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Abstract

Camera-based rainfall observation is a useful technology that contributes to the densification of rainfall observation networks

because it can measure rainfall with high spatio-temporal resolution and low cost. To develop of practical camera-based rainfall

observation technology, using the extinction coefficient as a clue, this study proposed relational Equations representing the

relationship between image information, rainfall intensity, and scene depth by linking the theoretically derived rainfall intensity

with a technique proposed in the computer vision field for removing static weather effects. Then, the proposed Equations were

applied to outdoor images taken by commercial interval cameras at the observation site in a mountainous watershed in Japan.

As a result, it was confirmed that transmission calculated from the image information decreases exponentially according to the

increase in rainfall intensity and scene depth, as assumed in the proposed Equations. Therefore, the proposed Equations are

generally valid even for outdoor images, and extremely important findings that will improve camera-based rainfall observation

techniques were obtained. On the other hand, the calculated extinction coefficient tended to be overestimated in patches with

a small scene depth, and overestimation of the extinction coefficient due to aerosol effects was also observed in the images taken

during no rainfall. Although there are issues at present that need to be resolved for the technology proposed in this study, this

technology has the potential to help the development of a camera-based rainfall observation technology that is accurate, robust,

versatile, and accessible.
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Key Points:

• Camera-based rainfall observation contributes to the spatio-temporal den-
sification of rainfall observation networks.

• We proposed relational Equations representing the relationship between
image information, rainfall intensity, and scene depth.

• Outdoor images obtained from field observations confirmed the validity of
the proposed Equation.

Abstract

Camera-based rainfall observation is a useful technology that contributes to
the densification of rainfall observation networks because it can measure rain-
fall with high spatio-temporal resolution and low cost. To develop of practical
camera-based rainfall observation technology, using the extinction coefficient as
a clue, this study proposed relational Equations representing the relationship
between image information, rainfall intensity, and scene depth by linking the
theoretically derived rainfall intensity with a technique proposed in the com-
puter vision field for removing static weather effects. Then, the proposed Equa-
tions were applied to outdoor images taken by commercial interval cameras at
the observation site in a mountainous watershed in Japan. As a result, it was
confirmed that transmission calculated from the image information decreases
exponentially according to the increase in rainfall intensity and scene depth,
as assumed in the proposed Equations. Therefore, the proposed Equations are
generally valid even for outdoor images, and extremely important findings that
will improve camera-based rainfall observation techniques were obtained. On
the other hand, the calculated extinction coefficient tended to be overestimated
in patches with a small scene depth, and overestimation of the extinction coef-
ficient due to aerosol effects was also observed in the images taken during no
rainfall. Although there are issues at present that need to be resolved for the
technology proposed in this study, this technology has the potential to help the
development of a camera-based rainfall observation technology that is accurate,
robust, versatile, and accessible.

1 Introduction

The water cycle regulates local, regional, and global climate change, and precip-
itation is an important component of this cycle (Eltahir & Bras, 1996). Reliable
precipitation data are therefore critical for local, regional, and global water re-
source management and weather, climate, and hydrologic forecasting (Jiang et
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al., 2019; Sun et al., 2018). Rainfall is difficult to observe adequately due to large
spatial and temporal variations (Kidd et al., 2016). In order to properly grasp
such variations, a dense observation network is necessary on a fine temporal and
spatial scale. Especially in mountainous areas where flash floods and debris flow
occur, rainfall should be measured on fine spatial and temporal scales for effec-
tive early-warning against these disasters (e.g., Kidd et al., 2016). Currently,
rainfall data are mainly obtained from ground observation such as rain gauge
and remote sensing such as weather radar and satellites. However, rainfall data
is often limited in terms of spatio-temporal resolution due to the sparseness of
the ground observation networks used for both direct measurement and indirect
measurement calibrations (Notarangelo et al., 2021). In addition, due mainly to
the high cost of observation, a high-resolution, ground-level rainfall monitoring
network has not yet been developed (Jiang et al., 2019). Therefore, innova-
tive methods to achieve higher density in the ground-level rainfall observation
network have been the focus of recent hydrological research (Tauro et al., 2018).

As an initiative to overcome the issues mentioned above, techniques have been
proposed to build sensors using low-cost equipment not used for its intended use
and to combine a variety of not fully utilized technologies to make opportunistic
observation (Tauro et al., 2018). For these techniques, an approach has been
adopted in the form of aggregating data obtained from a high-density network
built using a large number of low-cost sensors that are less accurate (Notarangelo
et al., 2021). While such an approach is not as accurate as conventional rain
gauges in most cases, it could provide valuable additional information when com-
bined with conventional techniques (Tauro et al., 2018). Actually, Haberlandt
and Sester (2010) and Rabiei et al. (2016) reported that the idea of consider-
ing moving vehicles as rain gauges and windshield wipers as sensors to detect
rainfall may enable better areal rainfall estimation than using several accurate
rain gauges by making numerous observations, even if they are somewhat in-
accurate. Microwave link in the cellular phone communication network, which
focuses on the relationship between rain attenuation of electromagnetic signals
of cellular phones transmitted from one cellular tower to another and the av-
erage rainfall along the path, have been proposed as a promising new rainfall
measurement technology (Leijnse et al., 2007; Messer et al., 2006; Overeem et
al., 2011; Rahimi et al., 2006; Tauro et al., 2018; Upton et al., 2005; Zinevich
et al., 2009). It has been indicated that such opportunistic sensors have the
potential to be utilized in geographic regions where the density of conventional
rainfall measurement devices is low, namely mountainous areas and developing
countries (Uijlenhoet et al., 2018). Further, since a large number of video mon-
itoring cameras have been installed outdoors in recent years for security and
safety reasons, techniques have been reported to use these cameras to estimate
the environment and weather of scenes (Jacobs et al., 2009).

As techniques that use cameras to monitor surrounding conditions, techniques to
grasp river levels and flow rates (Gilmore et al., 2013; Muste et al., 2008; Tauro
et al., 2018), and rainfall (camera-based rain gauge) (Allamano et al. 2015; Dong
et al., 2017; Jiang et al., 2019) have also been reported, and are attracting a great
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interest in the hydrologic field. In addition, such a camera-based technique for
grasping the surrounding situation has the potential to serve as a sensor that can
measure multiple types of physical quantities with a single camera, and is a very
reasonable and meaningful technique for obtaining various types of information
all at once. Since rainfall measurement using cameras enables the high spatio-
temporal resolution and extremely low-cost measurement, it is possible to say
that it has opened a novel avenue toward higher density rainfall observation
(Tauro et al., 2018).

The development of camera-based rain gauges requires clarification of the effects
of rainfall on images. The effects of adverse weather conditions, such as rainfall,
on images have conventionally been studied mainly in the fields of computer
vision and image processing (Narashimhan & Nayar, 2002). In outdoor pho-
tography systems used for monitoring, navigation, and other purposes, various
algorithms such as feature detection, stereo correspondence, tracking, segmen-
tation, and object recognition are used and these algorithms require visual clues
and feature information (Garg & Nayar, 2007). Since the adverse weather con-
ditions lead to the loss of those visual clues and feature information due to the
effects of poor visibility, the objective of studies was to remove the effects of
adverse weather conditions on the images and obtain clear images (Jiang et al.,
2019; Tripathi & Mukhopadhyay 2014). On the other hand, in reference to
such image processing techniques, studies on camera-based rain gauges quanti-
fied the degree of performance degradation due to adverse weather in outdoor
photography systems as a change in weather conditions (Garg & Nayar, 2007).
Such studies broadly categorize adverse weather into dynamic weather, such
as rain and snow, and static weather, such as fog and haze, based on physical
properties and types of visual effects (Garg & Nayar, 2007). In the case of
static weather, the constituent water droplets are small, ranging from 1 to 10
�m, and cannot be detected individually by a camera. The intensity produced in
the pixel is therefore due to the cohesive effect of the numerous water droplets
within the pixel’s solid angle (Garg and Nayar, 2007). Accordingly, studies
have been conducted to represent static weather and remove the effects of static
weather from images by using models of atmospheric scattering such as direct
attenuation and airlight (Narashimhan and Nayar, 2002, 2003). In the studies
on removing static weather effects from images, methods based on priors from
natural image statistics have conventionally been used (Fattal, 2008; He et al.,
2011; Tan, 2008). Recently, deep machine learning-based method that extract
image features from a large amount of learning data have been adopted (Qin
et al., 2020; Shao et al., 2020; Zhou et al., 2021). On the other hand, in dy-
namic weather, water droplets are composed of particles 1,000 times larger (0.1
to 10 mm) than in static weather, and individual particles are visible to cam-
eras. For this reason, the image processing research to remove dynamic weather
effects has primarily studied techniques to extract rain by discriminating wa-
ter droplets (rain streaks) from the other backgrounds, and previous studies on
camera-based rain gauges are also utilizing such techniques (Bossu et al., 2011;
Garg & Nayar, 2007; Luo et al., 2015).
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In the previous studies, dynamic and static weather have been treated as sep-
arate themes because of the different characteristics of their effects on images.
However, it has been pointed out that even in the relatively large raindrops are
visible to camera, if raindrops are more than a certain distance away from the
camera, individual raindrops cannot be discriminated by the camera’s sensor,
so rain streaks accumulate and appear as fog, i.e., the effect of static weather
(Garg and Nayar, 2007; Li et al. 2018; Li et al., 2019). Therefore, in an outdoor
photography system that captures images over a certain distance, the effects of
static weather caused by rain as well as the effects of dynamic weather caused
by rain might be considered to be expressed in the images. However, the previ-
ous studies on camera-based rain gauges have only used techniques to remove
dynamic weather effects without considering static weather effects. The follow-
ing issues are considered to be challenges in practical application of techniques
for removing dynamic weather effects: it is effective only with stationary back-
grounds in outdoor photography (Allamano et al., 2015), it requires special
equipment (Dong et al., 2017), it targets only raindrops in a close range from
the camera, and the fact that raindrop extraction depends on the environment
surrounding the camera (Jiang et al., 2019). In other words, these techniques
focusing on the effects of dynamic weather are insufficient in terms of versatility
and accessibility because they require the construction of a specialized photogra-
phy system for rainfall observation, and moreover, it may be difficult to obtain
a variety of information other than rainfall.

Therefore, as an initial step in developing an accurate, robust, versatile, and
accessible camera-based rain gauge, this study, with focus on the static weather
effects of rain, analyzed the effects of rainfall intensity on the way the back-
ground is captured, i.e., the rain-induced static weather effects of images. This
study proposed Equations for the relationship between image information, rain-
fall intensity, and the distance between the scene point and the camera (here-
after referred to as scene depth) by linking the technique of removing static
weather effects reported in many computer vision studies with the theory of
rainfall intensity expressed in atmospheric radiology and meteorology, using
the extinction coefficient as a clue. Then, by applying the outdoor images taken
by commercial interval cameras at observation sites in mountainous watersheds
in Japan and rainfall observations to the proposed relational Equations, the
relationship between image information, rainfall intensity, and scene depth was
analyzed, and the validity of the extinction coefficient obtained from the images
was verified.

This paper is structured as follows. Section 2 describes the proposed relational
Equations for the relationship between image information, rainfall intensity, and
scene depth. Section 3 details the outdoor observations and the processing
of the captured images. Section 4 presents the results of observations, image
processing, and analysis. Section 5 discusses the extinction coefficient estimated
from the image information, and section 6 describes the conclusion.

2 Relational Equations for the relationship between image information, rainfall
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intensity, and scene depth

2.1 Image information and extinction coefficient

Effects of static weather are mainly caused by two scattering phenomena: di-
rect attenuation and airlight (Fattal, 2008; He et al., 2011; Narashimhan &
Nayar, 2002, 2003; Tan, 2008). Light emitted from a certain background is
scattered and attenuated by particles (water droplets) in the atmosphere. This
phenomenon is termed as direct attenuation, which reduces the contrast of a
scene (Tripathi & Mukhopadhyay, 2014). Light coming from a light source (pri-
marily sunlight in the case of daytime outdoors) is scattered toward the camera,
which results in a shift in color. This phenomenon is termed as airlight (Tri-
pathi & Mukhopadhyay, 2014). Static weather effects can be represented as a
function of the scene depth and vary spatially on a single image (He et al., 2011;
Tripathi & Mukhopadhyay 2014). In the case of static weather, since the size
of constituent particles (water droplets) is large compared to the wavelength of
light, the ”scattering coefficient”, which represents the ability of a unit volume
of atmosphere to scatter light in all directions, is not dependent on wavelength.
For this reason, all wavelengths are equally scattered, resulting in a whitish fog
(Narashimhan & Nayar, 2003). Therefore, the static weather effect that appears
on the image by rainfall can be considered as a whitening of the image (increase
in radiance and decrease in contrast) that depends on rainfall intensity and
scene depth.

Many studies on computer vision have reported techniques for removing static
weather effects from images (Fattal, 2008; He et al., 2011; Tan, 2008). In these
studies, the effect of a hazy background due to fog or haze is represented by the
following Image Degradation Model, using Koschmieder’s model, which shows
the relationship between visibility and atmospheric extinction coefficient (Fattal,
2008; Koschmieder, 1924).

𝐼(𝑥) = 𝐽(𝑥)𝑡(𝑥) + 𝐴 (1 − 𝑡(𝑥)) #(1)

Where, I is observed intensity, J is scene radiance, A is global atmospheric light,
and t is transmission, which represents the ratio of light that reaches the camera
without being scattered. x indicates the pixel position. A is independent of x
and is generally constant in the single image (Tan, 2008).

In Equation (1), the right-hand side J(x)t(x) is direct attenuation, A(1-t(x))
is airlight. Direct attenuation represents the attenuation of scene radiance by
the medium in the air, while airlight represents light scattered by the myriad
particles suspending in the atmosphere.

If the atmosphere is uniform, transmission t is expressed as follows.

𝑡(𝑥) = 𝑒𝑥𝑝 (−𝛽𝑑(𝑥)) #(2)
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Where, d (m) is scene depth.

� (m-1) is called the atmospheric extinction coefficient and represents the ability
of the atmosphere to dissipate light in a unit volume of atmosphere. Extinction
refers to the combined effect of light scattering and absorption. In this paper, the
terms extinction and scattering are used synonymously because water absorbs
virtually no light in the visible light wavelength range.

Equation (2) shows that transmission attenuates exponentially according to
the increase in scene depth, subject to the effect of the extinction coefficient.
The principle is based on Beer-Lambert law, which means that as light passes
through matter (in this case, transparent atmosphere), its intensity attenuates
exponentially.

The following is a variant of Equations (1) and (2).

𝛽 = − log𝑒(𝑡(𝑥))
𝑑(𝑥) #(3)

t(𝑥) = 𝐴−𝐼(𝑥)
𝐴−𝐽(𝑥) #(4)

𝑊ℎ𝑒𝑟𝑒, 𝐴 − 𝐽(𝑥) ≠ 0, 𝑎𝑛𝑑 0 ≤ 𝑡(𝑥) ≤ 1

2.2 Rainfall intensity and extinction coefficient

Rainfall intensity is defined as the amount of rainfall per unit time and area
(World Meteorological Organization, 2018). Therefore, rainfall intensity is ex-
pressed as follows using the particle size distribution of raindrops, raindrop
volume, and falling velocity per unit volume (Uijlenhoet, 2001).

𝑅 = 3.6 × 106 ∫∞
0

𝜋𝐷3
6 𝑁(𝐷)𝑈(𝐷)𝑑𝐷#(5)

Where, R (mm h-1) is rainfall intensity, D (m) is raindrop diameter, N(D) (m-3)
is the particle size distribution of raindrops, and U(D) (m s-1) is the terminal
falling velocity of raindrops.

Then, with the theory of atmospheric radiation, the extinction coefficient under
rainfall conditions can be expressed as follows using the particle size distribution
of raindrops, the surface area of raindrops projected in the optical path direction,
and extinction efficiency (Grabner & Kvicera, 2011).

𝛽 = ∫∞
0

𝜋𝐷2
4 𝑁(𝐷)𝑄𝑑𝐷#(6)

Where, Q is called extinction efficiency and is a dimensionless parameter that
expresses the ratio of the raindrop’s extinction cross sectional area (a quantity
that expresses the intensity of extinction of a single particle with the dimension
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of area) to the geometric cross sectional area of the raindrop. Under the Mie
scattering theory, the extinction efficiency Q is expressed as Q=2 in terms of the
relationship between raindrop size and the wavelength of visible light (Chylek,
1977; Uijlenhoet et al., 2011).

From Equations (5) and (6), both rainfall intensity and extinction coefficient
can be expressed by the particle size distribution of raindrops, but analytically,
rainfall intensity cannot be expressed with extinction coefficient. Then, using
the relational Equations between rainfall intensity and particle size distribution
(M-P distribution) presented by Marshall and Palmer (1948), the relationship be-
tween rainfall intensity and extinction coefficient is approximately linked. Using
the M-P distribution, the particle size distribution of raindrops can be expressed
by the following Equation.

𝑁(𝐷) = 𝑁0 exp(−𝜆𝐷)#(7)

𝑁0 = 8 × 106#(8)

𝜆 = 4.1 × 103𝑅−0.21#(9)

Where, units of 𝑁0 and 𝜆 are m-4 and m-1, respectively.

Substituting Equation (7) into Equation (6), we obtain:

𝛽 = ∫
∞

0

𝜋𝐷2

4 𝑁0 exp(−𝜆𝐷)𝑄𝑑𝐷

= 𝜋𝑁0𝑄
4 ∫∞

0 𝐷2 exp(−𝜆𝐷)𝑑𝐷#(10)

Here, we introduce the gamma function, which represents the generalization of
the factorial.

Γ(𝑧) = ∫∞
0 𝑎𝑧−1 exp(−𝑎)𝑑𝑎 = (𝑧 − 1)!#(11)

Applying Equation (11) to Equation (10), we obtain:

𝛽 = 𝜋𝑁0𝑄
4𝜆3 Γ(3) = 𝜋𝑁0𝑄

4𝜆3 (3 − 1)!

= 𝜋𝑁0𝑄
2𝜆3 #(12)

Substituting Equations (8) and (9) into Equation (12), extinction coefficient �
can be expressed as follows using rainfall intensity R.
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𝛽 = 8 × 106�Q
2(4.1 × 103𝑅−0.21)3

= 5.80 × 10−5�Q𝑅0.63#(13)

2.3 Relationship between image information, rainfall intensity, and scene depth

The extinction coefficient of the Image Degradation Model shown in Equation
(3) is an extinction coefficient obtained from the image information, and if the
images were taken under rainfall conditions, the coefficient will reflect rainfall in-
tensity. On the other hand, the extinction coefficient using the rainfall intensity
shown in Equation (13) is a theoretically derived value, although it is approx-
imate, based on the atmospheric radiation theory. Therefore, by substituting
Equation (13) into Equation (2), the relationship between image information,
rainfall intensity, and scene depth can be obtained as follows:

𝑡(𝑥) = 𝑒𝑥𝑝 (−5.80 × 10−5�Q𝑅0.63𝑑(𝑥)) #(14)

𝑡(𝑥) = 𝐴−𝐼(𝑥)
𝐴−𝐽(𝑥) #(15)

𝑊ℎ𝑒𝑟𝑒, 𝐴 − 𝐽(𝑥) ≠ 0, 𝑎𝑛𝑑 0 ≤ 𝑡(𝑥) ≤ 1

Equation (14) shows a relationship where transmission t decreases exponentially
as rainfall intensity R increases and as scene depth d increases. The applicability
of this relational Equation will be examined in subsequent chapters.

3 Materials and Methods

3.1 Rainfall photography and observation

We captured outdoor conditions including rainfall events and observed rainfall
intensity by installing three cameras at observation sites (35° 45’ 53” N, 138°
18’ 42” E, 758 m a.s.l.) along the banks of the Omu River, which flows through
Yamanashi Prefecture in central Japan. A plan view of the observation site is
shown in Figure 1. Photography was taken using three commercially available
interval cameras (Brinno TLC200Pro), and images of upstream, opposite bank,
and downstream of the river were taken at one-minute intervals from the same
point. Camera 1 took the upstream direction of the river, Camera 2 took the
opposite bank direction, and Camera 3 took the downstream direction. The
resolution of the image was 1280 px wide by 720 px high. The photography
period was 235 days from April 19, 2021 to December 9, 2021. Images taken
at night were excluded from the analysis because it was difficult to distinguish
rainfall.
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One-minute rainfall intensity was also observed using a tipping bucket rain
gauge (Onset RG3-M) at almost the same locations where the cameras were
installed. The resolution of the tipping bucket rain gauge used was 0.2 mm.
The total rainfall during the observation period was 1257 mm, and the total
daytime rainfall for the analysis was 685 mm. The maximum 1-minute daytime
rainfall intensity during the observation period was 0.8 mm min-1. The number
of images used for the analysis by rainfall intensity is shown in Table 1.

Table 1. The number of images

Rainfall intensity Camera 1 Camera 2 Camera 3
(mm min-1)
0.0 151,823 133,970 151,771
0.2 3,141 2,908 3,141
0.4 87 75 87
0.6 21 20 21
0.8 12 12 12

3.2 Image data preprocessing and processing

For the images of landscapes taken, background objects, such as sky, vegetation,
and riverbeds, and their respective scene depths are different according to the
angle of view of the camera and the area of the image. Then, to analyze the
influence of background objects and scene depth, patches to be analyzed were
set on the image. The analysis patch was defined as the center area of 30 × 30
px in each area of the image divided into 64 areas of 8 × 8. Serial numbers were
assigned to 64 patches as shown in Figure 2. The representative value of each
analysis patch was the mean value of the analysis patch.
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For the parameters obtained from the images to be used in Equation (15), ob-
served intensity I was the radiance value of the image taken. Global atmospheric
light A and scene radiance J were calculated from observed intensity I using
the Dark Channel Prior method proposed by He et al. (2011) (hereinafter re-
ferred to as DCP). DCP is a method for recovering an image (scene radiance
J) from which the effects of static weather are removed using a single hazy im-
age (observed intensity I). The procedure for recovering scene radiance J from
observed intensity I by DCP is as follows.

DCP is based on the statistical prior distribution where outdoor images without
static weather effects have at least one color channel with very low intensity of
some pixels in almost all non-sky patches. That is, an image that has been
dilation-processed for each patch with the lowest intensity color channel values
(, which is called a dark channel image) is assumed to have zero pixel values in
most patches. This is expressed by the following Equation.

𝐽dark(𝑥) = min𝑦∈Ω(𝑥) (min𝑐∈{𝑟, 𝑔, 𝑏} J𝑐(𝑦)) → 0#(16)

Where, Ω(x) is a local patch centered at pixel position x, and c � {r, g, b} is the
index of the color channel.
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Using Equation (16), the first term on the right-hand side of Equation (17)
below, which is transformed from Equation (1), can be regarded as zero.

min𝑦∈Ω(𝑥) (min𝑐∈{𝑟, 𝑔, 𝑏}
I𝑐(𝑦)
𝐴𝑐 ) = 𝑡(𝑥) min𝑦∈Ω(𝑥) (min𝑐∈{𝑟, 𝑔, 𝑏}

J𝑐(𝑦)
𝐴𝑐 ) + 1 − 𝑡(𝑥)#(17)

That is, Equation (17) is transformed to the following Equation (18) when
Equation (16) is applied.

min𝑦∈Ω(𝑥) (min𝑐∈{𝑟, 𝑔, 𝑏}
I𝑐(𝑦)
𝐴𝑐 ) = 1 − 𝑡(𝑥)#(18)

In Equation (18), Ic (y) is obtained from observed intensity I, so transmission t
can be obtained by setting global atmospheric light A separately.

Scene radiance J can be recovered by substituting the calculated transmission
t, the observed intensity I, and the global atmospheric light A, which is set
separately, into Equation (1). He et al. (2011) selected pixels with the top 0.1
percent intensity in the dark channel image and set the pixel with the highest
intensity of observed intensity I among these pixels as global atmospheric light
A. In this study, A was calculated from observed intensity I using the same
method, and scene radiance J was calculated by calculating transmission t using
Equation (18). This study has adopted a method using DCP since DCP is not
a machine learning-like method that requires a large amount of prior learning
but is a method that can simply estimate global atmospheric light A and scene
radiance J from a single image with relatively little calculation amount. In
addition, since the angle of view may change even with the same camera in long-
term photography, image registration was performed so that the angle of view
was the same throughout the entire term. Image registration was performed
by combining feature detection using the Accelerated-KAZE (Alcantarilla et al.,
2013) algorithm and image warping by homography.

Scene depth d was calculated as the oblique distance from the camera to the
intersection of (i) the light path in the camera’s line-of-sight direction obtained
from the camera’s latitude, longitude, height above sea level, azimuth angle, and
elevation angle information and (ii) the background 5-m digital elevation models
created from the aerial laser survey data (Geospatial Information Authority of
Japan, 2018). The scene depth of each analysis patch was defined as the scene
depth at the center position of each patch.

The values of parameters A, J, I, and d calculated for each image were applied
to the proposed relational Equations (Equations (14) and (15)) to analyze the
relationship between transmission t, rainfall intensity R, and scene depth d in
each analysis patch. The image processing was performed using OpenCV4.0.1,
an open source library in the Python 3.8.12 programming language.

4 Results
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4.1 Distribution of observed intensity I, scene radiance J, global atmospheric
light A, and transmission t

Figures 3, 4, and 6 show the distribution of observed intensity I, scene radiance J,
and transmission t for each rainfall intensity in each patch, respectively. Patches
with a sky background were excluded from the analysis because the scene depth
could not be calculated. Patches such as the rightmost patch of Camera 1, where
the appropriate scene depth could not be obtained due to the image registration
process, were also excluded from the analysis. Those patches not included in the
analysis are indicated as d = n. d. without plotting. Global atmospheric light A
is set to one value per image, so values for each patch are not shown (Figure 5).
Further, Table 2 shows the slope of regression line by single regression analysis in
the relationship between the mean values of observed intensity I, scene radiance
J, and transmission t shown for each rainfall intensity and rainfall intensity in
Figures 3, 4, and 6. Although an exponential relationship between observed
intensity I, scene radiance J, transmission t, and rainfall intensity is expected as
shown in Equations (14) and (15), a simple regression analysis was conducted
here to determine a simple trend.
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The value and distribution range of observed intensity I vary for each analy-
sis patch with different background conditions (background objects and scene
depth), and that the trend of changes in the value and distribution range of ob-
served intensity I according to changes in rainfall intensity, and the slope of the
regression line also vary (Figure 3 and Table 2). It was found that there exist
some patches where the mean value of observed intensity I gradually increases
as rainfall intensity increases in all cameras, such as patch 20 (row number 3,
column number 4) in Camera 1, patch 13 (row number 2, column number 5) in
Camera 2, and patch 36 (row number 5, column number 4) in Camera 3. The
patch where the mean value of observed intensity I tends to increase as rainfall
intensity increases is the patch where the slope is positive in Table 2, and the
larger the absolute value, the more sensitive response to rainfall intensity is seen.
These patches indicate that the whiteness of image increases as rainfall intensity
increases on the whole.

Next, as compared to observed intensity I, the effect of rainfall intensity on
scene radiance J is limited and varies little in any of the cameras (Figure 4 and
Table 2).

Moreover, the intensity of global atmospheric light A is generally above 200
in all cameras, and that the effect of rainfall intensity is limited, with little
variation (Figure 5).

Finally, the value and distribution range of transmission t vary according to
each analysis patch with different background conditions, and that the trend
of changes in the value and distribution range of transmission t according to
changes in rainfall intensity and the slope of the regression line, also vary (Figure
6 and Table 2). There exist some patches where the mean value of transmission
t gradually decreases as rainfall intensity increases in all cameras, such as patch
20 (row number 3, column number 4) in Camera 1, patch 14 (row number 2,
column number 6) in Camera 2, and patch 36 (row number 5, column number
4) in Camera 3. The patch where the mean value of transmission t tends to
decrease as rainfall intensity increases is the patch where the slope is negative in
Table 2, and the larger the absolute value, the more sensitive response to rainfall
intensity is seen. In other words, it can be said to quantitatively indicate that
in such patches, the background is gradually becoming hazy and less visible as
rainfall intensity increases.

4.2 Relationship between transmission t, rainfall intensity R, and scene depth d

Figure 7 shows the relationship between transmission t calculated by Equation
(15), rainfall intensity R, and scene depth d for each patch. In all cameras, if
rainfall intensity is constant, transmission t gradually decreases as scene depth
increases. Similarly, if scene depth is constant, transmission will gradually de-
crease as rainfall intensity increases. These data clearly show that transmission
t decreases exponentially according to the increase in rainfall intensity R and
scene depth d, as shown in Equation (14), indicating that the proposed rela-
tionship (Equations (14) and (15)) are applicable to images taken outdoors in
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practice. Further, in the Figure of rainfall in each camera (rainfall intensity R
is 0.2 to 0.8 mm min-1), the plots generally were ranged between the theoreti-
cal lines of Q = 0.5 to 2.0, but in patches where scene depth d was less than
approx. 100 m, the plots were often ranged below the line of Q = 2.0. In the
patches ranged below the Q = 2.0 line, the ratio of scene radiance J to global
atmospheric light A tends to be higher. In addition, theoretically, if there is
no rainfall (R = 0.0 mm min-1), transmission t should always be 1.0 without
decreasing, but even in the case of no rainfall, transmission t tends to decrease
according to distance.

5 Discussion

5.1 Factors of the value of transmission t and the variation of transmission t
according to rainfall intensity

As shown in Equation (4), transmission t is determined by the relationship be-
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tween observed intensity I, scene radiance J, and global atmospheric light A,
but as shown in Figures 3, 4, 5, and 6, the values and trend of variation for
observed intensity I, scene radiance J, global atmospheric light A, and trans-
mission t vary according to rainfall intensity. Then, it was verified which of the
factors (observed intensity I, scene radiance J, or global atmospheric light A)
strongly affected the value of transmission t and the variation of transmission t
according to rainfall intensity.

Figure 8 shows the relationship between (i) the mean value of observed intensity
I, scene radiance J, and global atmospheric light A according to rainfall intensity
in each patch for the three cameras shown in Figures 3, 4, and 5, and (ii) the
mean value of transmission t shown in Figure 6. Table 3 shows the slope of
the regression line and the value of the coefficient of determination R2 obtained
by simple regression analysis. Figure 8 and Table 3 clearly show a negative
correlation between observed intensity I and transmission t, where transmission
t decreases as observed intensity I increases in all the three cameras. In the
results of the single regression analysis, the coefficient of determination was
0.47 to 0.69 in the case of no rainfall and 0.74 to 0.90 in the case of rainfall,
which indicates a strong negative correlation. That is, the value of transmission
t has a strong relationship with the value of observed intensity I. In addition,
the absolute value of the slope of the regression line gradually increases as
rainfall intensity increases, so that as rainfall intensity becomes greater, the
value of transmission t tends to respond to the value of observed intensity I
more sensitively and vary greater. Further, in each patch, especially in the
plots where transmission t is at low values, observed intensity I increases and
transmission t decreases as rainfall intensity increases. From this, it can be said
that in patches where the range of variation of transmission t is large, as rainfall
intensity increases, observed intensity I tends to increase, i.e., the apparent
whiteness of the image increases, and transmission t tends to decrease.
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Next, in the relationship between scene radiance J and transmission t, the slope
of the regression line was negative in all the three cameras, but the coefficient of
determination was 0.04 to 0.36 in the case of no rainfall and 0.02 to 0.16 in the
case of rainfall, which indicates a generally weak negative correlation or almost
no correlation. In each patch, changes in scene radiance J and transmission t
according to changes in rainfall intensity were also not clear. In the patch where
scene radiance J is relatively high when rainfall intensity is 0.0 mm min-1, scene
radiance J tends to decrease as rainfall intensity increases. However, since it
is not clearly linked to changes in transmission t, it can be said that the effect
of changes in scene radiance J associated with changes in rainfall intensity on
transmission t is limited.

Then, in the relationship between global atmospheric light A and transmission
t, the relationship with transmission t and transition according to changes in
rainfall intensity were not clearly found because global atmospheric light A was
almost constant at 200 or more in all the three cameras.

These results suggest that the value of transmission t and the variation of trans-
mission t according to the increase in rainfall intensity are strongly influenced
mainly by the value of observed intensity I.

5.2 Validity of the extinction coefficient � determined from the image

5.2.1 Values and trends of the extinction coefficient � determined from the image

In this study, as shown in section 2, we linked the extinction coefficient ob-
tained from image information with rainfall extinction coefficient approximately
obtained from the atmospheric radiation theory. Since there are few examples
of rainfall extinction coefficient values obtained from images in the past, the
validity of the values is verified below.

Figure 9 shows the relationship between the value of extinction coefficient �
calculated from the image and scene depth d for each rainfall intensity. The
extinction coefficient obtained from the image were calculated by Equation (3)
after determining transmission t from observed intensity I, global atmospheric
light A, and scene radiance J of the image, as shown in Equation (4). The
Figures for each camera in the case of rainfall (rainfall intensity R is 0.2, 0.4,
0.6, 0.8 mm min-1) show the cases with the extinction efficiency Q of 0.5, 1.0,
1.5, and 2.0 and the values of extinction coefficient � given in the previous study
to be discussed in section 5.2.2. In all the three cameras, the value of extinction
coefficient � in the case of no rainfall (rainfall intensity R is 0.0 mm min-1) is
the order of 10-4 to 10-2, while the value of extinction coefficient � in the case
of rainfall is the order of 10-3 to 10-2. In addition, in all rainfall intensities, a
trend is seen that extinction coefficient � decreases as scene depth increased in
patchs where scene depth d is less than approx. 100 m, while it remains nearly
constant when scene depth d is more than approx. 100 m. These values and
trends of extinction coefficient � will be discussed in the following sections.
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5.2.2 Validity of extinction coefficient � in the case of rainfall determined from
images

Although no research has been conducted on rainfall extinction coefficients to
be obtained from images, there are many examples of obtaining extinction
coefficients from the attenuation of electromagnetic waves due to rain using
electromagnetic waves with wavelengths in the visible light and near-infrared
regions in radar weather observation and research in the field of telecommunica-
tions(Bradley et al., 2000; Nedvidek et al., 1986; Shipley et al., 1974; Suriza et
al., 2013; Ulbrich & Atlas, 1985; Zaki et al., 2019). Visible light is an electromag-
netic wave with a wavelength of approx. 360 nm to 830 nm, and a camera can
be regarded as a sensor that detects electromagnetic waves in that wavelength
range. Uijlenhoet et al. (2011) noted that both theoretical and experimental
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measurements of visible light and near-infrared signal attenuation over paths
ranging from a few hundred meters to several kilometers can be used to esti-
mate the average rainfall over a path. The concept of attenuation and extinction
coefficients of electromagnetic waves due to rain in such previous studies can
be applicable to this study. According to the previous studies, the extinction
coefficient of electromagnetic waves due to raindrops can be expressed by the
following Equation (e.g., Ulbrich and Atlas, 1985).

𝛽 = aR𝑏#(19)

The two parameters a and b in Equation (19) represent the difference in the
particle size distribution of raindrops. Applying the extinction coefficient of
Equation (13) of this study to Equation (19) for the parameters a and b, we
obtain a = 5.80 ×

10-5 �Q, b = 0.63. In the previous studies, for example, Ulbrich and Atlas
(1985) proposed the theoretical values a = 2.12 × 10-4 and b = 0.68 based on
the results of previous experiments on rainfall intensity and optical attenuation,
including the experiment of Shipley et al. 1974., and Nedvidek et al. 1986
proposed the values a = 2.12 × 10-4 and b = 0.63 based on the results of
experiments using near-infrared light sources and reflectors. All the values of
extinction coefficients shown in the unit of dB km-1 in the previous studies
were converted to m-1. Figure 9 shows the results of calculating the extinction
coefficient � using these values of a and b. The values of extinction coefficient
� shown in the previous studies are the order of 10-3. The � obtained from the
images in this study in the case of rainfall is almost constant with the order of
10-3 in the patches where scene depth d is more than approx. 100 m, which is
almost consistent with the value shown in the previous studies. Therefore, the
result was that the extinction coefficient � in the patches where scene depth d
is more than approx. 100 m is not significantly inconsistent with the previous
studies. However, in patches where scene depth d is less than approx. 100 m, the
results show significant overestimation compared to the previous studies. The
reasons for this overestimation are discussed in 5.2.4. As indicated in section 2,
extinction efficiency Q is ideally 2 (Chylek, 1977; Uijlenhoet et al., 2011), but
the values of extinction coefficient in the previous studies were ranged between
1.0 and 1.5. It has been indicated that the reason for this difference in the value
of Q is that the ideal case of Q = 2 tends to overestimate the number of very
small raindrops in the raindrop population (Bradley et al., 2000; Rogers et al.,
1997).

5.2.3 Validity of extinction coefficient � for in the case of no rainfall determined
from images

In the case of no rainfall, as seen from Equation (13), the rain extinction coeffi-
cient approximately obtained from the atmospheric radiation theory is expected
to be normally zero, and the extinction coefficient obtained from the image is
also expected to be zero (synonymous with the transmission t of 1). However,
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as shown in the no-rainfall Figure in Figure 9 in the case of no rainfall, the
extinction coefficient indicated almost the same trend in the three cameras, de-
creasing between the order of 10-2 and 10-3 in patches where scene depth was
less than approx. 100 m, and remaining almost constant between 10-3 and 10-4

when scene depth was more than approx. 100 m. As shown in Equation (3),
since extinction coefficient is a function of transmission and scene depth, the
decrease in transmission t in the range where scene depth is more than approx.
100 m in the no-rainfall Figure in Figure 7 is explained by the fact that the
extinction coefficient is constant in the range where scene depth is more than
approx.100 m in Figure 9.

The reason why the extinction coefficient is not zero when there is no rainfall
may be due to the effect of aerosols in the atmosphere. In outdoor photography,
not only hydrometeors, such as rain and fog, which are the subject of this study,
but also lithometeors, such as smoke and dust, degrade visibility and change the
appearance of background. Therefore, even if images taken during no rainfall
do not show the effects of rain, they may show the effects of hydrometeors and
lithometeors that are not observed as rainfall intensity. In this paper, hydrome-
teors and lithometeors that are not observed as rainfall intensity are collectively
referred to as aerosols.

Because of the importance of atmospheric aerosols to air pollution and the hu-
man health impacts caused by it, traffic and airport safety, and climate change,
many studies have been conducted to grasp the characteristics of aerosols (Kim
& Noh, 2021). Some of these studies have reported on the relationship between
atmospheric aerosols and atmospheric extinction coefficients (Kim & Noh, 2021;
Ozkaynak et al., 1985; Shin et al., 2022; Uchiyama et al., 2014; Uchiyama et
al., 2018). Ozkaynak et al. (1985) calculated the values of extinction coefficient
from the results of visibility observation in 12 airports at large cities in the U.S.
and reported that they were 4.0 × 10-5 - 7.8 × 10-4m-1. Uchiyama et al. (2014)
reported that the mode of extinction coefficients observed at Tsukuba, Japan,
using an integrating nephelometer and one- and three-wavelength absorption
spectrometers was 2.5 × 10-5 m-1, and most values were not more than 2.0 ×
10-4 m-1. Uchiyama et al. (2018), also observed extinction coefficients in two
cities, Fukuoka, Japan and Beijing, China, using an integrating nephelometer
and an aethalometer, and found that the annual mean for Fukuoka was 7.46
× 10-5 m-1 and for Beijing, 4.12 × 10-4 m-1. Further, Kim and Noh (2021)
obtained the extinction coefficients of atmospheric aerosols from camera images
and reported that the estimated range was 5.0 × 10-5 to 1.0 × 10-3 m-1 and
the optimal aerosol extinction coefficient was approx. 5.0 × 10-4 m-1, and Shin
et al. (2022) reported that the range obtained from the camera images and
visibility data was 2.0 ×10-6 to 1.1 × 10-3 m-1. In reference to these reports,
although there are differences in the air pollution conditions of the observation
patches and the observation methods used, the value of atmospheric extinction
coefficient is expected to be the order of 10-6 to 10-3 in m-1 unit, even if there
is no rainfall, due to aerosol effects. In the results of this study, the extinction
coefficient is the order of 10-3 to 10-4 in patches where scene depth is more than
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approx. 100 m, as shown in the no-rainfall Figure in Figure 9. This result is a
slight overestimation compared to the results observed in Japan in recent years,
i.e., Uchiyama et al. (2014) and Uchiyama et al. (2018), but is considered
to be generally appropriate. Therefore, it would not be highly inconsistent to
assume that aerosol effects are manifested in the extinction coefficient of no
rainfall in patches where the scene depth is more than approx. 100 m. However,
in patches where scene depth d is less than approx. 100 m, the results show
significant overestimation compared to the previous studies as well as the case
of rainfall.

5.2.4 Causes of overestimation of extinction coefficients obtained from images

In patches where scene depth is less than approx. 100 m, the extinction co-
efficients calculated from images resulted in overestimation, regardless of the
presence or absence of rainfall. This implies that the static weather effect was
strongly represented in the image, contrary to the fact, even though the static
weather effect was actually absent or small. One possible reason for this could
be the influence caused by DCP, the method used in this study to calculate
extinction coefficients. DCP assumes that dark channel images of the outdoor
images without static weather effects will have zero pixel values in most patches,
and that transmission will decrease according to increase in scene depth and
static weather effects (rainfall intensity in this study) (He et al., 2011). In other
words, it is assumed that the increase in scene depth and static weather effects
will make the image whiter. Therefore, it has been pointed out that there are
many actual outdoor images that violate the assumption, and it is often dif-
ficult to estimate the appropriate transmission t, although DCP can properly
determine transmission t if the background of the image meets the assumption
(Qin et al., 2020; Qu et al., 2019; Ren et al., 2018; Wu et al., 2020). It has been
reported that DCP often fails because it violates the assumed prior distribution,
especially in backgrounds with white objects that are essentially similar to the
color of global atmospheric light (Qin et al., 2020; Ren et al., 2018; Yang and
Sun 2018).

In Figure 7 and Figure 9, the closer the ratio of scene radiance J to global atmo-
spheric light A is to 1, the more the background has a color that is essentially
similar to the color of global atmospheric light, and the more difficult it is to
estimate transmission t by DCP. From Figures 7 and 9, it can be seen that in
all the cameras and all rainfall intensity Figures, the values of the ratio of scene
radiance J to global atmospheric light A in the patches within approx. 100m of
scene depth are larger than in the patches above approx. 100m of scene depth.
Therefore, many patches within approx. 100 m of scene depth were likely to
violate the assumption of the expected prior distribution, which suggests that
it was an inconvenient patch for the estimation of transmission. This indicates
that the cause of the overestimation of the value of extinction coefficient in
these patches was due to the misidentification of the white-colored background
as a static weather effect, which tends to violate the DCP’s assumption of prior
distribution.
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It has been pointed out that the ambiguity between image color and scene depth
is often a problem with image fog removal techniques such as the one referenced
in this study (Meng et al., 2013). In other words, the inability to determine
whether the whiteness of image is due to the color of the background object
itself or to the increase in scene depth is an issue for the techniques to remove
static weather effects. Therefore, it is important to consider in advance the
reason for the whiteness of image, even with the method proposed in this study.
Since there are a number of techniques that have been proposed to express
Equation (1) from images (e.g., Fattal, 2008; Tan, 2008) in addition to the
method using DCP, it is a future issue to study which method can be used to
obtain appropriate extinction coefficients and transmission.

In Figures 7 and 9, some plots overestimate extinction coefficients even if the
value of the ratio of scene radiance J to global atmospheric light A is not neces-
sarily larger, especially in the Figures with higher rainfall intensity. Therefore,
it can be inferred that the cause of the overestimation of extinction coefficients
is not only due to the effect caused by DCP. At present, other causes have not
yet been identified, and the issue in the future is to determine these causes.

6 Conclusions

Using the extinction coefficient as a clue, this study proposed relational Equa-
tions representing the relationship between image information, rainfall intensity,
and scene depth by linking the theoretically derived rainfall intensity with a tech-
nique proposed in the computer vision field for removing static weather effects.
Then, the proposed relational Equations were applied to outdoor images taken
by commercial interval cameras at observation sites in a mountainous watershed
in Japan. As the result, the following findings were obtained.

(1) In the images taken outdoors, generally as shown in the proposed relational
Equations, transmission t decreased exponentially according to the increase in
rainfall intensity R and scene depth d.

(2) The value of transmission t and the variation of transmission t according
to the increase in rainfall intensity were considered to be strongly influenced
mainly by the value of observed intensity I.

(3) The extinction coefficient � obtained from images during rainfall was reason-
able compared to the previous studies in the patches where scene depth d was
more than approx. 100 m.

(4) Extinction coefficient � calculated from the no-rainfall images may have been
affected by aerosols in the patches where scene depth d was more than approx.
100 m. Therefore, extinction coefficient � was not zero despite the assumption
from the proposed Equations.

(5) Regardless of the presence or absence of rainfall, extinction coefficients ob-
tained from the images were overestimated in the patches where scene depth
d was less than approx. 100 m. It was suggested that one of the reasons for
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this was the influence caused by the method used to calculate the extinction
coefficient.

Overall, these findings suggest that the relational Equations proposed in this
study for image information, rainfall intensity, and scene depth, which incor-
porate the effects of static weather caused by rain, are generally valid even for
outdoor images. On the other hand, there are still some issues to be studied,
such as finding out the details of the reasons for the overestimation of extinction
coefficient, methods to eliminate the overestimation, and methods to remove the
effects of aerosols. Even if the proposed relational Equations are valid from a
broad perspective, its applicability to a single individual image has not been
verified at present. Therefore, the applicability of the proposed relational Equa-
tions to a single individual image is an issue to be addressed in the future. Thus,
there are some issues that need to be resolved in the future for the technology
proposed in this study. However, this technology has the potential to greatly
help the development of camera-based rain gauges that are accurate, robust, ver-
satile, and accessible. Therefore, further study needs to be promoted in order
to improve sensing technology for meteorology and hydrology, and to construct
a high-density rainfall observation network that can measure rainfall with high
spatio-temporal resolution and at low cost.
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