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Abstract

There are now more interferograms being generated from global satellite radar datasets than can be assessed by hand. The

reliable, automatic detection of true displacement from these data is therefore critical, both for monitoring deformation related

to geohazards and understanding solid earth processes. We discuss improvements to an unsupervised, event agnostic method

for automatically detecting deformation in unwrapped interferograms. We use an anomaly detection framework that recognises

any deformation as “anomalies” by learning the ‘typical’ spatio-temporal pattern of atmospheric and other noise in sequences

of interferograms. Here, we present developments to our prototype model, ALADDIn (Autoencoder-LSTM based Anomaly

Detector of Deformation in InSAR) using (1) a self-attention training technique to exploit redundancy in interferogram networks

to capture the temporal structure of signals and (2) the addition of synthetic data for training. We evaluate the impact of

these developments using two geophysical scenarios: (1) the detection of the same M w 5.7 earthquake used to test our original

model (20.03.2019, south-west Turkey), (2) the persistent uplift of Domoyu volcano (17.05.2017 to 14.12.2018, Argentina). We

make a quantitative evaluation of the performance of our method using synthetic test data and find that for peak displacements

exceeding a few cm and of length-scale greater than a few hundred metres, overall detection accuracy is 80 to 90%.
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Key Points:9

• We present a novel, unsupervised deep learning architecture tailored to differential10
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Abstract16

There are now more interferograms being generated from global satellite radar datasets than17

can be assessed by hand. The reliable, automatic detection of true displacement from these18

data is therefore critical, both for monitoring deformation related to geohazards and under-19

standing solid earth processes. We discuss improvements to an unsupervised, event-agnostic20

method for automatically detecting deformation in unwrapped interferograms. We use an21

anomaly detection framework that recognises any deformation as ”anomalies” by learning22

the ’typical’ spatio-temporal pattern of atmospheric and other noise in sequences of interfer-23

ograms. Here, we present developments to our prototype model, ALADDIn (Autoencoder-24

LSTM based Anomaly Detector of Deformation in InSAR) using (1) a self-attention training25

technique to exploit redundancy in interferogram networks to capture the temporal struc-26

ture of signals and (2) the addition of synthetic data for training. We evaluate the impact27

of these developments using two geophysical scenarios: (1) the detection of the same Mw28

5.7 earthquake used to test our original model (20.03.2019, south-west Turkey), (2) the29

persistent uplift of Domoyu volcano (17.05.2017 to 14.12.2018, Argentina). We make a30

quantitative evaluation of the performance of our method using synthetic test data and31

find that for peak displacements exceeding a few cm and of length-scale greater than a few32

hundred metres, overall detection accuracy is 80 to 90%.33

1 Introduction34

The abundance of routinely acquired Synthetic Aperture Radar (SAR) imagery from35

missions such as the European Space Agency’s Sentinel-1 (and anticipated for the NASA-36

ISRO SAR Mission - NISAR) has led to a surge in deep-learning-based approaches for the37

detection of deformation (Anantrasirichai et al., 2018; Gaddes et al., 2019; Rouet-Leduc et38

al., 2021). These efforts are critical for optimising the usefulness of large Interferometric39

SAR (InSAR) datasets for monitoring deformation, given that the high volumes and rates of40

data (1000-2000 images/day, ≈ 10 TB/day) prevents systematic manual analysis. Detecting41

deformation in InSAR datasets is critical for monitoring geohazards (especially volcanoes42

(Ebmeier et al., 2018), slow landslides (Bekaert et al., 2020) and anthropogenic deformation43

(Semple et al., 2017) and for our understanding of broader tectonic processes (Elliott et44

al., 2020)). Deep learning approaches also have the potential to transform the emphasis45

of scientific research, allowing the automated discovery of signals in uniformly analysed46

regional or global datasets rather than studies focused on locations where deformation is47

already well known.48

Deep learning has been widely applied to the field of remote sensing, (e.g., (Sharma49

et al., 2020; Ren et al., 2021; Shakeel et al., 2019), mostly to satellite datasets that com-50

prise time sequences of images. In contrast, InSAR has a unique spatio-temporal structure,51

as interferograms provide information about changes between two dates (differential data).52

However, the majority of applications of deep learning to InSAR so far have used 2D spatial53

patterns of phase in individual interferograms (Anantrasirichai et al., 2018). This has al-54

lowed the application of off-the-shelf models like AlexNet (Krizhevsky et al., 2012) or U-Net55

(Ronneberger et al., 2015), e.g., modified by (Chen et al., 2022) for semantic segmentation56

of active landslides. A disadvantage of this is that off-the-shelf methods are rigid in terms57

of input size (e.g., the input size of VGG (Simonyan & Zisserman, 2015) is 224 × 224 ×58

3, where 224 is the size of an image in X and Y dimensions and 3 represents the R(red),59

G(green) and B(blue) channels of a digital image) because they are built on existing models60

that were initially trained on RGB images. An alternative approach is to use time-series de-61

rived from interferograms to obtain time sequences of images for input (Gaddes et al., 2019),62

although this requires an additional processing step that also has the potential to introduce63

errors. Most deep learning approaches applied so far for InSAR data are supervised and64

tailored to detect specific deformation events (Anantrasirichai et al., 2018; Sun et al., 2020;65

Rouet-Leduc et al., 2021). These approaches are either trained on event-specific labelled66

interferograms (Anantrasirichai et al., 2018) or on synthetic data specifically designed for a67
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Figure 1. Cartoon of the dataset structure where each line represents an interferogram made

by subtracting corresponding epochs (single date images) represented by circles. We consider a

combination of 9 epochs (Time t1 to t9 ) that constructs 26 interferograms, to be a single ’data

batch’. Moving along in time with a temporal overlap, the next data batch consists of 9 epochs

but from t5 to t13 and so on. For illustration purposes, only three consecutive data batches are

shown here. The interferograms (input) constructed from the relevant epochs (output) are shown

in orange when they are first passed to the model and green when they have been passed twice

due to the overlapping nature of input data. The data network constructed within each batch is

such that epochs from t1 to t5 are connected to the following four epochs but for the last 4 epochs

from t6 to t9, each epoch connects only with the following available epochs in the data batch. For

example at epoch t8, it is used to construct interferograms with t9 only, these connections can be

visualized by the ’lines’ in each data batch. Only one line is going forward from t8 to t9.

particular task, for example, to detect volcanic deformation (Anantrasirichai et al., 2019),68

landslides (Zhang et al., 2022; Chen et al., 2022), anthropogenic signals (Radman et al.,69

2021; Anantrasirichai et al., 2020) or tectonic deformation (Rouet-Leduc et al., 2021).70

Here, we present the development of an alternative approach based on anomaly detec-71

tion and tailored specifically to the differential structure of InSAR data, where individual72

images (interferograms) represent the difference in phase between two temporally sepa-73

rated SAR images. InSAR data are very different to the video time-series commonly used74

to develop machine learning analysis methods, where a single image, on the other hand,75

records information at a specific moment in time (for example surveillance video time-series76

(Nawaratne et al., 2019)). A particular challenge presented by InSAR data is the often very77

low signal-to-noise ratio (SNR), because the contribution of deformation to the phase in78

an individual interferogram may be an order of magnitude lower than contributions from79

changes in atmospheric properties. We aim to develop an approach that is event-agnostic,80

sensitive to both low-rate and transient deformation, and insensitive to errors associated81

with higher level InSAR processing (e.g., time-series smoothing, fading signal in time series82

constructed from short-timespan interferograms).83

Our previous prototype work (ALADDIn: Autoencoder-LSTM based Anomaly Detec-84

tor of Deformation in InSAR (Shakeel et al., 2022)), was trained on sequences of unwrapped85

interferograms from northern Turkey. We use a fully convolutional network (FCN) (Long86

et al., 2015) that comprises a CNN-LSTM-based encoder and decoder, separated by a neu-87

ral network. Although the model is capable of detecting deformation as an anomaly, we88

observed a lack of temporal dependency in some results, and qualitative analysis showed89

that estimations of deformation varied more than expected for independent estimations of90

the same epoch. For ALADDIn, a group of 9 epochs (making 26 interferograms, see Figure91
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1), makes up a single ’data batch’, and is treated independently from the next batch. A92

comparison of epochs that were estimated by sequential batches (green circles in Figure 1)93

showed that ALADDIn sometimes estimated different spatial patterns of phase for the same94

epoch due to poor perception of the temporal connection between batches.95

In this study, we present important improvements to the ALADDIn approach compris-96

ing (1) an improved training method that makes use of the redundancy in interferogram97

networks to incorporate information about the temporal structure of signals from multiple98

data batches and (2) the addition of synthetic data for training. We take a transfer learning99

(Torrey & Shavlik, 2010) approach by re-purposing the pre-trained model from ALADDIn100

(Shakeel et al., 2022) with our new model for longer interferogram sequences. In addition, we101

assess the performance of our method using three different scenarios. We evaluate and com-102

pare our models on a synthetic test dataset consisting of multiple variations of magnitude103

and wavelength of an anomaly representing deformation (figure 5). We use the magnitude104

5.7 earthquake from southwestern Turkey previously used as a test for ALADDIn (Shakeel105

et al., 2022) to illustrate the impact of our method improvements (figure 7). We then assess106

the impact of our choice of ’patch’ size on anomalous deformation retrieved while exploring107

the potential for reproducing long-lived variations in displacement rate using a volcanic test108

case from Domuyo volcano, Argentina (figure 8).109

2 Methodology110

We aspire to provide a method for learning from very large, unlabelled InSAR datasets111

without the need for manual interpretation. The process of labelling interfeorgrams to112

act as training data is labour intensive, potentially subjective and requires a priori choices113

about the characteristics of deformation considered interesting. In principle, more diverse114

data results in more accurate outputs for deep learning methods (Marcus, 2018), but for115

unlabelled datasets, this relies on the model architectures being intelligent enough to focus on116

useful information as there is no ’target’ or ground truth (set of actual input interferogram as117

shown in figure 3(b), referred to as ’GT’) available. Our solution is to approach the analysis118

of large, unlabeled InSAR datasets as an anomaly detection problem, where anomalies119

are any phenomena that differ from the dataset’s ”normal” spatio-temporal patterns. For120

InSAR, we consider ‘normal’ phenomena to arise from any contributions to phase not caused121

by changes to the Earth’s surface. These are generally dominated by atmospheric phase122

contributions, but may also include errors in estimations of satellite orbitals and ‘nuisance’123

signals associated with processing such as unwrapping errors, e.g, (Emardson et al., 2003;124

Simons & Rosen, 2007).125

Autoencoders (Baldi, 2012) and fully convolutional networks (FCN) (Long et al., 2015),126

are types of network architectures commonly deployed to perform unsupervised tasks (Bengio127

et al., 2012). The input and output of such models are identical, so the models learn the128

underlying distribution of the data and represent them in the form of low-dimensional fea-129

ture embedding. These embedding act as a bridge between an encoder and a decoder (the130

main components of an autoencoder), that encrypts and de-crypts useful information about131

multiple attributes of the data. For the task of anomaly detection, these models are trained132

on ’normal’ data so that they learn the distribution of ’normality’ (Gong et al., 2019). After133

training, when these models are tested on anomalous data, they predict the output with134

high reconstruction loss as they are unable to accurately reconstruct the anomaly (as they135

are rare and never seen by the model). Different combinations of layers can be added to136

these architectures to meet the objectives of the task and to suit the particular data prop-137

erties. The wide applications of autoencoders for anomaly detection include (Zhao et al.,138

2017; Gong et al., 2019).139

Both ALADDIn (Shakeel et al., 2022) and the developments presented here take an140

anomaly-detection approach based on the use of autoencoders and thus avoid both time-141

consuming pixel-wise labelling for training data and are agnostic in terms of deformation142
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detected. By using networks of interferograms as inputs we treat spatial and temporal143

patterns co-dependently and do not rely on the derivation of time series from interferograms144

that could introduce further artefacts. We exploit the fact that ’normal’ signals associated145

with individual SAR acquisition dates (’epochs’) contribute to related interferograms with146

a temporal pattern that is quite distinct from deformation, which appears as ’anomalous’.147

Our model is trained to predict background epoch time-series from the noise in a redundant148

network of interferograms. Because deformation has a distinct temporal structure, we can149

therefore separate it from the predicted baseline signals.150

2.1 Dataset details151

We use Sentinel-1 InSAR data for training and testing our model. Our input data152

are networks of unwrapped interferograms in radar coordinates generated automatically by153

the COMET LiCSAR processing system (Lazecký et al., 2020) 1. This system constructs154

interferograms with the 4 shortest possible timespans both forwards and backwards from155

each epoch (as illustrated in the figure 1). For a satellite repeat time of 6 days, this results156

in each epoch contributing to 8 interferograms (6,12,18,24 days). We re-purpose the model157

pre-trained for ALADDIn here, using a transfer learning approach. ALADDIn was trained158

on data from Turkey (Shakeel et al., 2022) and here, we use the same training dataset159

(LiCSAR Frame name: 014A 04939 131313, data spanning from the year 2017 to 2019)160

that was first passed through ALADDIn and its predictions are used to initiate the training161

of our new temporal self-attention model. This dataset was selected on the basis that they162

were not expected to contain any known examples of deformation, but were dominated by163

atmospheric signals.164

The frame is divided into cubes of size 256 × 256 × 26 pixels, covering an area of ≈165

20.5 km × 20.5 km. This is done in order to manage the model’s complexity and the166

memory needed to train a large number of parameters. Also, instead of passing the entire167

time series to each training iteration, a set of 26 interferograms (abbreviated to IFGM) that168

cover 9 epochs (abbreviated to EP) are passed, with a 50% spatial overlap (in both N-S169

and E-W directions). This set is called a data batch and is shown in the figure 1, where170

circles represent EP and the lines connecting each circle i.e. EP represents the IFGMs. The171

9 EP long temporal sliding window moves with a stride of 4, ensuring a > 50% temporal172

overlap between subsequent input sequences. Each EP in the sequence is connected to all173

subsequent and preceding EP by the 26 IFGM, up to a maximum distance of 4 forward and174

backward in time. For instance, the central EP is linked to all other EP by 8 IFGM, but all175

other EP in the data batch are linked with fewer than 8, with the first and last EP in the176

batch being linked with a maximum of 4 IFGM (as illustrated in the figure 1, where only177

four lines/IFGMs can be seen linking EP at t1 and t9).178

2.2 New network architecture using temporal self-attention179

We designed the network architecture of this training system to exploit redundancy in180

the input interferogram network, that is, that information about each epoch may appear in181

multiple interferograms (figure 1).Despitef a high detection rate (91.25% overall performance182

accuracy on a synthetic deformation test case) ALADDIn (Shakeel et al., 2022), produced183

a different set of solutions for the five EP that overlap between data batches (figure 1 green184

circles represent overlapping EPs in the data network). We, therefore, aim to design a185

system that predicts realistically similar spatio-temporal patterns for EPs in the overlap186

between data batches.187

1 The unwrapped radar-coordinate data format with which the interferograms were saved until the year

2019, is no longer saved. However, the exact data format on which this model is trained can be reconstructed

from the LiCSAR intermediate products that are preserved
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Figure 2. Illustration of network architecture and self-attention training scheme. (b) Bi-Deep

model from AlADDIn pipeline (Shakeel et al., 2022) is used for pre-trained weights and to initiate

predictions for self-attention. The layers used to create the architecture are: time-distributed 2D

convolutional, maxpooling, normalization, 2D convolutional LSTM, fully connected layers, trans-

pose convolutions, upsampling and a bi-directional LSTM layer. Skip connections are also in place

to merge features. For temporal self-attention in (a) the decoder is disconnected to fuse features

from the overlapping epochs from the previous data batch(t−1). The pre-predictions from the pre-

vious data batch(t−1) is passed through a mini-encoder consisting of a pair of time-distributed conv

and two convolutional LSTMs

The base of the deep learning model is a fully convolutional network, including an188

autoencoder combined with a neural network as shown in figure 2(b). We use the same189

number of layers as used in the encoder and decoder of ALADDIn (Shakeel et al., 2022).190

In fact, instead of initializing the weights of these layers from scratch, transfer learning191

(incorporation of previously learned knowledge(Torrey & Shavlik, 2010)) is applied and the192

previously trained weights are utilized to begin training.193

The encoder translates the hidden features/distributions of the input data batch, which194

is a batch of interferograms (26x256x256) (figure 1). The neural network then converts the195

features that are learned from IFGMs into the form of EPs (9x256x256). This converted196

feature space is then decoded and interpreted to predict the unknown EP time-series. This197

EP time-series should be spatially and temporally consistent (in a sequential manner), re-198

gardless of the overlapping nature of the data batches. The features learned for every (data199

batch(t−1)) batch should therefore facilitate learning for its proceeding (data batch(t)), es-200

pecially for overlapping epochs, as they are already been computed in the previous iteration201

when (data batch(t−1)) was processed. This form of attentive learning (a mechanism that202

focuses on specific temporal regions in a sequence to create a representation of it, for ex-203

ample, here have focused specifically on overlapping EPs. ) is introduced in the decoder204

part of the model. The continuity of the decoder is interrupted and predictions of the last 5205

epochs (data batch(t−1)) are fed back by passing them through a mini encoder. These fea-206

tures are combined with the first 5 epochs (data batch(t)). The merged features are passed207

to the rest of the decoding layer to make refined epoch predictions. In this way, the cyclic208

nature of deep learning model training and backpropagation is not affected. Because no209

previous prediction is available in the case of the very first data batch(t=0), the 5 epochs are210

constrained only by features using the Bi-deep model of ALADDIn (Shakeel et al., 2022).211
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The model consists of a set of convolutional and convolutional Long Short TermMemory212

(LSTM) with pooling layers in the encoder. The purpose of pooling layers is to down-213

sample the input, by taking, for example, a minimum, maximum or average value. In this214

model, we have used maximum pooling (referred to as maxpool), to gather the maximum215

value of features within a window size. Likewise, transposed convolutions and convolutional216

LSTM with upsampling layers are combined in the decoder. In between the encoder and217

decoder, the neural network consists of three 1D fully connected (FC) layers. The 3D218

convolution layer spans the input spatially in all dimensions, whereas the Long shot-term219

memory (LSTM) layer (originally 1D) is capable of maintaining memory with the help of220

learnable ’forget’, ’input’ and ’output’ gates. This, when combined with the convolutional221

operation, serves for any multi-dimensional input. This layer is tailored for the specific task222

of learning both spatial and temporal patterns co-dependently. Every convolution layer is223

followed by a normalization layer and maxpool for downsampling in the encoder. Similarly,224

in the decoder, every convolutional LSTM is followed by normalization and upsampling225

layer. Transposed convolutions (often called deconvolutions) perform similar operations but226

with broadcasting the feature map instead of downsizing. The mini-encoder used for the227

attention of overlapping 5 epochs consists of 2 pairs of convolutions, convolutional LSTM228

following normalization and maxpooling layers.229

The neurons used in the fully connected layers are 2048 and 576 (see figure 2). These230

number of neurons are of immense importance, as they are used for converting the feature231

maps from 26 interferograms (at the encoder side) to 9 epochs (at the decoder side). For232

example, the size of data after being processed by the encoder is downsized from 26× 256×233

256× 1 to 26× 8× 8× 1 then the decoder should receive an input of 9× 8× 8× 1. Hence,234

the neurons in the 2nd FC layer are computed by multiplying the dimensions 9× 8× 8× 1235

= 576. So, it can be unrolled back into the dimension = 9 × 8 × 8 × 1 and used by the236

multi-dimensional layers in the decoder. Tanh activation functions are used for every layer.237

This function ranges from [-1 to 1] which is ideal for this model, as negative values are238

equally important as positive values.239

Furthermore, skip connections are added for feature reusability and to avoid the problem240

of vanishing gradients (Hochreiter, 1998), where the weights (calculated by each layer in a241

’deep’ model) gradually decrease to zero and backpropagation fails. In deep convolutional242

models, this problem often occurs and hinders learning. Skip connections are represented243

by dotted lines in figure 2(b), their purpose is to re-use the output of layers and feed to244

deeper layers, to merge the information and process - adding more features helps to dodge245

the vanishing gradient problem. Finally, a bidirectional convolutional LSTM layer is added,246

that spans the output both forwards and backwards and combines features to refine the247

predictions. Two loss functions are used to constrain the model:248

LossIFG =

n∑
i=1

(OutputIFGM − InputIFGM )2

LossEP =

n∑
i=1

(5epochst − 5epochst−1)2

Loss = LossIFG + LossEP (1)

where n is the number of interferograms in the case of LossIFG, it refers to the loss com-249

puted between reconstructed interferograms by the model and the input interferograms250

which is also the ground truth. LossEP is the difference between the current predictions of251

overlapping epochs and the previous ones, so here n is 5, and the accumulated loss is then252

backpropagated. With TensorFlow (Abadi et al., 2015) as the backend, the model is trained253

using Keras (Chollet et al., 2015), a deep learning API. While training, the batch size was254

set to 1 due to the size of the images in memory being so large. A model can learn features255

through gradual changes to a loss as opposed to abrupt fluctuations when the learning rate256

is lower. We therefore selected a learning rate for the Adam optimizer (Kingma & Ba, 2014)257

of 0.00001.258
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2.3 Framework for Anomaly Detection259

When our model is tested against anomalous data, we expect to find high spatial resid-260

uals between our input data and our predicted signals and/or a high overall reconstruction261

error. Due to the event-agnostic nature of our approach, we do not rely on identifying262

specific patterns in the reconstruction error. Because we have no preconceptions about the263

spatial size, intensity and temporal structure of an anomaly, we design a novel detection264

framework to pick up all kinds of anomalies with a minimum possible rate of false positives.265

The prediction for every input data batch is refined based on the estimations of findings from266

previous data batches. We take full advantage of this capability and introduce ”shuttling”267

during test time. ”Shuttling” as its name suggests, completes multiple passes in forward and268

backward directions for all of the data batches, as shown in figure 3(a), here for illustration269

purposes the data contains three batches only. During the backward pass, the data is flipped270

spatial as well because now the pre-EP image serves as the post-EP image to compute the271

interferogram which is: postEP − preEP. The residuals (RES) shown in figure 3(b) reveal272

that reconstruction is more accurate after shuttling is implemented and the residuals are273

near zero after the second forward pass. Input IFGMs that have spatial data gaps or pixels274

with missing values (’NaN’) are a data error and one such IFGM is shown in figure 3(b)275

black boxes. If ’NaN’ is passed through the model, it will propagate through the model due276

to backpropagation and diminish the learning to a ’NaN’. To avoid this, we identify these277

missing values and replace them with a zero. This introduces box-like patterns of zeros in278

the input, but as we are enforcing the model to learn both temporal and spatial patterns.279

This helps the model to predict even when the input is zero (as shown in the black boxes of280

the figure 3 (b) ’PRED’). Even though the model makes estimates for missing pixels, these281

box-like patterns are passed in the ’RES’ through subtraction of PRED and GT.282

Once the data are shuttled completely (terminated at the third pass, when no improve-
ment results is observed), we expect anomalies to appear as a residue in residual (RES)
IFGM as shown in6. An interferogram captures the changes that occurred between two
dates, so potentially spans multiple EPs. An anomaly will therefore always show up in
several interferograms for our data structure. We first reduce the residuals to a set of NEIr

”residual epoch intervals” that are mutually exclusive in order to precisely detect the tem-
poral window of an anomaly. Since an EP interval is a different image that spans two
subsequent EP, so, NEIr is one less than the total number of EP. As NEIr are computed
from the entire set of residual (RES) interferograms rather than just one residual image,
these intervals are more noise-resistant than the shortest spanning set of residual ”daisy-
chain” interferograms. We execute a linear least squares inversion on a pixel-by-pixel basis
of our NIFGMr

residuals in order to estimate this set of NEIr residual epoch intervals (based
on the SBAS approach (Berardino et al., 2002)):

dIFGMr = G.m, (2)

where dIFGM is an array of size NIFGMr
×1 containing all NIFGMr

residual interferograms’
pixel values, m is also an array of size NEIr × 1 containing values of residual EP intervals
that we wish to solve for, and G is the design matrix of size NIFGMr×NEIr for this system of
equations, which only contains 1s and 0s. For a set of six residual interferograms (IFGM12r ,
IFGM13r , IFGM14r , IFGM23r , IFGM24r , IFGM34r ) that are created from four epochs
(EP1r , EP2r , EP3r , EP4r ), matrix G is displayed as an example in Eq 3. This system will
output three epoch intervals (EI12r , EI23r , EI34r ) based on the residuals.

IFGM12r

IFGM13r

IFGM14r

IFGM23r

IFGM24r

IFGM34r

 =


1 0 0
1 1 0
1 1 1
0 1 0
0 1 1
0 0 1


EI12r
EI23r
EI34r

 (3)

Instead of using all residuals of the overlapping epochs, we only use the latest ones predicted283

by the model, which should be the most reliable. Also, we perform the linear least square284
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Figure 3. (a) Temporal self attentive training and test-time shuttling procedure is illustrated

here. Features of overlapping EP (green circles in figure 1) from data batcht−1 are fed in the model

(pink box) for every batcht as we move across time from batcht=0 to batcht=2. While testing the

same procedure is repeated for backward interferograms (both in space and time). The last IFGMs

of forward pass (e.g., 15,16 and 16,17) are now the first IFGMs of the backward pass (e.g., 17,16

and 16 and 16,15). This process is called shuttling, it is repeated for another forward pass and

so on until no change in the output is observed (only three passes are shown here for illustration

purposes). (b) Shows an example output from of the process, where ’GT’ refers to ground truth

IFGMs which is the input to the model (presented as lines in the figure 1), ’PRED’ is predicted

IFGMs (output of the model) and ’RES’ are the residual IFGMs computed by subtracting PRED

from GT to measure what is missed by the model. Shuttling helps to achieve model predictions

that are close to the input ’GT’. In comparison of ’RES’ of forward0 (top row) and with ’RES’ of

forward1 (bottom row), it is clear that the ’RES’ is near zero. Black boxes enclosing IFGM 1,5

in all shuttling iterations display an example of spatial data gaps or pixels with missing or ’NaN’

values, that are replaced with a zero before passing through the model.

inversion for both, forward progressing data and backward progression data, to create two285

independent sets of residuals EP intervals for detection. The presence of spatial anoma-286

lies is then automatically identified in these intervals using two complementary analysis287

techniques: density-based clustering (DBSCAN) (Kriegel et al., 2011) and semivariogram288

analysis (Wackernagel, 2013).289

The residual epoch intervals are predicted to have values close to zero in the absence290

of anomalous deformation because the model will accurately reconstruct them (e.g. see291

figure 3(b)), but in the event of an anomaly or multiple anomalies within a sequence, the292

spatial structure of that anomaly will be visible in at least one epoch residual. Our goal is293

thus to separate ’normal’ intervals from the anomalous ones, without any prior knowledge of294

where anomalies anomalies appear in a sequence. We use a clustering algorithm (DBSCAN)295

(Kriegel et al., 2011) that does not require an a-priori specification of the number of clusters296

to locate anomalies. To ensure we detect all anomalies, we use both, forward and backward297
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independent sets of RES EP intervals and perform DBSCAN combining them, establishing298

two as the minimum number of points in a cluster.299

To distinguish between larger areas that are normal and anomalies with specific spatial300

frequencies (such as deformation that is distributed over small regions), we take into account301

the spatial variability measured by the semivariogram. By clustering or just computing bulk302

differences between the actual and reconstructed images (e.g. by a Mean Squared Error),303

these localised but significant changes are less likely to be found. We anticipate that residual304

epoch intervals (constructed using residual interferograms i.e. ground truth - prediction)305

that contain no anomalies will all have a similar spatial structure and, consequently, similar306

empirical semivariograms, whereas epoch intervals that do contain anomalies will have semi-307

variograms that significantly deviate from this typical structure. For each residual epoch308

interval a semivariogram is computed, and the root-mean-squared-error between each semi-309

variogram and all others in the complete set of residual epoch intervals across all sequences is310

calculated. In order to minimise the number of false positives, the classified anomalies from311

the semivariogram and clustering analysis of epoch interval time series are combined using312

the AND operation. The variables and parameters used for both these analysis method are313

same as ALADDIn (Shakeel et al., 2022).314

3 Training with Synthetic Data315

The anomaly detection model is built by understanding the continuous background316

atmospheric noise (normality). So when an anomalous event (earthquake, volcano, etc)317

occurs, the model detects it with high error - as the model fails to understand it due to318

its anomalous nature. The data used to train our model is real InSAR data from a region319

of Turkey, that do not contain any anomalous activity, but does contain data errors like320

unwrapping errors that introduce anomaly like patterns in the IFGMs. Deep learning models321

have been presented in the past to pick unwrapping errors (Zhou et al., 2021; Sica et al.,322

2020; Wang et al., 2021), ALADDIn (Shakeel et al., 2022) also detects these as an anomaly.323

The spatial data gaps and missing values for pixels also introduce artifacts in the data. In324

an attempt to further improve the detection accuracy of our method, a synthetic training325

data set is designed based on realistic background atmospheric noise. Synthetic datasets326

are commonly used to train deep learning models, as employing it overcomes the problem327

of data imbalance (Anantrasirichai et al., 2019). We test the impact of using synthetic328

training data on the performance of our model. We expected that the addition of synthetic329

training data should reduce any impact of unwrapping and other processing-related errors.330

We construct our synthetic interferograms by first generating synthetic epoch images from331

which to build them. Our simple synthetic ’normal’ (non-deforming) data set is made up332

from phase (ϕ) contributions from a planar ramp (ϕramp, representing residual errors in333

estimation of satellite orbits), stratified troposphere (ϕstrat atm) and turbulent troposphere334

(ϕturb atm, described in terms of maximum phase variance, maxvar and characteristic length335

scale exponent, α) , similar to (Ebmeier, 2016) and described as:336

ϕramp = aX + bY + c

ϕstrat atm = kH

ϕturb atm =
√
maxvar ∗ exp(−r ∗ α)

ϕEP = ϕramp + ϕstrat atm + ϕturb atm (4)

whereX and Y are pixel locations and H is the elevation from digital elevation model (DEM).
The appropriate parameters are estimated using linear least square inversions (e.g., eq 2),
where matrix dIFG is the interferogram patch, reshaped as 65536 × 1 array, G is the design
matrix (size: 65536 × 4) containing horizontal pixel location (X), vertical pixel location (Y),
elevation (H) and ones (for constant c) and m is the desired output of 4 parameters (a,b,c,k).
These values are computed for each patch location for all available time acquisitions of
the Turkey data frame used for training. We estimate the parameters (maxvar,α ) for
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Figure 4. Visualization of the synthetic training data. (a) Planar ramp (ComponentA), (b)

Stratified tropospheric (ComponentB), (c) turbulent tropospheric (ComponentC), (d) synthetic 9

epoch generated by aggregating all components (eq 4). (e) 26 synthetic interferograms, following

the data structure presented in figure 1 are made using the generated epochs shown in (d). The

line-of-sight displacement is measured in cm on a scale of -5 to 5 cm for (d) and (e), where as (a),

(b) and (c) are measured on a scale of -3 to 3 cm.

(ϕturb atm) using the residual interferogram after removal of ϕstrat atm + ϕramp:

R = dIFG −G.m, (5)

To generate the synthetic EP, a, b, k, c, maxvar and α are drawn randomly from a distri-337

bution of each of these parameters with mean = 0 and standard deviation estimated their338

distribution in the training dataset. Because the variables are computed using interfero-339

grams, their sigma values are divided by
√
2 so that it can be used to draw a distribution340

for EP images.341

We use the same network architecture described in Section 2.2, but synthetic data342

replaces the real data for training of both the Bi-Deep model of ALADDIn and temporal343

self-attention model. The one main difference when using synthetic training data is in344

the estimation of the loss function. Previously, we have been using the predicted epochs345

to reconstruct interferograms to compute loss function. Now, we use the aggregated loss346

of interferograms and epochs, to take advantage of having synthetic ’ground truth’ of EP347

themselves.348

4 Results and Analysis349

We evaluate the performance of our improved models on the basis of (1) temporal350

consistency in overlapping data batches, (2) the range of anomalies detectable in terms of351

spatial and temporal scale, (3) the models ability to process large areas using sliding spatial352

and temporal windows and (4) its ability to detect a range of deformation types. We make353

a quantitative assessment of the detection capabilities of our model using very simplified354

synthetic deformation (Section 4.1, Figure 5). Our first real-data test case, the 20th March355
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2019 Southern Turkey magnitude 5.7 earthquake, was also selected to allow us to assess the356

impact of the developments presented here using a relatively high SNR deformation pattern357

(Section 4.2, Figure 7 . The second, more challenging test, involves relatively high rate358

deformation (> 10 cm/yr) at Domuyo volcano, Agentina, that is nevertheless not apparent359

in individual shorter timespan interferograms due to high magnitude atmospheric noise360

(Section 4.3, Figure 8).361

4.1 Tests on synthetic data362

We select which model to apply to real datasets, by using synthetic tests to evaluate the363

performance of all four model variants: (1) ALADDIn trained on real data (the prototype364

model presented by (Shakeel et al., 2022), (2) Temporal self attention model trained on365

real data, (3) ALADDIn trained on synthetic data and (4) Temporal self attention model366

trained on synthetic data.367

We design a synthetic test to compute the accuracy and assess the capacity of our
models in terms of the wavelength and magnitude of the deformation signal that can be
accurately reconstructed from our model. For simplicity, we use a 2D Gaussian spatial
displacement pattern with varying magnitude and wavelength, and add it at eight random
instances in a test patch location of Turkey data frame (LiCSAR frame 014A 04939 131313
i.e. the southern section of our training frame reserved for evaluation purposes) that has
never been seen by the model during training. The variance of this dataset ranges from 0.1
to 22 with a mean value of 2.4. Noise is dominated by atmospheric phase contributions with
typical wavelengths of 10’s km. Our synthetic deformation anomaly takes the form:

Z(x, y) = A. exp (−(x2 + y2)/r) (6)

where r is the exponential length-scale or wavelength, that varies from 10 m to 12 km. A368

is the scaling parameter that is directly proportional to the magnitude or peak-value that369

varies from 1 cm to 11 cm (almost doubling each time to cover maximum range with fewer370

test variations). The spatial coordinates x and y are relative to the location of Gaussian371

peak. This means that the SNR for this test dataset range from 0.0003 to 70 (1 cm peak372

displacement) to 0.0000003 to 1.7 (11 cm peak displacement). The magnitudes shown on the373

y-axes of Figure 5a reflect peak displacement, which means that the average displacement374

values are in practise much lower. The detection thresholds indicated by the pink boxes375

on Figure 5a are therefore very conservative and we are in practise are likely to be able376

to detect lower average magnitudes of deformation, depending on SNR and interferogram377

network redundancy (see Section 4.3).378

We examine a total of 105 scenarios, each consisting of 10 data batches (spanning from379

to 28th July 2017 to 18th April 2018), containing 8 synthetic anomalies. The test set is380

passed through all four models and a comparative analysis is done on a quantitative as381

well as qualitative basis. Figure 5 (a) shows a heat-plot of true positive rate (TPR also382

called the Recall). As it is a synthetic dataset, ground truth is known before hand and383

one-hot encoding (an array of zeros and ones representing whole dataset) of ground truth384

and predictions are computed, where a label ’0’ is for normal data and ’1’ for an anomaly.385

TPR (Recall) is then plotted for each test sample and for each model. The two network386

architectures ALADDIn and Temporal self-attention, along with their synthetically trained387

counterparts, follow similar patterns of performance. Both ALADDIn and Synth-ALADDIn388

perform weakly with a low TPR (Recall) (<20 % and lower) even for higher magnitudes389

and wavelengths. The temporal self-attention model and its synthetic counterpart perform390

better, with higher TPR (Recall) (>60%) for lower magnitudes (2 cm) and higher wave-391

lengths. The mean recall is then plotted in comparison with the mean false positive rate392
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(a) True Positive Rate (Recall) = TP / (TP+ FN) (b) 
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Figure 5. (a) Heat map plot of true positive rates (Recall) for all four model, ALADDIn

(Shakeel et al., 2022), Temporal self-attention, synthetic-ALADDIn (trained on synthetic data)

and synthetic-Temporal self-attention (trained on synthetic data). SNR ranges from (0.0003 to 70)

for 11 cm peak value and (0.0000003 to 1.7) for 1 cm. For 4 cm SNR ranges from (0.00004 to 11).

Pink polygon on each of these plots display the region of accurate detection of each model. The x-

axis corresponds to wavelengths starting from 10 m to 12 km, ’*’ represents the same wavelength but

with different location (bottom left corner) on the patch. Y-axis corresponds to varying magnitudes

from 1 cm to 11 cm. The red star marks the size of the Turkey earthquake shown in Figure X.

(b) Bar plots illustrating mean recall (orange), mean false positive rate (yellow) and mean overall

accuracy (blue) for all four models. Note that the detectable displacement magnitudes quoted

here are peak values in a dataset with a background of variance of 0.6 m, and are therefore very

conservative.
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Figure 6. The output of two synthetic data batches for the Temporal self-attention model. The

figure shows two examples of synthetic anomalies, (top) magnitude 7 cm and wavelength 1.5 km

and (bottom) magnitude 4 cm and wavelength 7km. ‘GT IFGM’ is ground truth interferogram,

‘PRED EPs’ is the predicted epoch, ‘REC IFGM’ is the reconstructed interferograms made using

PRED EPs and ‘RES IFGM’ is the residual interferogram that carries the anomalous signal missed

by the predictions.

(FPR) and mean overall accuracy for each magnitude, as follows::393

TPR(Recall) = TP/(TP + FN)

FPR = FP/(FP + TN)

OA = (TP + TN)/(TP + TN + FP + FN) (7)

where TP is true positive, FP is false positive, TN is true negative and FN is false negative.394

Negative here corresponds to the ’normal’ data or 0’s and positive corresponds to anomalies395

or 1’s. OA is the overall accuracy, TPR and FPR are true and false positive rates respec-396

tively. The plots in figure 5 (c) shows that average overall accuracy of each model is greater397

than 70%, dominated by a high specificity (high TN rate). The FPR increases as we move398

across the models, largely because the model is fitting to the ’normality’ it learned from399

the training data, leaving greater residuals and resulting in false flags. These FPs includes400

unwrapping errors and missing data as well as signals due to deformation. The models that401

do a better job of predicting ’normal’ interferogram patterns therefore flag more of the errors402

in the input data, which are classified as anomalies according to our tests. The temporal403

self-attention model has proven to be the most accurate one when compared to its synthetic404

counterpart because the former’s FPR is lower (as shown in figure 5 (b)). Figure 6 displays405

the results of temporal self-attention for two synthetic test scenarios both for low magnitude406

and greater wavelength (bottom) and for higher magnitude and lower wavelength (top). The407

model accurately estimates the spatial structure of flagged anomaly as shown in figure 6.408

The capacity of each model - that is the range of anomaly wavelengths and magnitudes it is409

capable of flagging - is indicated by the pink polygons on figure 5(a)). The area of polygon410

is much greater for Temporal Self-attention and its synthetic counterpart than the original411

ALADDIn model.412
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Table 1. Fbeta Measure

Models F1 F0.5 F2

ALADDIn 0.36 0.39 0.34

Temporal self-attention 0.41 0.37 0.45

Synth-ALADDIn 0.26 0.30 0.24

Synth Temporal self-attention 0.37 0.33 0.43

Similar trends can be seen in Table 1, where Fbeta score is considered to balance the413

affect of minimizing FP (Precision) or minimizing FN (maximizing TP) (Recall). These414

two factors are combined with a beta values of (1, 0.5 and 2) to compute the Fbeta scores.415

It is calculated using eq 8. When beta is 1, where recall and precision are given equal416

importance, Temporal self-attention has the maximum score of 0.41. But when beta is417

decreased to 0.5, this mean that the measure is focusing more towards minimizing FP then418

the score of ALADDIn is greatest with 0.39. Whereas, when beta is 2, that is giving more419

weight to the Recall then again Temporal self-attention has the maximum score of 0.45. The420

analysis proves that the Temporal self-attention model is best as it outperforms all others421

models in terms of balancing a high recall. We emphasise the recall in our analysis, because422

we do not want the model to miss any anomalies. While FP can always be reviewed by423

human intervention, we prioritise not missing an event that might be anomalous.424

Fbeta =
((1 + beta2)× Precision×Recall)

(beta2 × Precision+Recall)
, (8)

425

4.2 Real case study (I): 2019 Turkey earthquake426

We use a 5.7-magnitude earthquake that took place in southern Turkey on 20th March427

2019 (Elliott et al., 2020), and was previously used to test ALADDIn (Shakeel et al., 2022)428

to evaluate the accuracy of our models. This south-western region of Turkey has experienced429

major earthquakes in the past (Mw 7.0 in 1914 (Ambraseys, 1988), Mw 6.2 in 1971 (Taymaz430

& Price, 1992), Mw 6.2 in 1995 (Wright et al., 1999) and Mw 6.6 in year 2017 (Karasözen431

et al., 2018)). InSAR data that has been analysed by our model, estimates deformation of432

approximately 4 cm (as reported by (Elliott et al., 2020)), shown in figure 7 (c). The data433

for this test case is processed from the time-period 18th September 2018 to 10th April 2019.434

We divide the data into 7 data batches (according to figure 1), comprising 32 epoch intervals435

in total. This test region is never seen by any of the models during training. The method436

ALADDIn successfully detected this earthquake and estimated its spatial structure, but due437

to the overlapping data structure, two variations of the same instantaneous anomaly were438

retrieved, as shown in figure 7 (a). It can be seen that the Temporal self-attention model439

constructs one, more accurate, estimate (the spatial structure in the EIr closely matches440

with the GT structure captured in the IFGMs) of epoch-interval whereas the two variations441

estimated by ALADDIn are different in terms of spatial pattern (shown in figure 7 (a)). On442

comparison of residual intervals EIr (figure 7 (a)) with the estimated earthquake structure443

(figure 7 (d)), it can be seen that the proposed method produces an anomaly pattern in the444

residuals closer to actual structure (as reported by (Elliott et al., 2020)). The 10 anomalous445

interferograms (shortest 6-day to longest 24-day) spanning the earthquake are all flagged by446

the model. These are marked red in the plot shown in figure 7 (c) as compared to the rest447

’black’ (normal) interferograms. The estimated spatial structure of the flagged anomaly by448

the Temporal Self-attention model is shown in figure 7 (e).449
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Figure 7. Test results of real earthquake of all four models are shown in this figure. (a) shows

the detected residual based epoch intervals (EIr) of all four models. (b) Shows the predicted epoch

(EPs) for the Temporal Self-attention model. The red box enclose the 2 EPs that cover earthquake

date (20.03.2019), represented by a red star. (c) Shows the network of interferogram used for testing

with detected interferograms marked red, covering the detected earthquake interval (marked with

red dotted line). (d) Shows the shortest interferogram capturing the earthquake anomaly. (e) Shows

the zoomed in patch of estimated spatial structure of the detected anomaly.
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4.3 Real case study (II): Domuyo Volcano, Argentina450

We apply our most accurate model - Temporal Self-attention trained on real data - to an451

additional real test case. We select a well-documented period of uplift at Domuyo volcano,452

Argentina (Lundgren et al., 2020; Astort et al., 2019; Derauw et al., 2020), because this453

allows us to examine (1) how our model trained on real InSAR data from northern Turkey454

performs in a location with completely different atmospheric conditions and topography and455

(2) how well we can detect persistent rather than transient deformation, and (3) how our456

model performs when the deformation signal (in this case - 64 × 40 km) exceeds our patch457

size (20.5 × 20.5 km).458

Domuyo stratovolcano (4702 m elevation), in northern Patagonia, is thought to be late459

Pleistocene (but possibly Holocene) age. It has no record of historical activity, but a major460

hydrothermal field centred southwest of the volcano’s flanks has a very high thermal energy461

release and recent gas-driven explosions, which imply the presence of an active magmatic462

system (Chiodini et al., 2014; Lundgren et al., 2020). Further evidence for this comes from463

uplift, which has been attributed to the intrusion of volatile-rich magma at 6.5-7 km depth464

(Astort et al., 2019), and has occurred in lagged correlation with edifice-wide warming465

(Lundgren et al., 2020). Domuyo subsided between 2008 and approximately 2013, before466

entering a phase of uplift in 2014 with a maximum rate of 15 cm/yr. Uplift slowed until467

early 2021, when the volcano began to subside. We selected a period of relatively high-rate468

uplift between May 2017 and December 2018 for our method test (Figure 8a). Over this469

interval deformation was relatively constant, so we expect every interferogram to be flagged.470

This case study also provides the opportunity to assess the implications of applying deep471

learning to automatically processed, noisy InSAR data sets with significant of data gaps.472

The network design for standard LiCSAR processing relies on short timespan interferograms:473

4 forward connections for each epoch, maximum interferogram length of 48 days for 12474

day acquisition intervals, as at Domuyo. This means that even for the relatively high rate475

persistent deformation at Domuyo, displacements in individual interferograms are commonly476

< 1 cm, well below the level of atmospheric contributions (Figure 8b). Furthermore, the477

standard LiCSAR network design is not optimised for regions with major seasonal variations478

in phase coherence (e.g., snow cover). This results in loss of coherence in our test dataset,479

relative to a network tailored to include only summer-summer interferograms (Lundgren et480

al., 2020).481

The interferograms we analysed also had a minimum 12 day interval as compared to482

our training data which had a minimum of 6 day gap. Where there were large gaps between483

use-able interferograms in the automatically processed data, epochs were skipped. The484

sample interferograms shown in Figure 8 illustrate typical data gaps (circle), low coherence485

with unwrapping errors (square), low SNR (inverted triangle and square) and an example486

of a high SNR image where the Domuyo displacements are visible (triangle). Although our487

training dataset did include regions of poor coherence, it did not include data gaps as shown488

in Figure 8a (circle), so these are flagged as anomalies, leading to a high FPR.489

Our method successfully identifies all 170 interferograms as containing anomalies (all490

44 epochs flagged) in our test dataset - as expected for a steady displacement signal. It491

performs well both for high and low SNR interferograms (Figure 8e), although large data492

gaps and unwrapping errors result in false positives. These results demonstrate the trans-493

ferability of training using data from Northern Turkey to a completely different geographic494

setting, with very different topography, vegetation, patterns and therefore interferogram495

noise. Our estimation of the accumulated deformation from our automatic detection is496

very consistent with displacements estimated using conventional analysis methods such as497

‘stacking’ (compare Figure 8 b and d).498

These results also demonstrate how our method can be used to process larger regions499

using a ‘sliding window’ approach, and stitching the results together to reconstruct the500
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Figure 8. (a) Time series of displacements at Domuyo Volcano, made from LiCSBAS time

series algorithm (Morishita et al., 2020) using LiCSAR interferograms (b) Cumulative deformation

estimated from a stack of the dispalcement rates for all GT IFGMs, assuming a linear displacement

rate. (c) Detection map showing flagged EIr on a patch by patch basis (spatial and temporal

sliding window for processing). (d) Our final estimation of the spatial structure of deformation

of all detected epoch intervals. (e) (Top) SNR, as estimated as the ratio of peak displacement

to interferogram variance with deforming area masked, for the processed region of interest for all

interferograms. (Bottom) Interferograms with lower SNR are displayed in comparison to the one

with higher SNR (red triangle). All of which are detected by the model.
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deformation pattern. We extract the southwest corner of the automatically processed inter-501

ferograms centred on Domuyo and with dimensions of ∼ 13000km× 11000km ( 1048× 896502

pixels). This region is further divided into 60 overlapping patches of size 256×256 and each503

patch is independently passed through the model and detection framework. The data spans504

from 17th May 2017 to 14th December 2018 (∼ 1.5 years), which results in 10 data batches505

with 44 epoch intervals for each patch location. All the flagged epoch intervals of each patch506

are visualized on a heat map (detection map shown in figure 8 (c)). While the total number507

of epoch intervals is 44 the overlapping nature of patches means that each pixel location is508

covered by at least 4 patches, except the boundaries, hence epoch intervals EIr are flagged509

by multiple patches. Patch overlap also mitigates the impact of data gaps and low coherence510

in the area of interest. A key benefit of using a CNN is translation invariance, which has511

proved to be beneficial in this case and has resulted in spatially consistent output, despite512

the fact that the whole area is processed on patch by patch basis in a sliding window scheme513

and stitched together at the end. This property of our CNN is comes from the spatial over-514

lap in our training dataset. Our final prediction of total displacement spanning May 2017515

to December 2018 is a union of all the detections for all patches (Figure 8d).516

5 Discussion517

While Deep Learning methods cannot replace detailed analysis of specific deformation518

events (including tailored InSAR processing, atmospheric correction and time series analysis)519

flagging of anomalies in very large datasets has the potential to be a powerful tool for finding520

new tectonically significant signals. Traditional methods for analysing InSAR mitigate the521

impact of low SNR in individual interferograms by methods including stacking (Pritchard522

& Simons, 2004), construction of time series (Lundgren et al., 2001), (Rouet-Leduc et al.,523

2021), filtering (Dalaison & Jolivet, 2020), etc. Some of these methods, especially when524

used in combination, are capable of detecting relatively low magnitude deformation (e.g.,525

<10 mm/yr). However, they commonly rely on deformation signals being either persistent,526

high magnitude relative to noise, or having an a priori idea of signal pattern (e.g., parametric527

fitting for expected co-seismic or inter-seismic deformation patterns). An advantage of528

the anomaly detection methodology proposed here, is that it is similarly successful in the529

detection of transient events that occur in a single epoch (Section 4.2) and long term,530

persistent signals (Section 4.3). Here, we discuss (1) the performance of our iterative,531

temporal self attention scheme and (2) suggest directions for the future developments for532

anomaly detection in InSAR and (3) describe the potential of our method for application533

to global datasets.534

5.1 Performance of new network architecture535

Our new deep learning architecture and iterative training scheme for our model presents536

significant improvements to the protoype model in our previous work (ALADDIn (Shakeel537

et al., 2022)). The requirement of temporal consistency in particular improved our ability538

to accurately reconstruct the spatial structure of flagged displacement signals as assessed539

by comparison to both individual interferograms (Figure 7d) and stacked data (e.g., Figure540

8b). The ability both to flag and reconstruct the spatial structure of deformation as part of541

a single pipeline is an additional advantage of our anomaly detection process (Section 2.3).542

The flagging of deformation and reconstruction of its spatial structure is highly depen-543

dent on the quality of input data. For example, data gaps and unwrapping errors resulted544

in many false positive detections in the Domuyo dataset, as can be seen in the non-zero545

values for detection in the areas surrounding the Domuyo displacement signal (Figure 8c).546

This makes the overall accuracy for our method in this location lower than it was in Turkey.547

However, this is mitigated by the redundancy introduced by our ‘sliding’ patches (Section548

5.2). SNR, estimated as ratio of peak displacement over the volcano to background variance549

with volcanic areas masked,is also relatively low at Domuyo (Figure 8e). More than 90 %550
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of the input interferograms have low SNR (as highlighted by a dashed line on Figure 8e),551

but the model successfully detects the anomaly even with SNR as low as 0.06.552

5.2 Potential for global deformation flagging553

Although our model is trained only on an ascending InSAR dataset from northern554

Turkey, it is successful in flagging both the 2019 southern Turkey earthquake and the Do-555

muyo uplift in Argentina. This demonstrates that our approach does not necessarily require556

tailored training data sets for settings with different atmospheric noise, although it is possi-557

ble that this might improve model performance. Our anomaly detection approach to InSAR558

data exploits the redundancy in networks of interferograms to learn the relationship between559

interferograms and the signals attributable to each epoch (differential data structure), and560

is therefore not sensitive to the specific spatial and temporal properties of the background561

noise (atmosphere and errors in orbit estimations).562

As shown in Section 4.3, the relatively small patch size that we use in our model is563

not an obstacle to detection of much longer wavelength deformation. In fact, using the564

sliding window technique for processing large areas has proven to be advantageous because565

anomalous intervals can be flagged by multiple patch locations (see Figure 8), or if missed566

in one patch, can be flagged in others. This could be improved for processing large areas of567

data by the development of a voting ensemble (machine learning model that combines the568

predictions from multiple models) instead of taking a simple union for gathering the epoch569

intervals.570

The types of deformation detectable with our method are also strongly dependent on571

the resolution of the input dataset. LiCSAR processing is optimised for scientific study572

of very long wavelength, low magnitude interseismic signals, using multi-looking and some573

filtering to clean up the interferograms at the expense of spatial resolution (Morishita et574

al., 2020). They are therefore less appropriate for the detection of small-scale displacements575

such as anthropogenic or some volcanic signals.576

5.3 Directions for new development577

We found that the addition of synthetic training datasets did not significantly improve578

the performance of our model. Initially, it was challenging to train similar network archi-579

tectures on synthetic data. The problem of model over-fitting very early in training time580

hindered its learning. The network architectures are designed to cater for raw unwrapped581

interferograms, the phase values of which varied across a wide range (for example from −300582

rad to 15 rad). However, the range of values in our synthetic dataset are smaller, and not583

diverse as compared to raw data. This was a consequence of the estimation of parameters584

using least square inversion and residual interferograms as explained in Section 3. In ad-585

dition, noise was not separately simulated and added in the data, resulting in lower data586

diversity. A better approach may be to incorporate data augmentation techniques (Taylor587

& Nitschke, 2018), instead of solely depending on synthetic training data. This would in-588

crease the number of data samples and also add diversity to the training set. For example,589

descending frames could be augmented (as it also a variant of data that captures similar590

region but with different look angle) or synthetic data could be augmented with real data591

to create one training set.592

The key to a diverse and well-fitted model is generally hidden in its training data.593

A diverse dataset can lead to a model that could be re-used to be applied on wrapped594

or geocoded data through transfer learning. Once fully trained, the weights of the model595

can be re-used to initiate training on various data types. For example, we incorporated596

transfer learning and utilized the weights of ALADDIn (Shakeel et al., 2022) to train a597

Temporal self-attention model. Similarly, it could be fine-tuned on different data types to598

create a generalized model. Also, while preparing the data, introducing regions or temporal599
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stamps with extreme atmospheric conditions would be helpful and reduce false positives.600

For example, it could be advantageous to use interferograms with winter images or snow in601

them or including regions near sea, river or lake.602

The model developed in this study can be used further to build weakly supervised603

methods (Campanella et al., 2019). Such methods incorporate constrained and indirect604

sources of supervision to devise labels for large volumes of unlabelled data. The residuals605

created by the model predictions can be used as weak pixel-wise labels/masks for anomalies.606

This can lead to supervised anomalous instance segmentation by creating a global labelled607

dataset.608

6 Conclusions609

This work addresses two limitations of our previous prototype anomaly-detector for610

InSAR data: (1) temporal inconsistency and (2) limited patch size. The development of611

new architecture that incorporates temporal self-attention improves the performance of our612

model so that it flags deformation of peak magnitude of a few cm and wavelength of a613

few hundred metres with an overall accuracy of 80-90 %. We demonstrate that our model,614

although trained on data in northern Turkey is successful in flagging displacements at an615

Argentinian volcano, and that it is capable of detecting both transient (earthquake) and616

persistent (volcano) deformation. We have shown that the architecture developed here has617

important potential for anomaly detection, and believe that fruitful future developments to618

improve its performance could include development of more diverse, realistic training data,619

and testing against a wider variety of volcano-tectonic and other deformation sources.620
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wrapped interferograms, including all of those used in this study, were processed auto-631

matically and can be downloaded from the open access LiCSAR hub (Lazecký et al., 2020)632

https://comet.nerc.ac.uk/comet-lics-portal/ . The deep learning models (ALADDIn633

and Temporal self-attention (Anza Shakeel, 2022)) developed and tested in this study are634

available at GitHub: https://github.com/AnzaShakeel/Deep-Learning-for-InSAR.git635

via DOI: https://doi.org/10.5281/zenodo.7326911 .The machine learning platforms636

used to develop the models presented here are Keras (Chollet et al., 2015) with Tensor-637

Flow (Abadi et al., 2015) as backend.638
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