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Abstract

Convective cold pools (CPs) are known to mediate the interaction between convective rain cells and thereby help organize

thunderstorm clusters, in particular mesoscale convective systems and extreme rainfall events. Unfortunately, the observational

detection of CPs on a large scale has so far been hampered by the lack of relevant large-scale nearsurface data. Unlike numerical

studies, where high-resolution near-surface fields of relevant quantities such as virtual temperature and winds are available and

frequently used to detect cold pools, observational studies mainly identify CPs based on surface time series. Since research

vessels or weather stations measure these time series locally, the characterization of cold pools from observations is limited to

regional or station-based studies. To eventually enable studies on a global scale, we here develop and evaluate a methodology

for the detection of CPs that relies only on data that (i) is globally available and (ii) has high spatio-temporal resolution. We

trained convolutional neural networks to segment CPs in cloud and rainfall fields from high-resolution cloud resolving simulation

output. Such data is not only available from simulations, but also from geostationary satellites that fulfill both (i) and (ii).

The networks make use of a U-Net architecture, a common choice for image segmentation due to its strength in learning spatial

correlations at different scales. Based on cloud and rainfall fields only, the trained networks systematically identify CP pixels in

the simulation output. Our methodology may thus open for reliable global CP detection from space-borne sensors. As it also

provides information on the spatial extent and the relative positioning of CPs over time, our method may offer new insight into

the role of CPs in convective organization.
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Abstract
Convective cold pools (CPs) are known to mediate the interaction between convective
rain cells and thereby help organize thunderstorm clusters, in particular mesoscale con-
vective systems and extreme rainfall events. Unfortunately, the observational detection
of CPs on a large scale has so far been hampered by the lack of relevant large-scale near-
surface data. Unlike numerical studies, where high-resolution near-surface fields of rel-
evant quantities such as virtual temperature and winds are available and frequently used
to detect cold pools, observational studies mainly identify CPs based on surface time se-
ries. Since research vessels or weather stations measure these time series locally, the char-
acterization of cold pools from observations is limited to regional or station-based stud-
ies. To eventually enable studies on a global scale, we here develop and evaluate a method-
ology for the detection of CPs that relies only on data that (i) is globally available and
(ii) has high spatio-temporal resolution. We trained convolutional neural networks to seg-
ment CPs in cloud and rainfall fields from high-resolution cloud resolving simulation out-
put. Such data is not only available from simulations, but also from geostationary satel-
lites that fulfill both (i) and (ii). The networks make use of a U-Net architecture, a com-
mon choice for image segmentation due to its strength in learning spatial correlations
at different scales. Based on cloud and rainfall fields only, the trained networks system-
atically identify CP pixels in the simulation output. Our methodology may thus open
for reliable global CP detection from space-borne sensors. As it also provides informa-
tion on the spatial extent and the relative positioning of CPs over time, our method may
offer new insight into the role of CPs in convective organization.

1 Introduction

CPs are volumes of atmospheric air that are cooled by the evaporation of precip-
itation. The resultant body of air is denser than its surroundings and therefore experi-
ences negative buoyancy (Markowski & Richardson, 2011), giving rise to a so-called con-
vective downdraft, or microburst (Lundgren et al., 1992). When reaching earth’s sur-
face, CPs spread horizontally as density currents (Droegemeier & Wilhelmson, 1985; Zuidema
et al., 2017; Drager & van den Heever, 2017). While expanding radially along the sur-
face, the CP can be characterized as consisting of (i) a deeper head, which can measure
between hundreds of meters and several kilometers vertically (Droegemeier & Wilhelm-
son, 1985) (Benjamin, 1968); and (ii) a shallower interior, which is separated from the
head by a wake region (Benjamin, 1968; Droegemeier & Wilhelmson, 1987).

Substantial mechanistic significance has been attributed to the thin surface of hor-
izontal convergence between the CP head and the ambient atmosphere. On the one hand,
this region, which is often referred to as the CP gust front typically features pronounced
vertical wind speed. On the other, the initial negative buoyancy anomaly near the CP’s
gust front is gradually reduced as the CP spreads, a consequence of enhanced surface la-
tent and sensible heat fluxes (Tompkins, 2001; Torri & Kuang, 2016; Drager et al., 2020).
Thus, in the course of the lateral expansion, warm ambient air can be lifted upwards (Drager
& van den Heever, 2017), and further condensation and convection can result. Both the
mechanical and thermodynamic effects at the gust front can thus encode a mechanism
for "communication" between current and future precipitation cells (Simpson, 1980).

Although the relative contributions of thermodynamic and dynamical mechanisms,
by which CPs can trigger new convection, are still under debate (Torri et al., 2015; Romps
& Jeevanjee, 2016; Fuglestvedt & Haerter, 2020) and do depend on the specific case (Feng
et al., 2015), there is substantial consensus that CPs are able to trigger new clouds in
their vicinity and modify the subcloud moisture distribution (Böing et al., 2012; Schlem-
mer & Hohenegger, 2016; Drager & van den Heever, 2017). Interaction mechanisms, me-
diated through CPs, have inspired a number of conceptual studies, aiming to mimic emer-
gent self-organization by assuming simple, yet plausible processes (Böing, 2016; Haerter
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et al., 2019; Haerter, 2019; Nissen & Haerter, 2021). In recent idealized cloud-resolving
simulations, CPs were indeed shown to promote clustering processes such as seen in mesoscale
convective systems (MCS) (Haerter et al., 2020; Jensen et al., 2021). Observationally,
MCS have been implicated in the majority of tropical extreme rainfall events (Tan et
al., 2015) and may play a role in future intensification of extremes (Tan et al., 2015; Fowler
et al., 2021).

Acknowledging the importance of CPs for weather prediction and climate, several
CP characteristics have been investigated over the past decades, most of them within
numerical studies: virtual temperature anomalies have been used to track CPs in cloud-
resolving simulations by detecting contiguous patches (Schlemmer & Hohenegger, 2016)
or by employing unsupervised image segmentation (Gentine et al., 2016). Drager and
van den Heever (Drager & van den Heever, 2017) compared the utility of different vari-
ables for CP identification in numerical model output. Using the virtual temperature gra-
dient their tracking method allowed for the study of average CP properties. Torri and
Kuang (Torri & Kuang, 2019) used a Lagrangian tracking algorithm to investigate CP
collisions and their impact on CP life and dynamics in Eulerian and Lagrangian mod-
els. Focusing on the dynamical gust front, Fournier and Haerter (2019) and Henneberg,
Meyer, and Haerter (2020) introduced tracking algorithms targeting the thin convergence
rings surrounding each CP, respectively exploiting radial velocity gradients and tracer
particles emitted at the perimeter of precipitation patches.

Simulations carry the advantage of detailed analysis of specific mechanisms and of-
fer essentially continuous output data for many variables, available over the entire model
domain. This accessibility simplifies the detection and tracking of CPs in the model do-
main and allows for profound investigations of CP characteristics. Yet, even under ad-
vances in computing capabilities, numerical studies still depend on the model chosen, so
that immediate conclusions with respect to the real world remain ambiguous. In this re-
gard a key limitation is posed by the required model resolution: since traditional gen-
eral circulation models (GCM) are too coarse to resolve CP processes (Feng et al., 2015;
Fiévet et al., 2022), CP mechanisms are mostly studied in high resolution simulations
within limited domain sizes or, less often, by including specific parameterizations (Grandpeix
& Lafore, 2010; Rio et al., 2009). In both cases, the validity of the outcome is limited
by artificially imposed model constraints.

Exploiting the benefits of both, a simulation-observation hybrid was employed by
Feng et al. (2015), who paired a high resolution regional model with month-long obser-
vational data from the AMIE/DYNAMO field campaign conducted over the tropical In-
dian Ocean. They identified CPs subjectively by spotting boundaries of echo-free regions
in radar measurements and manually tracing them back to precipitation events. In the
simulation, CPs were first detected by buoyancy thresholds (Tompkins, 2001), as detailed
above. Isolated and intersecting CPs were distinguished via a watershed technique to
be able to investigate mechanisms of convective cloud organization by CPs. Another ap-
proach to identify CPs in observations was implemented by Redl, Fink, and Knippertz
(Redl et al., 2015), who developed a CP detection method based on surface observations
from a network of weather stations located south of the Atlas Mountains in Morocco and
Algeria, as well as satellite microwave data.

Observational data offers the possibility to investigate CPs under realistic condi-
tions and enables the validation of results obtained from numerical studies. However, CP
detection based on observational data is still challenging and the few methods which have
been used so far did always employ some kind of ground-based measurement (e.g. radar
measurements or a network of weather stations) to detect CPs in the local measurement
area. The main reason for this is based on the fact that CPs form below precipitating
clouds and spread just above the earth’s surface, which complicates their detection from
space. Unfortunately, due to the limited spatiotemporal coverage and accessibility of the
employed data, these methods are not suited for comprehensive investigations on a global
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scale, which are needed to derive conclusions about the role of CPs and convective or-
ganization with respect to climate change.

For this reason, we developed a CP detection algorithm based on convolutional neu-
ral networks which relies only on quantities that are observable from geostationary satel-
lite imagery and thus exhibit a good spatiotemporal coverage. The algorithm was trained
and tested with data from an idealized cloud-resolving simulation, where all field vari-
ables are available over the entire domain. To our knowledge, this is the first approach
for CP detection which can be applicable to observational data on a global scale. Our
algorithm may allow for new insight on the role of CPs in convective organization and
the formation of weather extremes. Real-world CP detection results may further serve
as a benchmark for CP representation in numerical models for weather and climate.

2 Methods

Convolutional neural networks are widely used in classification and segmentation
problems, where a field of input data is gradually coarsened through a filtering opera-
tion. Upon each filtering step, spatial correlations at larger and larger scales are distin-
guished. Whereas classification algorithms group the entire input data field into a set
of classifiers, segmentation returns to the resolution of the input to mark each pixel as
being of one of several categories. For the problem at hand, we wish to mark each pixel
in the 2D plane as either belonging to a CP or not — thus the segmentation technique
is appropriate.

2.1 Simulation Data

In order to simplify the generation of labeled data sets, the network training and
testing is conducted using data from numerical simulations. To this end, the cloud-resolving
three-dimensional atmosphere simulator System for Atmospheric Modeling (SAM) (Khairoutdinov
& Randall, 2003), version 6.11, is used. It resolves the Navier-Stokes equations in the
anelastic approximation on a staggered mesh. Convective fluxes are evaluated using a
fifth-order finite difference scheme from Yamaguchi, Randall, and Khairoutdinov (2011)
and turbulent dissipation is modeled by an eddy-viscosity based closure. Moist thermo-
dynamics is resolved by transporting liquid and ice water static energy, total precipitat-
ing and non-precipitating water mass fractions, and uses a bulk single-moment micro-
physics closure scheme.

The configuration chosen for this study corresponds to an atmosphere over an ide-
alized moist tropical land surface. It is similar to the configuration studied by Jensen
et al. (Jensen et al., 2021) which exhibited strong and complex CP activity, and is there-
fore suited to design and test our detection method. The computational domain has a
size of Lx = Ly = 240 km in the horizontal directions, and extends vertically to a max-
imum altitude of Lz of 26 km. It is discretized by an orthogonal mesh of horizontal res-
olution ∆x = ∆y = 200 m and vertical resolution ∆z increasing from ∆z(z = 25m) =
50 to ∆z(z = 25km) = 1000 m over 100 levels. In the following, we use nx, ny ∈ [0, N [,
with N = 1200 the linear horizontal domain size, as integers labeling the indices of the
horizontal model grid. The lateral boundary conditions are set to be periodic. Relevant
two-dimensional simulated fields are sampled instantaneously every 10 min. We refer to
this as the "time step" throughout the paper.

Surface heat fluxes are evaluated using Monin-Obukhov similarity theory with a
saturated humidity (moist ground condition) and a prescribed diurnally-varying tem-
perature T , with an average of T0 = 298 K. Its amplitude ∆T is chosen to represent
plausible ranges measured for tropical land (Sharifnezhadazizi et al., 2019). The effect
of the surface forcing is to trigger idealized diurnally-varying convective activity typi-
cal of tropical land surfaces: moist convection tends to develop during the afternoon hours
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and MCS self-organize — giving rise to a complex organizational pattern. The noctur-
nal cooling then reduces convective activity and precipitation rates typically reach a domain-
wide minimum during the early morning hours of the subsequent model day. In order
to work with a diverse set of atmospheric conditions, four different configurations are run
(Tab. 1), where ∆T ∈ {2, 4} K and wind shear is either switched off or set to a tem-
porally and spatially averaged vertical profile over the trade wind regions (LAT: 5.5° to
16° N, LON: -20° to 10°) obtained from ERA5-measurements in July 2016. The verti-
cal profile consists in a piece-wise linear profile with zero velocity below z = 1 km, linearly-
increasing speeds from 0 to 16 m/s up to 19km-altitude and 16 m/s beyond.

Run Simulation ∆T [K] Wind shear

1 diu2K 2 No

2 diu2Kwind 2 Yes

3 diu4K 4 No

4 diu4Kwind 4 Yes

Table 1: Configuration of all numerical simulations.

Ground Truth Labeling

Labeled data sets are derived from simulation output based on a CP detection and
tracking algorithm (CoolDeTA). We employ the k-means algorithm to determine pixel-
wise potential CP areas without defining a fixed threshold, along with a watershed al-
gorithm. The starting points for the watershed filling are all locations with surface rain
intensity, rint, exceeding a threshold of rint ≥ 2 mmh−1. Providing the fields of vir-
tual temperature, Tv, and both horizontal and vertical wind speed in the lowest domain
level, as well as rint, CoolDeTA identifies and tracks each CP instance individually and
stores additional information, such as its age, i.e. the number of time steps since it was
first detected by CoolDeTA. To use the simplest possible case, the derived labels for the
present study are kept binary, comprising the two classes "CP" and "no CP."

Input Variables

Regarding the potential input for the neural network, SAM outputs several vari-
ables which are accessible from space-borne data. The present study focuses on the cloud
top temperature, TB , which is equivalent to the brightness temperature commonly used
in remote sensing, and rint. These two quantities are readily available from infrared emis-
sions and an increasing number of precipitation products. Depending on the region of
interest and problem specific requirements in terms of spatial and temporal resolution,
as well as accuracy, these can be multi-satellite products with global coverage such as
IMERG (Huffman et al., 2015) or even products based on ground-based weather radars.

Training and Test Sets

For each of the four simulation setups, output is available for 7.5 simulation days
in total. After three days of spin-up, we employ the simulation output of day four for
network training (75%) and validation (25%). As common in supervised learning, we ran-
domly split the data by assigning each instance with a probability of 75% to the train-
ing set and with 25% to the validation set. While we train networks based on the train-
ing set, the validation set is used to monitor the progress of the training on separate data
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which has not been trained on. Accordingly, we keep the obtained allocation fixed dur-
ing the whole training and - in order to facilitate the comparison between networks - also
during different network trainings.

When all network trainings are completed, the final performance is evaluated based
on a test set (Willemink et al., 2020) consisting of simulation output of day six, i.e., the
test set is not considered at any earlier stage. Although the observed CPs, and the com-
plex pattern formed by their interaction, are unique for each simulation day, the offset
of one day between the test set and the training and validation set guarantees fully in-
dependent sets w.r.t. the distribution of relevant quantities such as humidity.

To ensure sufficient variation between consecutive time steps of the data sets, we
consider only every second time step of the corresponding simulation output for the train-
ing and validation set, and every fourth time step for the test set. This is particularly
important for the test set to prevent any distortion of the final results due to correlated
data.

In order to reduce the computational cost and accelerate network training, we sub-
divided every N × N pixel output field, termed "image," into 100 sub-regions, which
we refer to as "patches," of np×np pixels each. As our downsampling requires the in-
teger np to be a power of two (see Sec. 2.2) and to compromise between computational
effort and prediction skill, we chose np = 128 as the linear dimension of each two-dimensional
patch. To accomplish this, each original output image is padded from nx = 1200 to nx,pad ≡
1280 in "wrap" mode, i.e., assuming a horizontally repeated model domain which ensures
consistency with the periodic lateral boundary conditions.

Eventually, each network prediction requires an input and a corresponding ground
truth to optimize and/or evaluate the network performance. While the ground truth cor-
responds to an np×np pixel patch of the output images with derived labels, the input
consists of stacked patches corresponding to TB and rint. To compensate for lacking con-
text information at patch boundaries, the input towers above the boundaries of the un-
derlying ground truth patch by np/2 pixels on either side, resulting in an input patch
size of 2np×2np pixels (Fig. 1). Although the additional np/2 pixels on each side are
thus ranging into the adjacent ground truth patch, this overlap does not distort the re-
sults as the final network prediction only comprises the underlying central np×np pixel
patch.

To ensure a robust training process and reliable results, we manually checked the
ground truth labeling of every patch in the data set. We omitted patches if they (i) con-
tained at least one, but less than 25 pixels (i.e., 1 km2) of class "CP," (ii) were in the
center of a large MCS with a gust front significantly beyond the boundaries of the in-
put patch, (iii) were poorly labeled by the CP detection algorithm or (iv) featured am-
biguous scenes where an unequivocal verification of the labeling is not possible. For the
evaluation of both (iii) and (iv) the dynamical gust front, i.e., w > w+2σw served as
main indicator: clear offsets between gust front and boundaries of ground truth CPs were
interpreted as poor labeling, discontinuous and thus dissipating gust fronts as ambigu-
ous cases.

As simulation setups affect the cloud and rainfall patterns associated with CPs, we
considered patches from simulations with different environmental conditions. Yet, both
simulations with imposed wind profile feature prevailing easterly winds. To allow the net-
work to capture underlying patterns independent of the wind direction, we rotate each
patch of the two simulations with wind by 90°, 180° and 270° and add the resulting patches
to the data sets. Extending data sets with slightly modified copies of the data based on
operations such as rotations or translations is a common approach to increase the amount
and diversity of data and is called data augmentation.
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Data imbalances due to the under-representation of classes or features in the train-
ing set are a common issue of learning algorithms (He & Garcia, 2009). Taking the re-
duced convective activity due to nocturnal cooling into account, the majority of patches
do not contain any CP pixels for the ground truth-labeled data and features only the
class "no CP." We compensated for this by randomly removing a certain number of these
patches (Shi et al., 2021). By experiment, we selected the number of patches with only
class "no CP" to be 4% of the training and validation set. The other extreme are patches
with class "CP" only. It is known that surface temperature oscillations promote the sud-
den organization of CPs into MCS (Haerter et al., 2020; Jensen et al., 2021). Since the
surface areas of these MCS often exceed the patch size, a great number of patches has
class "CP" only. However, omitting patches in the center of large MCS according to (ii)
already lowered the number of patches with class "CP" only to ≈ 5.5% resulting in a
sufficiently balanced training and validation set distribution (Fig. 2). We chose not to
balance the distribution of the test set in order to not affect the results in any way.

TB [K]

Ground Truth

�Tv [K] rint [mm/h]

CP

no CP

235

265

295

100

101

102

-4

-2

0

Network Input

a b c

d e f

Figure 1: Defining patches for neural network input and ground truth. a, Time
step 497, i.e., 80 min before Tmax on simulation day 4, of "diu4K wind", showing near-
surface virtual temperature anomaly, ∆Tv, with superimposed dynamical gust front, i.e.,
w > w + 2σw (red scatter); The superimposed grid represents the individual np × np pixel
patches, processed by the neural network; b, Analogous to (a) but for surface rain inten-
sity, rint. Patches that were omitted from the data set are hatched; c, Analogous to (a)
but for cloud top temperature, TB . d, Ground truth labeling showing CP areas as black
regions; a single patch is enlarged for clarity; e, Highlighted patch, including padding, for
rint; f, Analogous to (e) but for TB .

2.2 Network Architecture

As mentioned, instead of predicting one specific label per provided input image (clas-
sification), the detection of CPs requires an output, such as "CP" or "no CP," for ev-
ery pixel of the image (segmentation). A common architecture used for segmentation is
the U-Net (Ronneberger et al., 2015), a convolutional neural network (CNN) that con-
sists of an encoder path and a decoder path. In the encoder path input images are down-
sampled after every block, allowing the network to learn features at larger scales. A com-
mon downsampling method where the output is generated from the input by consider-
ing only the maximum value of a moving window of size s × s and which we also ap-
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Figure 2: Training and validation set distribution with respect to the fraction
of class "CP" in each patch.

ply in the present study with s = 2, is max pooling. By reducing the resolution of the
image in each downsampling step, typically by a factor of two as we do here, the net-
work can learn features at different scales. To be able to capture the underlying corre-
lations, the number of filter layers is doubled with every downsampling step. In the de-
coder path, on the other hand, the images are upsampled again via transposed convo-
lution or interpolation to finally enable pixel-wise predictions. After each upsampling
step, concatenated filter layers of the same depth encoder block provide additional in-
formation. The employed U-Net architecture for the simplified case with three vertical
blocks (nb = 3) is depicted in Fig. 3.

Figure 3: U-Net architecture for cold pool segmentation. The schematic shows the
case with three filtering blocks (nb = 3). The number of input channels nc represents the
number of different variables provided to the network as input. In the case of pseudo-3D
models the number of input channels, nc = number of variables x number of utilized time
steps, nt. The number of output channels comprises the two classes "CP" and "no CP".

Apart from nb and the starting number of filter layers nf , neural networks and U-
Nets in particular offer a variety of modeling choices, termed hyperparameters, to tune.
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After an exploration phase, in which we identified hyperparameters significant for our
network along with promising orders of magnitude based on training and validation per-
formances, we investigated the following seven hyperparameters in more detail: nb, ul-
timately chosen as nb = 6; nf , ultimately chosen as nf = 64; the activation function,
ultimately chosen as LeakyReLU; the normalization strategy, ultimately chosen as batch
normalization; the loss function, ultimately chosen as combination of cross entropy loss
and dice loss; the learning rate lr, ultimately chosen as exponentially decaying function
lr = 10−5 × γet with et as the training epoch and γ = 0.9; and the batch size sb, ul-
timately chosen as sb = 8. Activation functions are nonlinear functions and a funda-
mental part of CNNs. Following convolutional layers in the convolution block (cf. Fig. 3),
activation function enable the network to capture complex patterns. Typically, convo-
lution blocks are completed by normalization steps, which can support an efficient learn-
ing process (Ioffe & Szegedy, 2015). While the loss function is the function to be min-
imized during training, lr controls the corresponding optimization step size. The num-
ber of instances considered per optimization step is the batch size. Typically, training
batch sizes are greater one to reduce the risk of getting stuck in local minima.

In order to determine the most promising network configuration w.r.t. the seven
hyperparameters, we conducted a number of experiments based on the training and val-
idation set. Instead of analyzing all possible combinations of configurations, we limited
the number of experiments by structuring them in two stages. Starting from a first guess
reference configuration for which all seven hyperparameters were defined pragmatically,
the first stage consists of multiple levels, each containing experiments for a group of hy-
perparameters with all their combinations. After each level, the reference configuration
is updated based on the best candidates of those hyperparameters. Due to their close
relation, we grouped lr with sb (group 1), activation function with normalization strat-
egy and loss function (group 2), and nb with nf (group 3). Whereas the hyperparam-
eters in group 1 are essential for robust learning and thus investigated first, the hyper-
parameters in group 3 are examined last as larger numbers of nb and nf , which were ex-
pected to be advantageous, would slow down the remaining experiments significantly.

Since some hyperparameters could have candidates with similarly good performance
so that the best candidate might thus change for other configurations, we performed a
second stage of experiments with all combinations of these candidates plus some fine-
tuned ones.

Depending on the convolution kernel, CNNs can be categorized into 2D and 3D CNNs.
Conventional end-to-end 2D CNNs receive 2D input, which may consist of multiple chan-
nels, e.g. 2D fields of different variables, apply 2D convolutions, i.e., convolutions with
2D kernel matrix, and generate a corresponding 2D output, whereas 3D CNNs analo-
gously process 3D data. At the expense of significantly higher computational cost, 3D
CNNs are thus able to learn correlations in a third dimension based on the 3D convo-
lution kernel. As we are interested in 2D segmentations and the simplest model possi-
ble, we selected the 2D version. However, since CPs are density currents and exhibit gust
fronts typically emanating radially from a precipitation cell center, expansion over time
constitutes one of the main CP features (Benjamin, 1968). In order to include this time-
dependent component and potentially enable the network to learn the correlations be-
tween consecutive time steps, we also implement the so-called pseudo-3D approach. The
term "pseudo-3D", introduced by Vu, Grimbergen, Nyholm, and Löfstedt (2020), rep-
resents a model class that is intermediate between conventional 2D CNNs and 3D CNNs.
In pseudo-3D models the information of the third dimension (here time) is inserted as
additional input channels to the network, therefore without modifying the network’s 2D
architecture. As a consequence, the total number of input channels of pseudo-3D mod-
els depends not only on the number of input variables provided, but on the product of
the numbers of input variables and utilized time steps. Thus, pseudo-3D models might
potentially benefit from time-dependent information without being as computationally
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expensive as end-to-end 3D models (Vu et al., 2020). In the present study, we investi-
gate the pseudo-3D model with three (p3D3t) and five time steps (p3D5t). Time steps
are thereby centered about the time step for which a prediction is to be made.

2.3 Loss and Evaluation Metrics

The selection of an appropriate loss function depends on the specific problem at
hand. All loss functions use the pixel-wise network prediction U = [U0, U1], consisting
of the two output channels U0, U1 ∈ Rnp×np , that is,

U (0) =

 U (0)
11 . . . U (0)

1np

...
. . .

...
U (0)

np1 . . . U (0)
npnp

 , U (1) =

 U (1)
11 . . . U (1)

1np

...
. . .

...
U (1)

np1 . . . U (1)
npnp

 , (1)

where indexes "0" and "1" indicate the "no CP" and "CP" channels, respectively, and
compare U with the corresponding ground truth, denoted V ∈ Nnp×np , where Vij ∈
{0, 1}, indicating "no CP" and "CP," respectively. V is derived by CoolDeTA as

V =

 V11 . . . V1np

...
. . .

...
Vnp1 . . . Vnpnp

 . (2)

We examined several loss functions during the experiments. For this purpose, we
rescaled each pixel U (j)

kl in U to the range [0,1] so that the "probabilities" of both the
"no CP" and "CP" channel sum up to one. We term the result of this so called "soft-
max" function u. The corresponding function is written as

u
(j)
kl ≡ eU

(j)
kl

eU
(0)
kl + eU

(1)
kl

, for j ∈ {0, 1} . (3)

In order to compare u to the ground truth, we split V analogously to the prediction via
one-hot encoding into two slices of binary data v = [v(0), v(1)] with

v(0) =

 v(0)11 . . . v(0)1np

...
. . .

...
v(0)np1 . . . v(0)npnp

 v(1) =

 v(1)11 . . . v(1)1np

...
. . .

...
v(1)np1 . . . v(1)npnp

 , (4)

that is, v(0)kl = 1 − Vkl and v
(1)
kl = Vkl. As loss functions we employed a cross entropy

loss which is often used as default in image segmentation and defined as

LCE(u, v) =
∑
j,k,l

−v
(j)
kl log(u(j)

kl )∑
m,n,q v

(m)
nq

, (5)

a soft Dice coefficient loss, defined as

LDice(u, v) = 1−
2
∑

j,k,l u
(j)
kl v

(j)
kl + ϵ∑

j,k,l u
(j)
kl +

∑
j,k,l v

(j)
kl + ϵ

, (6)

where ϵ = 1 is a constant preventing divisions by zero (Jadon, 2020), and a combina-
tion of both

L(u, v) = αLDice(u, v) + (1− α)LCE(u, v) , (7)

with α = 0.5. Whereas LDice can deal with imbalanced data sets (Milletari et al., 2016)
and focuses on how good the predicted CPs overlap the ground truth CPs, LCE eval-
uates the difference between the probability distributions of u and v. For our problem
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we chose L as loss function as it combines the strengths of both LDice and LCE , and out-
performed both these functions during the experiments.

For the evaluation of the trained networks we distinguish between patches contain-
ing only one of the two classes for the corresponding ground truth data and patches with
at least one pixel of both classes. In the former case, the only evaluation metric will be
pixel accuracy, PA, which evaluates the fraction of predictions that are correct, defined
as

PA =
TP + TN

TP + TN + FP + FN
. (8)

In Eq. 8 TP and TN indicate true positive and true negative predictions, respectively,
whereas FP and FN denote false positive and false negative predictions, respectively.

In case the ground truth patch contains at least one pixel of both classes, we ad-
ditionally calculate the intersection over union, IOU,

IOU =
TP

TP + FP + FN
. (9)

The IOU score is a measure of how well the specific objects of prediction and ground truth
overlap one another, ranging from zero, where no overlap is found, to unity, for perfect
overlap. Furthermore, we consider Precision and Recall, defined as

Precision =
TP

TP + FP
, (10)

and
Recall =

TP

TP + FN
. (11)

As IOU both Precision and Recall range from zero, where no "CP" pixel was correctly
identified, to unity, for a perfect prediction. However, shedding light on different com-
ponents of the prediction, they help to understand potential sources of good and bad per-
formances.

2.4 Network Validation

We plot the training and validation losses for the 2D and both pseudo-3D models
as a function of the epoch, et (Fig. 4). et describes how many times the entire training
set has been passed through the neural network. The loss measures the quality of the
prediction, where a value of zero means perfect prediction. Instead of defining a fixed
et, we stop the training if the validation loss has not improved for ten consecutive et. Tak-
ing into account the stochasticity involved in the training process, we conducted three
runs for each model. As might be expected, the training loss decreases monotonically
with the data employed for learning, i.e., et, and reaches a value close to zero for our max-
imum et of 22—24. Notably, for intermediate et both pseudo-3D neural networks per-
form better than the 2D counterpart, whereas for the final et the three are essentially
indistinguishable.

However, a good value of training loss does not necessarily imply optimal valida-
tion loss, a measure of prediction quality for a previously unseen data set. Indeed, we
find that intermediate et (≈ 10) yield lowest validation loss for all three cases, such that
a global mimimum occurs. This type of optimum at intermediate et is typical of neu-
ral networks and is often interpreted as large et constituting a form of overfitting w.r.t.
the training data — yielding less than optimal behavior for the unknown validation data.
Yet, the minimum is characterized by an asymmetric increase of validation loss, where
somewhat larger et lead to only small increases in validation loss. Further, we again find
quantitative improvements in validation loss for the pseudo-3D cases, which systemat-
ically reach lower values of loss than 2D.
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Figure 4: Training and validation loss for different models. Loss as a function
of the epoch, et, for the 2D, p3D3t, and p3D5t neural networks. Dashed lines represent
running averages of training loss for all training runs of a respective neural network type.
Thin colored are running averages of validation loss for all training runs of a respective
neural network type additionally averaged over a centered window of three et; different
symbols correspond to the validation loss of the different training runs. Note: As the
mean variance of the training loss for the three neural network types is only between
2.5 × 10−6 (2D) and 6.1 × 10−6 (p3D3t), markers for the training loss of different training
runs are not visualized.

3 Results

For the final evaluation of the trained neural networks, we now employ the test set,
i.e. day 6 of each simulation. We ensure that the results obtained are on the conserva-
tive side, by considering only the run with the greatest final validation loss for each model,
i.e., the third run for the 2D model and the first run for both p3D3t and p3D5t (cf. Tab. 2).

We quantify the utility of our segmentation method by applying typical performance
metrics (Tab. 3). A key measure is pixel accuracy (PA), which is generally high (mean
PA≳ 94%) for all models, with the pseudo-3D models performing slightly better than
the 2D model. The intersection over union (IOU) score denotes the fidelity of spatial over-
lap of ground truth CPs and neural network-predicted CPs, and is thereby sensitive to
the underlying CP areas, yielding lower values than PA for all models. Again the pseudo-
3D models achieve higher mean IOU scores of 0.75 (p3D3t) and 0.74 (p3D5t) compared
with 0.71 for the 2D model. As mean Precision is almost equally high for all models (Tab. 3),
the difference in IOU is mainly driven by the higher mean Recall of the pseudo-3D mod-
els, i.e., they miss less "CP" pixels than the 2D model.

In order to investigate the sensitivity of the network performances w.r.t. the CP
fraction in the patch, we group PA and IOU score into quartiles of CP fraction. For all
these quartiles PA is high (PA≳ .95) for all models (Fig. 5a). Yet, systematic differences
exist: Generally, PA is greatest for small CP fraction and somewhat decreases for inter-
mediate fractions, where it then seems to saturate. This behaviour is expected, since (i)
the majority of the training and validation set patches contained only small fractions of
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Model Run Final et Final Loss Mean Loss Final PA [%] Mean PA [%]

1 22 0.173 0.166 93.6 93.5
2D 2 24 0.177 0.203 93.8 92.5

3 22 0.186 0.163 93.5 93.6

1 19 0.147 0.137 94.4 94.3
p3D3t 2 18 0.139 0.138 94.6 94.2

3 20 0.146 0.138 94.5 94.4

1 22 0.148 0.134 94.6 94.7
p3D5t 2 18 0.136 0.127 94.7 94.6

3 19 0.133 0.128 94.8 94.7

Table 2: Validation loss and pixel accuracy for the training runs of different
models. Columns indicate three runs for each model along with the final epoch, et, the
final validation loss (final et), the mean validation loss, averaged over the final ten et, and
final and mean pixel accuracy, PA.

class "CP", slightly biasing the neural networks towards "no CP" predictions and (ii)
regions without "CP" pixels often feature neither precipitation, nor clouds, simplifying
the network prediction. Overall, PA is somewhat greater for the pseudo-3D cases, how-
ever, this benefit is nearly lost for small CP fractions, a finding we attribute to the po-
tential noise at the early stages of CP expansion: in p3D3t and p3D5t, where additional
time steps are included, data taken before the onset of the CP might contribute to the
training — thus obscuring the signal of actual CP expansion.

The IOU score (Fig. 5b) can be substantially lower for the smallest CP fraction quar-
tile, with some improvement for the pseudo-3D models. This loss for small CP fraction
is however not surprising to us, as for small CP fraction there will often be only few pix-
els in a patch which actually qualify as CP pixels and small spatial displacements of these
pixels in the predicted data can already lead to a drastic reduction of the IOU. Refined
measures could be designed that still assign a score to a minimally displaced CP pixel.
However, physically relevant CPs, e.g., in terms of collision effects (Meyer & Haerter, 2020;
Fiévet et al., 2022) and intense precipitation (Jensen et al., 2021) tend to cover larger
patch fractions and the IOU score is systematically high — again with best performances
for the pseudo-3D cases.

We now turn to test patches which contain only "no CP" or "CP" pixels in the ground
truth. For the former case, PA yields near-perfect accuracy (Tab. 4). Thus, the mod-
els shows high fidelity in capturing cases where CPs are not present, most likely due to
the absence of precipitating clouds in a majority of the patches. PA is however substan-
tially reduced in the latter case (Tab. 5). The reduction in PA is especially pronounced
for p3D5t, thus the model where five time steps were used. We attribute this loss of ac-
curacy to the temporal mixing of patches with and without CP pixels, whereby the lack
of CP pixels at earlier stages may skew the results.

To enable a more application-oriented perspective on the performance of the three
models, we evaluate the percentage of successfully detected CPs as a function of CP area
(Fig. 6). For this purpose, we define CPs as spatially 4-connected regions of ≥ 25 "CP"
pixels (≥ 1 km2). The minimum CP size of 25 "CP" pixels ensures that only robust pre-
dictions are considered. A ground truth CP is considered detected if a predicted CP over-
laps more than 50% of its area and if more than 50% of the area of the predicted CP falls
inside the ground truth CP. As the smallest ground truth CP in the test set comprises
59 pixels, the defined minimum size does not affect the CP detection. The results are
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a b

Figure 5: Selected test performance metrics for varying cold pool fraction. a,
Distributions of pixel accuracy for each neural network, grouped into quartiles of cold
pool fraction with ranges, as indicated along the vertical axis. Colored bars represent the
interquartile range IQR = Q3 − Q1 of the three tested models, with the first quartile Q1
and the third quartile Q3, along with the corresponding median (vertical dash). Whiskers
range from Q1 − 1.5 × IQR (minimum) to Q3 + 1.5 × IQR (maximum). Markers indicate
outliers w.r.t. this range. b, Analogous to (a) but for the intersection over union (IOU)
score. Note that for both metrics a value of unity reflects perfect accuracy, whereas zero
denotes complete lack of accuracy.

Model PA [%] IOU Precision Recall

2D 93.8 0.71 0.84 0.83

p3D3t 94.8 0.75 0.83 0.88

p3D5t 94.5 0.74 0.84 0.87

Table 3: Test performance of different models on patches with at least one
pixel of both classes ("CP" / "no CP") in the ground truth. Presented are mean
performances for pixel accuracy (PA), intersection over union (IOU) score, Precision and
Recall.

quite clear: Larger CPs are detected at quite high fidelity (≳ 90%), whereas the fidelity
for the smallest area class is lower (Fig. 6). Again, a clear improvement in detection can-
not be achieved for either of the three models, even though a slight improvement is seen
for pseudo-3D models for the intermediate area classes.

In Tab. 6 we show the number of detected CPs for each simulation along with spu-
riously predicted CPs. Whereas the total number of detected CPs is slightly lower for
the 2D network (483) than for p3D3t (495) and p3D5t (487), the p3D5t network features
the highest number of spurious CPs (252), substantially more than those of 2D (199) and
p3D3t (197). However, as the mean validation losses of the three p3D5t training runs
are lowest in comparison to the other models (Tab. 2), this should not be a problem char-
acteristic for p3D5t, but is most likely caused by an unfavorable epoch to stop the train-
ing run. Apart from lower detection rates for CPs from "diu2K", which are mainly at-
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Model PA [%] σ(PA) [%]

2D 99.8 2.1

p3D3t 99.9 1.1

p3D5t 99.9 1.0

Table 4: Test performance of different models on patches without any pixel of
class "CP" in the ground truth. Columns show the mean and standard deviation of
pixel accuracy, PA for the various models.

Model PA [%] σ(PA) [%]

2D 92.0 9.5

p3D3t 94.1 9.2

p3D5t 85.9 15.5

Table 5: Test performance of different models on patches with only pixel of
class "CP" in the ground truth. Analogous to Tab. 4.

tributed to a high proportion of CPs in the smallest area class, the performance of the
networks seems to be relatively independent w.r.t. the simulation setup.

a

b

Figure 6: Cold pool detection based on the test set. a, Distribution of test set cold
pools with respect to cold pool area; b, Percentage of successfully detected cold pools for
varying cold pool area. A ground truth cold pool (CP) is considered detected if a pre-
dicted CP overlaps more than 50% of its area and if more than 50% of the area of the
predicted CP falls inside the ground truth CP. Note the shared horizontal axis.

We now also characterize the spatial patterns detected by the neural network and
compare them to the ground truth labeling. As the morphology of patterns is so diverse
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Simulation Total CPs 2D p3D3t p3D5t
Detected False Detected False Detected False

diu2K 35 25 12 25 18 28 16

diu2K wind 180 158 52 154 62 156 66

diu4K 83 75 8 76 10 76 16

diu4K wind 292 225 127 240 107 227 154

Sum 590 483 199 495 197 487 252

Table 6: Overview of detected test set cold pools for the different simulations.
A ground truth cold pool (CP) is considered detected if a predicted CP overlaps more
than 50% of its area and if more than 50% of the area of the predicted CP falls inside the
ground truth CP. All remaining predicted CPs are considered as False. Note that only
patches with at least one CP in the ground truth were evaluated.

and quantification of spatial pattern overlap always requires to make choices as to the
metrics used, we instead provide a qualitative discussion on typical cases. We visualize
several predictions based on the test set and present 2D fields of rainfall intensity (rint),
cloud top temperature (TB), the ground truth segmentation, as well as predictions of the
three neural network models side by side (Fig. 7). The cases selected represent a range
of circumstances: in some cases, cloud patterns are rather obvious and yield reasonable
segmentation for all models (Fig. 7a). Where different aspects overlap temporally, such
as cirrus from previous convection obscuring the present scene (Fig. 7b), all models may
struggle with proper segmentation. Although cases with advection pose additional chal-
lenges, all models perform well for large CPs with large cloud-free areas, e.g., Fig. 7c.
Yet, for cases in which the parent convection partly dissipated (Fig. 7d) or dissipates (Fig. 7e)
pseudo-3D models give results which are physically more accurate w.r.t. the plausibil-
ity of the gust front. The same seems to be true for scenes with advected parent con-
vection (Fig. 7f) — likely due to the fact that parts of the gust front are obscured when
only using single patches, but revealed when taking a sequence of time steps into account.
As a general outcome, all models perform reasonably well on the test cases described,
yet, the distinction between 2D and pseudo-3D quality metrics is not as clear cut and
should be assessed dependent on the scientific questions in focus.

4 Conclusion and Outlook

Cold pools likely play a key role in organizing the atmospheric convective cloud and
precipitation field (Böing et al., 2012; Schlemmer & Hohenegger, 2016; Böing, 2016; Haerter
et al., 2019; Haerter, 2019; Haerter et al., 2020; Nissen & Haerter, 2021; Muller et al.,
2022). The present study demonstrates that cold pools can be detected via an artificial
neural network by employing data readily available from geostationary satellite obser-
vations, namely cloud brightness temperature and precipitation. Altogether, using these
two variables only, our networks were able to detect cold pools in data from cloud-resolving
simulations with an overall mean accuracy between 93.8% (2D) and 94.8% (p3D3t) for
patches with at least one pixel of both classes, ≥ 99.8% for patches without any pixel
of class "CP", and between 85.9% (p3D5t) and 94.1% (p3D3t) for patches with only pixel
of class "CP". Thus, we conclude that the method proposed should generally be suit-
able for the detection of cold pools from satellite data.

Robust detection of cold pool processes leading to the formation of MCS could be
useful in better mechanistic understanding of organized convective systems and associ-
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Figure 7: Examples of cold pool predictions based on the test set. Two-
dimensional fields of surface rain intensity, rint, and cloud top temperature TB for various
examples, along with ground truth segmentations based on CoolDeTA, as well as pre-
dictions of the 2D and pseudo-3D neural networks. a, Morning CP (time step 740) from
"diu2K"; b, CP from "diu2K" which developed during the afternoon (time step 780) at
the boundary of a recently dissipated convective system, represented by high-altitude cir-
rus remnants; c, parts of an eastward propagating gust front of a convective system from
"diu2K wind" (time step 772) with large cloud free areas (≳ 300 km2) and new emerg-
ing rain cells. The superimposed grid represents the individual np × np pixel patches,
processed by the neural networks; d, afternoon scene (time step 772) from "diu4K" with
parts of an early stage CP in the north of the upper left patch, and parts of a convective
system which consists of CPs at different stages; e, Gust front of a convective system from
"diu4K" (time step 780) with dissipating parent convection; f, Northern part of a CP
from "diu4K wind" (time step 780) where westward advected parent convection masks
parts of its CP gust front.

ated heavy precipitation events. We conducted several experiments to identify the most
promising architecture for our network. The computationally most expensive architec-
ture, using six blocks and 64 starting filters, performed best, as might be expected —
given the physical insight that cold pools tend to grow to spatially and temporally cor-
related structures at the mesoscale, O(100 km), forming MCS.

Including several time steps within the input channels is a computationally inex-
pensive means of mimicking a three-dimensional input data set. Whereas already the
two-dimensional input fields gave satisfactory results, we find that taking into account
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three to five time steps does improve the performance further, comparable to the improve-
ments found in Vu et al. (Vu et al., 2020) for some of their data sets.

The comparison between weak and strong diurnal forcing is important, as it mim-
ics cold pools both over ocean, where diurnal forcing is small, and over continents, where
the diurnal range is large. Results show qualitatively different cloud organization, such
as the formation of pronounced mesoscale convective systems over land but more scat-
tered, smaller cold pools over the sea.

Assessing large-scale wind effects is important, as it compares the prominent model
idealization of no wind shear (Manabe et al., 1965; Tompkins & Craig, 1998; Brether-
ton et al., 2005) with the more realistic sheared case. Our overall finding is that the de-
tection works well for all these cases.

Looking ahead, the obvious next step is to apply the method to actual satellite data.
Likely, several new challenges will need to be addressed, such as lower spatial and tem-
poral resolution of the data available. The lower resolution may require us to focus on
CPs that have already evolved into larger-scale structures. Yet, replacing the cloud bright-
ness temperature input by the multiple individual satellite channels which are available,
the neural network performance may benefit from patterns hidden so far. The combi-
nation of these satellite channels with a precipitation product based on calibrated infrared
can avoid inconsistencies between inputs w.r.t. their spatial and temporal resolution. Ul-
timately, being able to extract self-organization effects from observational data will al-
low us to help improve cloud-resolving models that still struggle at capturing organiza-
tional effects at high fidelity. For this purpose, the network training should additionally
focus on minimizing the number of spuriously predicted cold pools, e.g., by adding more
examples of clouds to the training set which do not produce any cold pool. One way for-
ward could be to further develop cold pool interaction parameterizations in coarser scale
models.

Apart from applications related to observational data, our method could be adjusted
for the detection of cold pools in simulation data for research and weather forecasting.
In simulations we are not restricted to satellite-observable input variables. Provided as
input to the network, variables such as temperature and moisture above the surface will
likely enhance the accuracy of the network predictions further.
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