potential limitation underestimates the magnitude of CCF
and inundations in 1D model because tidal floods can propagate through tidal
wetlands, or coastal areas having lower elevations below sea level at any place
on the coastline.

All in all, the majority of CCF modeling framework suffers from one or sev-
eral issues, including i) overdependence on simplified modeling techniques such
as coarse-resolution model domain representation, ii) overlooking the nonlin-
earity of overland flow process, land use-runoff interaction with engaging loose
coupling technique in hydrologic-hydraulic models, and iii) lack of innovative
solutions for incorporating the tidal regimes from the ocean-river interface in
the model domain (Saksena et al., 2020). To address these issues, the CCF’s
overland flow modeling should represent fine-scale flood dynamics in an urban-
ized area with complex land use types to fully couple distributed hydrologic
and 2D hydrodynamics models for enhanced CCF modeling and FIM. However,
precise topographic information and land use maps are required to develop such
distributed hydrologic models with fine-resolution hydrologic units to capture
the complete physics of CCFs.

Table 1: Literature reviews on the CCF model and their coupling scheme
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Literature Model Coupling components Advantages Limitations on applying in the coastal urban areas
Muñoz et al. (2021) Deep learning Multi-source data assimilation Multi-source data fusion to improve CCF mapping in data-scarce regions. Highly urbanized areas require fine-resolution satellite images/models. noises from high-rise buildings and pavements create pixels that may be confused with water pixels.
Jang and Chang (2022) Hydrodynamic and Copula model Hydraulic and statistical model The Copula model reduced the errors in the hybrid cumulative probability Process-oriented rainfall-runoff and tide surge interaction is not considered.
Shi et al. (2022) SWMM and ADCIRC, a two-dimensional (2D) hydrodynamic model Tight coupling The tight coupling preserved the information from both the hydraulic and hydrologic model River hydraulics is represented in SWMM as 1D model.
Joyce et al. (2018) ADCIRC and ICPR One way coupling Combined astronomic tide levels, storm surge, and wave interaction with ICPR. Lumped hydrologic module and 1D river hydraulics underestimate CCF.
Kupfer et al. (2022) Delft3D Wave and river discharge coupling CCF characteristics are more sensitive to river discharge rather than waves. Wave height reduces in shallow water. The duration of wave-surge interaction is not prolonged.
Čepienė et al. (2022) HEC-RAS The impacts of sea level rise are considered. The rainfall-runoff contribution to CCF is ignored.
Jafarzadegan et al. (2021) HEC-RAS2D and LISFLOOD FP Compensation for a fully coupled model is done by improving the model boundary conditions. Mass balance in the coastal urban area needs a fully coupled and more urban flood process-oriented model.

Distributed hydrologic models should represent spatial variations of model pa-
rameters and distributed catchment hydrologic processes by incorporating vari-
ations in topography, land use, land cover, soil class, and precipitation data
which can enhance the FIM of CCF. The spatial configuration of land use, in
particular, has a prominent impact on flood peak, peak discharge, and runoff
volume. The NRCS curve number (CN) model is a widely accepted approach for
urban rainfall-runoff simulation. In highly urbanized areas, the curve numbers
act as a representative index of runoff potential from rainfall, based on different
land classes (Walega et al., 2020). The CN method estimates surface runoff
based on a catchment’s physical properties, antecedent soil moisture conditions,
and antecedent rainfall 5-days before the storm (Mishra et al. 2013). In lumped
hydrologic models, the discretization of curve numbers is done by weighted area
curve number estimation, which leads to inaccurate rainfall-runoff estimation.
Distributed hydrologic systems should be discretized based on fine-scale hydro-
logic units, which contain unique hydrologic model parameters, such as land use
and soil type, at a fine scale. To represent the topography of hydrologic units,
data from modern LiDAR systems is precious. Such data must be fused with
digital map data, building topology, and land use to maximize the information
contained therein (Hunter et al., 2008).

Due to more frequent storms, high tides, and sea level rise, highly urbanized
peninsulas or low-gradient coastal areas connected by tidal creeks are more sus-
ceptible to CCF and are at the frontline of sea level rise impacts. In order to
provide a better understanding of multi-hazard-driven flood processes, the mul-
tidimensional physics and nonlinear interactions between hazard drivers should
be considered in an integrated manner and fine scale. Consequently, in order to
address the modeling framework limitations and resolve deficiencies to improve
compound coastal flooding simulation for urbanized regions, the overarching
objective of this study is to develop a fully-coupled model which represents the
underlying non-linearity and multi-dimensional integration of CCF. To achieve
this objective, the fully-coupled modeling system should encompass features
that are described below:

1. A true fully-coupling procedure to integrate a hydrodynamics model with
a distributed hydrologic model in a single modeling platform by synchro-
nized run time marching.
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2. An enhanced representation of CCF multi-dimensional physics, by adopt-
ing appropriate dimensions for hydrologic and hydrodynamic systems
through a selection of more sensitive dimension(s) of the systems for CCF,
such as one-dimensional underground drainage networks, and detention
ponds, two-dimensional tidal creeks and wetlands, 2D overland flow
processes and distributed hydrologic modeling.

3. A fine-scale distributed modeling system that improves the urban flood
dynamics by a representation of complex land use-runoff interactions and
GIS-based data assimilation.

The current study deploys the Interconnected Channel and Pond Routing
(ICPR; Saksena, et al. 2021; 2019; Saksena et al. 2020) model to develop a
fully-coupled model of CCF for the Charleston Peninsula in South Carolina.
Charleston peninsula’s complex land setting and strategic location make it an
ideal test bed for CCF modeling. The CCF model outcome is validated using
South Carolina Department of Transportation (SCDOT) road closure reports
and USGS high water marks data.

1. Methodology

2.1 Model description

In the current study, a fully-coupled modeling system is developed through fine-
scale integration of parcel-level hydrology by utilizing flexible) triple meshes
(triangular irregular network (TIN), honeycomb, and diamond) to answer unex-
plored questions of CCF modeling regarding the non-linearity of multi-hazard
drivers and multi-dimensional physics. The ICPR model deploys a spatially
flexible TIN mesh network (using the finite volume method to discretize the
model’s domain) to capture the physical characteristics of the watershed, flood-
plain, and drainage networks. The model’s three building blocks (node, link,
and basin) applying triple mesh intercommunication create the opportunity for
integrated modeling of CCF. ICPR links 2D overland flow and surface hydraulics
equations with a set of underlying hydrologic and pipe hydraulic equations and
solves these equations simultaneously on each time step. This allows for the
basin rainfall-runoff information to be exchanged with links (e.g. subsurface
storm sewer system, detention ponds, tidal channels, and tidal creeks) in a fully
integrated system.

The basins in ICPR are represented by honeycomb meshes (Fig. 1). The hon-
eycomb mesh acts as a control volume which is constructed by joining the mid-
points of the triangle sides of the TIN, which then represents a hydrologic unit
(Fig. 1). The mass balance equations are solved for each honeycomb and sur-
face runoff is calculated for each basin (ICPR, 2021a). Then the runoff infor-
mation is passed to the nodes of triangular mesh (Fig. 1) after a certain cou-
pling interval using a time marching scheme called FIREBALL (ICPR, 2021a).
The FIREBALL method uses a numerical technique based on the second-order
Runge Kutta method (ICPR, 2021b). The time marching scheme transfers and
updates the boundary conditions from surface hydrology blocks to hydraulics
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blocks. The coupling process provides spatiotemporally adaptive hydraulic time
stepping for simulating the fully distributed hydraulics-hydrology (Saksena, et
al., 2019, 2021; Saksena et al., 2020).

The ICPR model determines the incremental changes of the stage at each node
based on the continuity equation (Eq. 1). Then, in Eq. (3), the node inflow is
calculated by summing up 𝑄linkin

(sum of all flow incoming to a control volume),
𝑄excess (direct runoff due to rainfall excess) and 𝑄𝑠, where the later is the
seepage flow contribution from the groundwater model.

𝑑𝑧 = ( 𝑄in−𝑄out
𝐴surface

)dt (1)

𝑍𝑡+𝑑𝑡 = 𝑍𝑡 + dz (2)
𝑄in = ∑ 𝑄linkin

+ ∑ 𝑄excess + ∑ 𝑄external + ∑ 𝑄𝑠 (3)
𝑄out = ∑ 𝑄linkout

where dz denotes the incremental change in stage and 𝑄in and 𝑄out are the
total inflow and outflow rates to and from a node, respectively. 𝐴surface is
the wet surface area which is calculated for each node, and the computational
time step is defined by dt. 𝑄linkin

and 𝑄linkout
are the sum of all incoming

discharge and outgoing discharges from the control volume or honeycomb mesh
respectively. 𝑍𝑡+𝑑𝑡 is the water surface elevation (WSE) at time step t+dt which
can be obtained from Eq. (2) using 𝑍𝑡 (WSE from the previous time step). The
direct runoff from a control volume is calculated using the NRCS curve number
method.

The honeycomb meshes represent the catchment areas that are used for the
subsurface processes’ integration with surface hydrology too. Each honeycomb
mesh in ICPR is intersected with multiple map layers (i.e., soils, land cover,
rainfall) and discretized into sub-polygons, where each unique combination is
used for the estimation of rainfall-runoff (Fig. 1d). Infiltration is estimated
for each sub-polygon based on its imperviousness and other characteristics (Fig.
1d). Rainfall excess from each of the sub-polygons is aggregated in honeycombs,
and then they are assigned to their corresponding nodes in the triangular mesh
(Fig. 1a), also known as 2D nodes in ICPR.

In a drainage system, a “node” is used to receive the energy, mass, or momentum
continuity (inflow and outflow) characteristics to calculate the Water Surface
Elevation (WSE) for a particular location (Saksena et al. 2020). The “links” are
used to convey the WSE information from one node to another. The discharge at
any link is calculated based on the physical properties and control specifications
of upstream and downstream nodes. To minimize the computational steps,
the node linkages are represented by a flexible TIN which can be refined or
coarsened at the desired resolution following rules of mass balance. The vertices
of each TIN are treated as the center of a control volume or honeycomb mesh
(Fig. 1). Once rainfall excess occurs, it is directly/instantaneously applied
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to the associated 2D node of the related honeycomb. The surface water then
flows through the system and along the triangular sides of the TIN and the
1D hydraulics elements such as pipes. When the nodes in TIN have reached
the overflow conditions and the drainage system reached the drainage capacity,
overland flow occurs and diamond mesh comes into action (Fig. 1c).

This study further enhances the CCF modeling in ICPR by introducing a pa-
rameter called edge length factor (ELF) for model sensitivity analysis for op-
timizing the flood depth and duration. For this purpose, we have used the
coupling scheme proposed by Saksena et al. (2020; 2019; 2021) for the ICPR
model. Water flows along the triangle edges are estimated based on an equiva-
lent rectangular geometry approximation. Eq. 4 is used to calculate the average
length and width of equivalent rectangular geometry.

𝑊 = 𝐴Diamond
𝑓∗𝐿 (4)

where, f and W are the edge length factor (ELF) and the average width of
an equivalent rectangle, respectively. L is the distance between two adjacent
vertices of a triangle in a TIN. 𝐴Diamond is the area of the diamond mesh polygon.
While it is not possible to exactly account for all the storage and intricate flow
paths in a system with 2D models, the calibration of ELF provides a mechanism
to mitigate these errors. For example, as soon as the ELF increases, the width
of the rectangular channel reduces, which in turn causes delaying the water flow
through the triangle mesh edges and effectively attenuates the flow.
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Fig. 1 The adopted (a) TIN mesh for terrain characterization, (b) honeycomb mesh for basin characterization, (c) diamond mesh for roughness characterization in overland flow, (d) The interwoven mesh configuration, the honeycomb discretized into sub polygons based on land use and soil zones. The meshes are developed for the Charleston peninsula.
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The TIN mesh is also used to develop a diamond mesh layer around the tri-
angle sides (Fig. 1c). The diamond meshes are extended from the honeycomb
centroids and are reformed into equivalent rectangles with an average 2D slope.
For 2D overland flow modeling, ICPR employs the diamond mesh layer (Fig.
1c) where the physical characteristics of the floodplain are represented by the
roughness based on the land use types. ICPR computes the 2D overland flow
using momentum, energy, or diffusive wave equations. These equations are
lumped at TIN mesh edges to support surface water propagation in 2D space.
The diamond meshes are mainly intersected with the land uses, such as devel-
oped land use, that require the damping threshold and area reduction factor for
the 2D overland flow region. The energy damping threshold is applied for the
overland flow propagation over the developed land use, particularly the building
rooftops. The area reduction factor can compensate for the obstructions of trees
and landscapes over the floodplain (ICPR 2021a). With 2D links, such as open
channels, the runoff is routed over the surface for the drainage area within the
floodplain or overland flow region. ICPR model allows spatially varying rough-
ness coefficients which depend on land use types and depth varying (deep and
shallow) roughness. An exponential decay function is used for calculating the
depth-varying roughness coefficient (Saksena et al., 2019). This is one of the
main advantages of ICPR over other hydrodynamic models such as HEC-RAS
2D, Delft3D, and LISFLOOD -FP to simulate the CCF in the coastal urban
area.

The fully-coupled modeling framework is shown in Fig. 2. Three main modeling
components of the system: 1) Channel and Pond routing, 2) Overland flow
region and 3) Distributed hydrologic system along with their interconnections
and spatiotemporal inputs are shown in this flowchart (Fig. 2). In the following
sections, first the study area is presented (Section 2.2), then required model
inputs and pre-processing of data, including GIS data assimilation, are discussed
in detail (Sections 2.3). Section 3 describes the model setup process, model
parameterization, and sensitivity analysis.
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Fig. 2: The CCF modeling process diagram in ICPR

2.2 Study area

The fully-coupled CCF modeling in this study focuses on the compound flood-
ing problem of the Charleston peninsula, SC, USA. Charleston peninsula is an
economic powerhouse for tourism, trade, and industries in SC, but now it is
impacted adversely by more frequent incidents of flooding and hurricanes. The
Charleston harbor and port are regarded as one of the southeastern United
States’ fastest expanding container ports. The port’s contribution in terms of
economic value is ranked eighth in the United States, generating around $26
billion in trade revenue each year (Morris and Renken, 2020). Due to the low
elevations of the drainage system and tidal interconnections to the adjacent
Ashley and Cooper Rivers (Fig. 2), flooding from hurricanes, tropical storms,
tropical depressions, and high tides threatens a large portion of the peninsula

12



(USACE, 2020). The potential damage of CCF highly depends on the timing
of a coastal storm and the rainfall intensity. The peninsula’s aerial extent is
rather small, and numerous tidal creeks can accelerate tidal surge propagation.
During high tides, the landfall of storm surges near Charleston may lead to a
disastrous event and high risk to the city as the peninsula is located at the es-
tuary (Fig. 2). Hurricane Hugo (1989) is the worst recorded hurricane that has
affected Charleston peninsula. The hurricane caused a damage cost of about
$10 billion and caused 27 deaths throughout the Carolina coasts (NRC, 1994).
The SC flood of 2015 is another notable flood the Charleston peninsula has
experienced.

The complex urban drainage system of Charleston consists of underground sewer
pipes, tidal creeks and channels, woody wetlands, emergent herbaceous wetlands,
and detention ponds (Figure 3). The drainage outlets are tidally influenced by
the surrounding sea and tidal rivers. The detention ponds allow for surface
water storage during floods. The underground drainage system is a key ele-
ment to collect and carry the runoff from the city and drains it to the adjacent
Ashley and Cooper Rivers. In this study, both DEM and DSM are tested to
retrieve the physical properties of the distributed hydrologic and hydrodynamic
model domains. The DSM is engaged for overland flow modeling so that the
floodplain shows a more realistic flood propagation for CCF than using a high
roughness factor and damping threshold. Given the high potential of CCF and
tidal interconnection of the drainage network with adjacent rivers and the sea,
the Charleston peninsula is an ideal test bed to test the fully-coupled modeling
of the system facing CCF using the ICPR model.

Fig. 3 The study area and the drainage system of the Charleston peninsula.
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1. Model setup

The model setup process in ICPR for CCF modeling consists of several steps:
1) building 1D and 2D drainage networks, 2) incorporating topography models
(DEM and DSM), 3) generating meshes for the study domain, 4) spatial and
temporal model parameterization, 5) imposing model boundary conditions, and
6) developing the model coupling scheme. The underground pipes are consid-
ered as 1D conduits and the detention ponds are modeled as 1D floodwater
storage nodes in the model. The tidal creeks and tidal wetlands are represented
by 2D hydraulic elements in ICPR. The channel and pond routing systems are
simulated using Saint-Venant equations. The overland flow models in ICPR are
developed based on Energy balance, Momentum balance, and Diffusive wave
equations (ICPR, 2021a). The spatially distributed land cover map and soil
maps are gathered to generate hydrologic units’ CNs for rainfall-runoff model-
ing. The land cover map is also used to define the roughness characteristics
of the overland flow regions. The boundary conditions for the CCF models
are 1) the spatially distributed rainfall and evapotranspiration information for
determining the rainfall-runoff, and 2) the dynamic sea level or tide curve at
downstream during the event, which is obtained from NOAA tide gauges’ record.
More details about the CCF model setup process are described in the following
sections.

1. Spatial and temporal data processing

3.1.1 Drainage network

The drainage system of the Charleston peninsula consists of 4,718 pipes, 3 tidal
channels, and a few coastal wetlands which surround the peninsula. The spatial
layout and dimensions of the drainage network are obtained from CGA (2022).
The underground pipes have mainly circular or rectangular cross-sections. The
spatially distributed data and parameters are used to describe the physical char-
acteristics of the drainage system, including topographic information from DEM
and DSM (Table 1), stage-area, time-stage, and stage-volume curves, manning’s
roughness coefficients, and loss coefficient for entrance or exit loss. All model
inputs are prepared in Arc-GIS environments as multipoint, polyline, and poly-
gon features, and then they are imported into the ICPR model according to the
required drainage features. In the ICPR model, underground sewer pipes are
represented using 1D links, while the remaining open channel flow objects are
represented by 2D links. When two or more pipes are connected at any location,
the intersection is represented by a 1D node in ICPR. When 1D nodes interact
with 2D overland flow, the momentum balance-based formulation is specified
for switching energy and mass transport. Each node also requires inverted el-
evation data, which is obtained by subtracting the diameter of pipes and the
freeboard from the ground elevation of the nodes.

The node type can be defined as stage-area, time-stage, or stage volume. The
stage-area nodes determine the ponding depth and area based on the stage-area
relationship in each node. The main purpose of using the stage-area nodes
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is to represent the manholes. The time-stage node requires the time series
of the tidal curves to specify the sea level conditions during the simulation
period. The time-stage nodes represent the drainage outlets at the adjacent
tidally influenced rivers. The stage-volume nodes determine the flood water
storage or detention pond capacity based on the stage-volume curves, which
are used for the representations of numerous detention ponds in the Charleston
peninsula. The information associated with the stage-area and stage-volume
curves is derived using DEM. Besides the sewer pipes, there are three tidal creeks
and channels. The tidal creeks and channels are modeled as 2D links. The 2D
links require the bathymetry of the channel for open channel flow simulation.
The 2D links also need to specify the floodplain to switch from the channel
flow to the overland flow and the tidal boundary conditions. For 2D links, the
bathymetry information is extracted from the DEM. The floodplain topography
is developed using the DSM which spatial data processing is detailed in Section
2.3.2.

Table 1: Sources of datasets acquired in this study

Data type Description Sources
Drainage network and Building rooftop Drainage network, layouts and dimensions developed by Charleston Govt. Authority (CGA) CGA (2022)
Land cover map and Soil Zone National land cover map and gSSURGO soil grids USDA (2022)
Rainfall data Precipitation data of the rain gauges Weather Underground (2022)
Sea level The tide level surrounding the Charleston peninsula NOAA (2022)
High Water Marks Flood locations and flood depth recorded during the 2015 SC flood event USGS (2022a)
Evapotranspiration Daily mean evapotranspiration time series Climate Engine (2022)
DEM, DSM LiDAR cloud points from the 3D elevation program USGS (2022b)

3.1.2 DEM and DSM processing

The DSM in the current study (Fig. 4) is generated using USGS LiDAR sur-
veyed cloud points. The advantages of using the DSM for modeling the flood-
plain dynamics are 1) in urban areas, the flood propagation is controlled by ter-
rain features mostly developed land use, and 2) the momentum balance-based
overland flow modeling in ICPR takes into account the interaction between the
flood water and developed structure for calculating the flood depth. Besides
that, applying energy damping coefficients for urban structures allows energy
blocking out of the buildings. On the other hand, the 1 m spatial resolution,
LiDAR DEM (Table 1) information is used to extract 3D elevation of the tidal
creeks, wetlands, and detention ponds, invert elevation of sewer pipes, natural
slopes of 1D and 2D links, and basin slopes for honeycomb mesh. To process
DSM, the LiDAR cloud points are retrieved from the USGS 3D elevation pro-
gram (3DEP) (https://www.usgs.gov/3d-elevation-program, Table 1). The
3DEP mission uses LiDAR and Interferometric Synthetic Aperture Radar (IF-
SAR) technology to collect high-resolution elevation data for capturing a wide
variety of topography in the USA. The DEM is retrieved for Charleston Penin-
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sula with 1 m resolution (Fig. 5b and Table 2). The LiDAR dataset and
DEM are projected into the NAVD88 coordination system to be consistent with
NOAA sea level data. The LiDAR DSM of the Charleston peninsula is com-
piled by combining 16 USGS LiDAR scenes that contain approximately 167
million LiDAR points with eight different classes of Unassigned, Ground, Noise,
Model Key/Reserved, Water, Rail, Bridge Deck, and High Noise. The Noise,
Water, and High Noise cloud points are removed from the LiDAR cloud point
dataset. In case of the presence of a multi-level flyover, the LiDAR points of
DSM are quantified based on the ground elevation points. Finally, the sorted
LiDAR cloud points are converted to a raster surface using the ArcGIS tool
called ‘LAS Dataset to Raster’. The inverse weighted distance, as a method of
interpolation, and the natural neighbors’ method, for filling up the void, are
used to prepare the DSM. For merging each of the 16 LiDAR scenes, at first,
they were converted from sorted LiDAR cloud points to a raster image. Then
these raster datasets are all spatially joined and merged with each other using
the ‘Mosaicking tool’ of ArcGIS to generate the DSM of the study area. The
final DSM of the Charleston peninsula has a 0.5 m spatial resolution (Fig. 4).
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Fig. 4 The LiDAR Digital Surface Model of Charleston peninsula a) Location showing the Medical University of South Carolina, b) Location showing a densely populated area near the Charleston harbor

3.2 Mesh generation

Spatially flexible and unstructured meshes are employed to develop the fully-
coupled CCF model. Triple-mesh configurations of honeycomb, TIN, and dia-
mond meshes are required as previously shown in Fig. 1. The TIN mesh is used
for surface hydraulics and has multiple advantages over a grid or cell-based 2D
models as it has a flexible structure that can fit any complex topography. The
ability to vary the spatial size of the TIN saves significant computational time
by increasing the mech size in areas subjected to lower flood risk. The com-
putational time can be reduced by coarsening TIN in areas with low-intensity
development as well. The size of the mesh is also important for the ICPR for
model stability. The 1D nodes and the vertices of TIN mesh (also known as 2D
nodes in ICPR) of the drainage network are required to be set at the honeycomb
(basin) mesh outlet such that those nodes collect the runoff from the honeycomb
mesh as well as any receive backwater flow at tidally influenced nodes.
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Since the mesh configuration depends on preservations of mass balance and
energy/momentum balance, the formation of meshes for ICPR has been done
through a trial-and-error approach. A tolerance limit (dz=0.001m) is set be-
tween two consecutive time steps for optimum mesh size generation to minimize
the error from the energy and momentum balance. The model iteratively runs
several times with the adopted mesh configuration and the mesh sizes are re-
fined for that part of the study area that shows energy or momentum imbalance
in the proceeding step.

Gravity-and-Froude-number-driven open channel flow highly depends on topog-
raphy. Thus, an abrupt slope change can become a source of model error. To
reduce the momentum and energy balance errors, the mesh size is refined using
a ’breakpoint’ or ‘breakline’ feature in dense urban areas and complex terrains.
These two features, which facilitate a smooth transition of sudden changes in
the mesh slope, can be automatically generated based on the region’s physical
characteristics. The breakpoint refines the TIN mesh at desired intervals or
breakline captures the roadways or channel centerlines as a ridge line for ver-
tices simplification (Saksena et al. 2019, 2021; Saksena et al., 2020). The final
mesh configuration accounts for the three different mesh types— with 19,444
honeycomb, 39,284 TIN, and 56,293 diamond meshes (Table 3).

3.3 Land cover and soil maps for model parameterization

The rainfall-runoff modeling of urbanized catchments using distributed hydro-
logic models at the parcel level is done following the NRCS-CN method. The
NRCS-CN primary input parameters are land cover maps and soil groups. The
30 m resolution national land cover data has been used in the current study
(Fig. 5a). In the current study, considering the highly urbanized areas of
Charleston peninsula, the land cover map is updated with footprints of building
rooftops by fusing the build-up areas in the national land cover datasets (Fig.
5a). The land cover of Charleston peninsula is classified with 10 land classes:
barren land, buildings, deciduous forest, low intensity-developed area, medium
intensity-developed area, high intensity-developed area, emergent herbaceous
wetland, hay/pasture, waterbody, and shrub (Fig. 5a). Four soil groups from
NRCS hydrologic map, respectively A, B, C, and D, are also used along with the
land cover map to determine the CN (Table 2) for each pixel of the Charleston
peninsula. In addition, two-dimensional overland flow characteristics depend on
the roughness characteristics of the land cover. The same land cover maps for
the distributed hydrologic model are also used to define the roughness charac-
teristics of the overland flow area (Table 2). Therefore, the spatially distributed
physical characteristics of floodplains for CCF modeling have four spatial at-
tributes: 1) topography information, 2) CN, 3) Manning’s roughness coefficient,
and 4) soil types.
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Fig. 5 a) Landcover map of Charleston peninsula b) Digital Elevation Models of Charleston peninsula

Table 2: Land use, CN, Manning’s roughness in distributed hydrologic model

Land use type Manning’s roughness coefficient Curve numbers
Shallow Deep Soil Zone-A Soil Zone-B Soil Zone- C Soil Zone-D

Barren Land 0.15 0.011 70 81 88 92
Building rooftops 1 1 100 100 100 100
Deciduous Forest 0.192 0.011 73 73 76 79
Developed, High Intensity 0.15 0.011 88 92 90 93
Developed, Low Intensity 0.1 0.011 81 88 90 93
Developed, Medium Intensity 0.08 0.011 84 89 93 94
Developed, Open Space 0.04 0.011 52 68 78 84
Emergent Herbaceous Wetlands 0.07 0.011 80 80 80 80
Evergreen Forest 0.16 0.011 77 73 76 79
Hay/Pasture 0.1 0.011 40 61 73 79
Herbaceous 0.035 0.011 63 75 85
Open Water 0.04 0.011 100 100 100 100
Shrub/Scrub 0.1 0.011 42 55 62
Woody Wetlands 0.4 0.4 86 86 86 86
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3.4 Coupling in ICPR model

Hydrodynamics and distributed hydrologic models are integrated using a fully-
coupled modeling framework, where spatiotemporally adaptive hydraulic time
stepping is specified. The computation timestep requires two distinct terms: 1)
the hydrology time step, which has a certain time increment to calculate the
rainfall-runoff, and 2) the surface hydraulics time step, which dictates time in-
tervals to keep up with the hydrology clock. Surface hydraulics time steps are
often only a few fractions of a second long and it continues computation up to
the next time interval of the hydrology time step. The time marching option in
ICPR facilitates the coupling process. In ICPR, two-time marching options are
available, Successive Approximation technique with Over-Relaxation (SOAR)
and FIREBALL (ICPR, 2021a). The FIREBALL method is applied in this
study because it is 2.5 to 30 times computationally faster than SOAR. For the
FIREBALL approach, the minimum and maximum timesteps in time marching
are specified as 0.01 and 5.12 seconds, respectively, based on the recommenda-
tion by Saksena et al. (2021). A maximum permitted timestep is established for
each node, based on inflows, outflows, and available storage, to ensure that the
changes in water level would not exceed the specified tolerance change in stage,
which is chosen to prevent the mass-balance error. Likewise, the error in solv-
ing the continuity equation can be increased due to the initial model boundary
conditions setup, if the node state remains dry. The initial model boundary con-
ditions are set using a hot start file of the previous simulation. The hot start
file defines the initial stage of all nodes and other model states.

Table 3: Description of final model configuration

@ >p(- 2) * >p(- 2) * @ Computational elements & Quantity
Model area (km2) & 24.14
Number of 1-D hydraulic pipe links & 4822
Triangular mesh (2D node) & 39284
Honeycomb mesh (basin) & 19444
Diamond mesh (Overland flow zone & 56293
Types of hydraulic roughness zone & 14
Detention ponds & 3
Tidal creeks & 3
Surface hydraulics time step (s) & 0.6
Distributed hydrology time step (min) &

1.

3.5 Model sensitivity analysis, validation, and simulation events

The historical SC flood of 2015 in the Charleston peninsula is considered in
this study for the simulation of CCF. This event brought rainfall with a return
period of about 1,000 years. Different combinations of model parameters and

20



configurations are tested for sensitivity analysis, including two different topog-
raphy models (DEM or DSM) for floodplain, changes in ELF, and using three
overland flow estimation methods, i.e., energy balance, momentum balance, and
diffusive waves. The ELF varies between 0.4 to 1 and it is chosen as the main cal-
ibration parameter. A total of 42 model configurations are tested to achieve the
highest possible modeling accuracy. The best-performed model was achieved by
finding the optimum value of ELF under different terrain models and overland
flow estimation methods. The simulated flood depth was validated against the
USGS high water marks (HWM) observation and SCDOT road closure reports
during the SC flood event of 2015. The calibration results are compared using a
Taylor diagram to sort out the best-fit model parameters. The Taylor diagram
represents the correlation coefficient, standard deviation (SD), and the root
mean squared diagram in a single plot to show the relative accuracy of multiple
models. In addition to the SC Flood event of 2015, a nuisance flood event, in
Nov 2021, was chosen to asse the performance of CCF model to represent high
tide flooding. The Nov 2021 king tide caused a nuisance flood, when 5 road
closures were reported. The flood event is named hereafter as ‘tidal flood 2021’.
This investigation is important to identify the tidally influenced prone areas in
the Charleston peninsula. The simulations run on a machine with the intel core
i7-9700 CPU and by activating all threads of the CPU for parallel processing.
The typical run time takes about 4.5-5 hours for a single event simulation.

4. Results

4.1 Sensitivity analysis

4.1.1 Effects of topography model

The CCF modeling performance is assessed by changing the topography mod-
els between DEM and DSM. The performance of the DEM and DSM in model
simulation is shown in Fig. 6, where the Taylor diagram, along the �- direction
shows the correlation coefficient of different model performances and along the
radial axes the standard deviation (SD) of the simulated flood depth in com-
parison with the observed HWMs. The Root Mean Squared Error (RMSE) in
the Taylor diagram is proportional to the distance between the observed points
to the model simulated values (Fig. 6). The relative accuracy among the com-
pared models are high for those models which are closer to the observed points
in the Taylor diagram. The CCF model is found highly sensitive to the terrain
model (Fig. 6). Using DSM as terrain model results in a better performance
than using DEM. The Taylor diagram shows the accuracy of elevation data can
significantly improve the model performance. The simulated inundation depth
using DSM has achieved a maximum correlation coefficient of 0.82 while us-
ing DEM based CCF model the best performance is measured by a maximum
correlation coefficient of 0.6. In other words, the accuracy of CCF modeling
can be improved by up to 15-33% using the DSM. In a fully-coupled model
the inaccuracy of DEM data in simulating CCF can be potentially caused by
two main reasons, 1) DEM underestimates the floodplain topography, particu-
larly the elevation of developed structures as they are neglected in the DEM
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model, and 2) the tidal flood propagation from surrounding rivers has changed
its route due to neglection of the height of the structures in DEM. Further, the
inaccuracies in DEM or DSM could be stemmed from an underestimation of the
missing elevation points to generate the topography model. This is aligned with
the finding of other researchers as raster surface interpolation may result in the
inaccuracy of flood depth calculation since the overland flow estimation, partic-
ularly spatial nonstationarity may present in the surface interpolation method
(Karamouz and Fereshtehpour 2019).

@ >p(- 0) * @

Fig. 6 Taylor diagram for sensitivity analysis of model performance
with the model formulation, elevation model, and edge length factor
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4.1.2 Sensitivity of overland flow model formulation

The performance of energy balance, momentum balance, and diffusive wave
method for overland flow calculation are tested in the second cohort of sensitivity
analysis to improve the model performance in simulating the 2015 CCF FIM
and flood depth. The model performance is compared using the Taylor diagram
(Fig. 6). The relative model performance ranked from momentum balance,
diffusive wave, and energy balance method for overland flow simulation. The
tidally influenced areas in momentum balance are more representative than
the diffusive wave method since the later method neglects the inertia terms,
such as the local acceleration. A total of 42 model tests and their associated
performances are summarized in Fig. 6. When the ELF increases, the time
to peak in flood hydrograph speeds up. Consequently, the flood model with
high ELF shows relatively higher ponding depth and a faster flood peak. The
standard deviation of the simulated flood depth using DEM is relatively higher
than DSM. The urban watershed has a relatively higher and faster flood peak
that may support a high ELF. However, the model performance with an ELF
closer to 1 results in a high ponding depth that overestimates the flood depth.
On the other hand, an ELF closer to 0.4 underestimates the observed flood
depth. The ELF between 0.5 to 0.7 shows a reasonable estimate to get a good
CCF model performance. Among the overland flow calculation methods, the
momentum-based approach results in the best accuracy.

These findings suggest that accurate quantification of the velocity in the flood-
plain may result in a better CCF model performance. The model sensitiv-
ity analysis showed that an ELF ranging between 0.6 to 0.7 with momentum
balance-based formulation and using DSM for topography representation would
be optimal for CCF modeling. The highest correlation coefficient between the
simulated flood depth and USGS HWM is achieved at 0.86, as a result of adopt-
ing the momentum balance method with an ELF of 0.7. Moreover, because
2D shallow water equations are more convective acceleration conservative they
can improve CCF dynamics, which also has prominent advantages in areas with
complex floodplains.

4.2 Validation results

The sensitivity analysis of CCF modeling suggested that the model configu-
rations with the use of DSM, momentum-based overland flow formulation, and
ELF of 0.7. This configuration is further used for the model against road closure
reports from SCDOT. During the tidal flooding event, (Fig. 7b), Charleston
experienced a 1.65m NAVD high tide. The king tide is reported by NOAA to
be the tenth-highest tide recorded in Charleston harbor. About 5 locations,
marked in Fig. 7b, experienced widespread high tide flooding in the Charleston
peninsula, including Morrison drive and part of America Street (Fig. 7b) . The
dynamic sea level boundary condition, has been applied to improve the tidal
flood distribution, to identify the submerged drainage outlets and the low-lying
areas in coastal peninsula boundaries. The representation of the coastal water-
sheds exposed areas to tidally influenced rivers or sea in 1D models is limited
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to drainage outlets. Most 1D models (e.g. SWMM) account for the tidally
influenced nodes and links which are mostly the submerged outlets, and not
other tidally influenced parts like tidal wetlands (Tanim and Goharian 2020b).
However, in the current study, and in order to address this issue, the exposures
of the coastal watershed to tidally influenced rivers and the sea is represented
using continuous land-sea boundary along with setting up a dynamic sea level
as boundary condition conditions.

Fig. 7a shows the affected areas by the 2015 SC flood. Similar places are
also marked in Fig. 7b, during the SC flood of 2015. The marked flooded
streets in Fig. 7b are the primary concerns from CCF simulations since the
rainfall-induced flood can further exacerbate the flooding issue in these areas.
Apparently, the flood problem in 2015 was more widespread than during the
2021 tidal floods, since it was associated with compounding effects and tidal
flow reduced drainage capacity to carry more storm runoff through the sewer
systems. Table 4 shows the model precision for predicting the actual flooded
areas during these two events. The efficiency of the CCF model in capturing
street-level floods is found 98.35% and 100% for SC 2015 flood and 2021 tidal
flood events, respectively (Table 4).
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Fig. 7 The validation of ICPR model results with a) SCDOT road closure data during SC flood event 2015, b) reported flood location during nuisance flood Nov 2021and ICPR simulated flood depth
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Table 4: Summary of model precision based on validation events

Flood events Total road closure locations2 Model-detected flood locations No. of missing locations Model efficiency2 (%)
SC Flood event 2015 547 538 9 98.35%
Nuisance flood 2021 5 5 0 100

1Road closure data is reported by SCDOT
2 Model efficiency = Sum of model detected road closures

Total reported road closures

4.3 SC CCF event 2015 simulation

The simulated flood scenario during the SC flood event 2015 is shown in Fig. 8.
The pixel’s colors correspond to 5 inundation depth levels (Fig. 8a-8c). Three
distinct scenarios are further extracted from this flood simulation to analyze
flood depth during this event:

• Scenario-A. peak flood after the first rainfall event with a low tide condi-
tion (Fig. 8a),
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• Scenario-B. simultaneous high rainfall peak and high tide (Fig. 8b), and

• Scenario-C. rainfall-induced peak flood occurs after attenuation of tidal
influence (Fig. 8c).

Fig. 8b shows the CCF conditions (Scenario-B) when the drainage outlets
and surrounding tidal creeks of the Charleston peninsula are occupied with
tidewater. Low-lying tidal creeks are found inundated during the peak flood
condition; these areas contribute to worsening the flood conditions. The effect
of the tide in CCF is prominent by comparing scenarios B with C (Figures 8b
and 8c). The results show that the flood risk, caused by CCF, surpassed the
flood risk caused solely by intense rainfall.

Simulation results show a significant increase in ponding depth 0.41-0.67 m
under the CCF condition (Scenario-B) than the rainfall-derived flood (Scenario-
C). The flood inundation extent (Fig. 8b, Scenario-B) during the simultaneous
peak rainfall and high tide condition is 19% greater flood extent under Scenario-
C (Fig. 8c). Therefore, the joint occurrences of rainfall peak and the high tide
offer the highest flood risk. However, the Scenario-C flood map (Fig. 8c) reveals
that some inland locations (Charleston harbor) have higher flood depth than
Scenario-B (Fig. 8b). This is mainly due to the discharge of flood water from
the adjacent tidal creeks and tidally impacted flooded area (tidal creeks in Fig,
8c) to these locations, as the flood depth in the rainfall-tidal transition zone is
reduced.

Charleston has a well-engineered drainage network that covers nearly the whole
peninsula. The tidewater propagates to the low-lying area drainage system
since the waterway has a shorter travel time with tide changes. Fig. 9 shows
the maximum time-independent flood depth at each pixel during the flood event
regardless of the rainfall amount and tide level conditions. Overall, the detention
ponds in the Charleston peninsula provide a decent functionality for capturing
floodwater. Some detention ponds (Colonial Lake Park) are also connected
with tidal creeks and wetlands, and therefore, receive less storm runoff. The
peripheral part of the Charleston peninsula, shown in Fig. 8b, presents higher
ponding depth than other places under Scenario-B due to the tidal influence.
On the other hand, the central part of the peninsula is more prone to rainfall-
derived flooding (Scenario-C and Fig. 8c).

27



Fig. 8 Flood depth during the SC flood of 2015 and the rainfall-tide hydrograph during the flood event. a) The flood depth shown at point-a in the rainfall-tide hydrograph, marked by a red line, b) The flood depth shown at point-b (marked by a red line) in the rainfall-tide hydrograph, c) The flood depth shown at point-c (marked bys a red line) in the rainfall-tide hydrograph, d) Simulated maximum flood depth in ICPR during SC flood 2015. The histogram in different color-coded classes shows the pixel counts during respective flood conditions.
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The simulated maximum time-independent flood depth during the SC 2015 flood
is shown in Fig. 9. The ponding depth over several junctions in the sewer system
reaches up to 0.67 m. The flood risk right above the upstream of Newmarket
creeks (Fig. 9a) is higher than in any other place. This can be attributed to
the presence of three tidal creeks adjacent to this location, which causes the
backwater from high tide and rainfall-runoff to combine and produce higher
ponding depth at this location (Fig. 9a).

During high tide flooding, coastal water overflows from the tidal wetlands and
cause drainage outlet to be submerged in adjacent tidal rivers. For instance,
the floodwater in North market street has a significant tidal influence while the
storm runoff is supposed to be drained. Besides the ponded nodes, some open
spaces are flooded because storm runoff accumulates in these areas, and ponding
of floodwater happens after runoff drains from the highly urbanized areas.
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Fig. 9 Simulated maximum ponding depth throughout the SC flood of 2015 in the ICPR model. The zoom-in panel shows ponding depth over several sewer pipe junctions. Location of flood water at a) Immediately above the Newmarket tidal creek, b) American street intersection, c) North Market Street

In fact, Fig. 9a, 9b, and 9c shades light on various existing flood issues in dif-
ferent parts of the Charleston peninsula. In general, tidal floods pose a growing
threat to this historic town and neighborhoods. For example, the severity of
the flooding at the American street intersections and at South Market Street
are prominent (see Fig. 7b and 9c). Moreover, the highlighted area in Fig 9a is
located just above the Newmarket tidal creek, where ICPR predicts higher flood
risk because of the coarse mesh size. The frequent nuisance flood problem in
these locations is an early warning of sea level rise, which in turn affects the num-
ber and magnitude of tidal flooding in the Charleston peninsula in the future.
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The number of high tide sunny day flooding is expected to rise up to 180 days
per year by 2045 in Charleston (Morris and Renken, 2020). Some residential
areas are more prone to nuisance flooding. It is suggested these neighborhoods
elevate their ground floor by about 0.5 m to cope with the current flooding
situation. Besides that, some places, such as those marked in Fig. 9 with the al-
phabets d and e (open space), f (Pitt St.), and g (E Bay St.) are predominantly
flooded with rainfall alone, and without any tidal influence. In future studies,
the CCF flood simulation integrating with climate change projections and sea
level rise scenarios is needed to propose mid to long-term flood resilience plans
in these areas.

1. Results Discussion

Previous research efforts for CCF modeling in the Charleston peninsula have
engaged nuisance flood models (e.g., Morris and Renken, 2020) or DEM-based
empirical rainfall-runoff models (e.g., Conrad, 2019). This study improves the
flood risk analysis for the Charleston peninsula applying a fully-coupled model
that integrates the complex drainage system with a distributed hydrologic model.
In this study, the distributed rainfall-runoff model is parameterized with fine-
resolution CNs. The floodplain dynamics and floodwater propagation repre-
sentations are improved by including the urban structures in three ways, 1) the
building footprints are imposed in NLCD land use maps, 2) the damping thresh-
old is applied in the area with building rooftops, 3) the elevation from DSM is
incorporated in the floodplain characterization. In the case of DSM data un-
availability, the CCF model can be developed using DEM and applying energy
damping threshold at areas of developed structures. This technique can be fur-
ther improved for floodplain modeling by accounting for the energy damping for
structures. This leads to higher capacity in calculating the rain-on-grid of the
urbanized coastal watersheds. The CCF model captures the physical process
more holistically and results show that Charleston is suffering from the tidal
influence and sewer system congestion at several places.

A vast majority of the Charleston peninsula is urbanized by landfilling the tidal
creeks which increases the risk of flooding in the low-lying peninsula. The nui-
sance flooding is frequent and can occur any time when the tide level exceeds
1.17m NAVD tide level (Morris and Renken, 2020). CCF management in the
peninsula necessitates immediate attention since the tidal flows significantly re-
duce the drainage capacity. This study found that the flood risk in South and
North Market St., American street near Morrison St., Gadsden creek, and Lock-
wood drive is higher and need more attention on tidal flood management. The
neighborhoods near Colonial Lake, and Gadsden Creek requires improved flood
resilience and preparation to protect those historical places from sea level rise
and ongoing nuisance flooding. The northern part of the Charleston peninsula
has higher flood susceptibility due to heavy rainfall. The southern parts, on
the other hand, pose a higher susceptibility due to tidal flooding and low-lying
elevation. The ponding caused by the storm runoff calls for the development of
smart real-time drainage systems in face of CCF.
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1. Summary and Conclusions

The CCF has a destructive potential in coastal urban areas. Over the past
decades, several CCF models have been developed. However, the flood dynam-
ics in the coastal urban area are still not well understood since these models
deploy a one-way or two-way coupling procedure. In this study, a drainage
system consisting of tidal creeks and underground sewers having 1D and 2D
modeling characteristics is adopted. Moreover, the underground drainage net-
work is modeled using 1D links, and tidal channels are modeled by 2D hydraulic
elements. In a one-way coupling system, 1D hydraulics ignores the coastal flood-
induced overland flow in tidal channels (Shi et al. 2022). The tidally influenced
drainage system in simulating CCF should be explicitly considered rather than
one-way or two-way coupling. In a fully-coupled system, however, the underly-
ing connected and dynamic physics of CCF are incorporated by representing the
interconnection of tidal flow with the surface runoff in each time step and model
nodes, which in turn makes the CCF models truly process-oriented. The pro-
posed fully coupling framework for CCF modeling considers the mass balance of
the CCF process and presents a novel solution to eliminate these issues with one-
way, two-way, or tightly coupling systems and offers flexibility to incorporate a
wide-variety of drainage components in coastal watersheds.

In the current study, a fully-coupled CCF model is developed coupling the dis-
tributed hydrologic model and surface hydraulics (1D and 2D). This CCF model
is the first attempt to establish a fully-coupled CCF model to find FIMs for the
Charleston peninsula as well. The CCF model considers the mass balance of
process-oriented CCF caused by joint storm surge and rainfall runoff interac-
tions. The drainage network consists of underground sewer pipes (1D links),
and tidal channels (2D links), and the detention ponds can represent the inter-
connection of storm runoff with tides. The overland flow model considers the
tidal backwater flow from surrounding tidal rivers. The ELF has been applied
to calibrate the CCF model. Results show that using DSM to represent the
topography and momentum balance method as an overland flow model with
an ELF of 0.7 yields the most accurate flood simulation results with a correla-
tion coefficient of 0.86. The momentum balance method achieves the highest
accuracy since the physics of floodwater interactions with urban structures is
represented rather conservatively in momentum balance compared to energy
balance or diffusive wave methods. The flood simulation shows that both the
drainage outlets and riverbanks overflowed by high tides can make significant
flooding conditions in Charleston. The CCF model helps to identify both tidally
influenced flood locations and rainfall-influenced flood locations. The CCF dur-
ing simultaneous intense rainfall and the high tide suggests the highest flooding
risk, about 19% greater flood inundation extent than the flood caused by rain-
fall alone. The validation with road closure data proves the model’s capacity to
capture street-level flooding. The model validation result shows that the CCF
model captures 98.35% of road closure locations in the SC flood event of 2015.

While the proposed fully-coupled modeling effort in this study offers a great
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leap forward for the flood modeling community and also for flood engineers
and managers, in particular in the Charleston region, future studies should
target increasing the computation power of the modeling to make this model
more operational. Moreover, it is expected that further studies to be conducted
for testing and validating the momentum-balance-based overland-flow models
with observed flood velocity data or sensors-based observation rather than flood
depth to improve micro-level-modeling physics. Additionally, a flood optimiza-
tion ICPR method for using a spatially flexible ELF can be recommended in
order to improve the efficacy of CCF modeling.

1. Data Availability

The input data and optimal model parameter used for developing the ICPR
model in the study will (data archiving is underway) be available at the Uni-
versity of South Carolina via Open Science Framework (OSF). OSF allows re-
searchers to collaborate, document, archive, share, and register research projects,
materials, and data.
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