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Abstract

A month-long data assimilation experiment is carried out to assess the impact of CrIS and

IASI Transformed Retrievals (TRs) on the accuracy of analyses and forecasts from a 3-h

Weather Research and Forecasting (WRF) cycling system implemented over the central North

Pacific Ocean. Conventional observations and satellite MicroWave (MW) radiance data are

assimilated along with TRs in comparative experiments. Both the NCEP Global Forecasting

System (GFS) and the European Centre for Medium-Range Weather Forecasts (ECMWF)

analyses are used in the evaluation process. The results show that the assimilation of TRs, both

alone, and in combination with MW radiance assimilation, have the greatest impact on the

characterization of the moisture field in the middle atmospheric levels (800 to 300 hPa), and

particularly in the lower portion (800 to 600 hPa). The latter improvement is likely due to a

refinement in the vertical definition of the trade-wind inversion.
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ABSTRACT 

A month-long data assimilation experiment is carried out to assess the impact of CrIS and 

IASI Transformed Retrievals (TRs) on the accuracy of analyses and forecasts from a 3-h 

Weather Research and Forecasting (WRF) cycling system implemented over the central North 

Pacific Ocean.  Conventional observations and satellite MicroWave (MW) radiance data are 

assimilated along with TRs in comparative experiments.  Both the NCEP Global Forecasting 

System (GFS) and the European Centre for Medium-Range Weather Forecasts (ECMWF) 

analyses are used in the evaluation process.  The results show that the assimilation of TRs, both 

alone, and in combination with MW radiance assimilation, have the greatest impact on the 

characterization of the moisture field in the middle atmospheric levels (800 to 300 hPa), and 

particularly in the lower portion (800 to 600 hPa). The latter improvement is likely due to a 

refinement in the vertical definition of the trade-wind inversion.  
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1. Introduction 

This paper presents the results of an assessment on the impact of the assimilation of 

Transformed Retrievals (TRs) into the Weather Research and Forecasting (WRF) modeling 

system during a month-long experiment over the Central North Pacific Area.  Transformed 

Retrievals represent a very efficient method for exploiting the information content of 

hyperspectral satellite data (Migliorini et al. 2008; Migliorini 2012).  This work is an extension 

of the study by Antonelli et al. (2020; A2020 hereafter) where TRs were generated using 

‘‘Mirto’’ 1DVAR (Antonelli et al. 2017) and ingested into a modified version of the WRF 

model (Skamarock et al. 2008), with 3DVAR data assimilation (WRFDA; Barker et al. 2004, 

2012). Preliminary results in A2020 were encouraging and showed a positive impact on the 

characterization of the water vapor distribution, and a decrease in the root mean square error 

(RMS) of the 3-h accumulated precipitation forecasts for the record-breaking Kauai flood event 

(Corrigan and Businger 2021). These preliminary results from a limited case study prompted 

the present more comprehensive assessment study.  

Assimilation of TRs has many advantages: (i) it is akin to assimilation of physical profiles, 

but overcomes the errors introduced by using an a priori knowledge of the atmospheric state 

in the physical retrieval process (Eyre, 2007; Eyre et al. 2019); (ii) the Mirto approach is 

fundamentally more efficient in processing thousands of wavelengths available from 

hyperspectral instruments than direct assimilation of radiant energy of each of these thousands 

of wavelengths, moreover, only a subset of the available wavelengths are used in operational 

radiance assimilation; (iii) TRs are independent of the characteristics of the hyperspectral 

instruments and the observation operator, unlike for direct radiance assimilation, comes with 

the TRs; (iv) the Mirto approach also allows wavelengths corresponding to, for example, ozone 

and carbon dioxide to be included in the calculations, providing an accurate and focused 

solution, whereas wavelengths sensitive to, for example, methane and sulfur dioxide and others 

that are hard to model are excluded from the calculations. 

Since Antonelli et al. (2017), the retrieval processor, Mirto, was refined and extended to be 

able to retrieve profiles above the cloud top. This greatly expands the TRs assimilation 

potential in cloudy regions such as higher latitudes in winter.  Assimilation of TRs above the 

cloud top is a subject for future work and is not included in this study.  

The current investigation expands the research reported in A2020 in two ways: i) includes 

a month-long assimilation experiment that allows for robust forecast statistics; and ii) 
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independently assimilates MicroWave (MW) radiance observations into the WRFDA system 

(Barker et al., 2004, 2012).  The MW emissions from atmospheric water vapor provide an 

independent and complimentary data set.  Because MW frequencies can pass through non-

precipitating clouds, they provide complementary observations, albeit at lower spectral 

resolution, over cloud covered regions where TRs are unable to at this stage.  This work was 

conducted at the Mauna Kea Weather Center (MKWC) in Hawaii.  The MKWC is a weather 

research and forecast facility funded by the astronomical observatories on Mauna Kea 

(Businger et al. 2002; Cherubini et al. 2011; Lyman et al. 2020; Cherubini et al. 2021; 

http://mkwc.ifa.hawaii.edu), and routinely runs the WRF Model system. 

Studies demonstrated that assimilating MW radiances with variational DA algorithms 

improves forecasts in global numerical weather prediction (NWP) models over areas with few 

conventional observations (Simmons and Hollingsworth 2002; Zapotocny et al. 2008) and in 

limited area NWP models when using variational data assimilation systems (Wang et al. 2021).  

However, the successful direct assimilation of MW radiances, as with any satellite radiances 

in limited-area models, is very challenging. It requires the use of a radiative transfer model, 

observation thinning, a good understanding of the limits and potentials of the sensors/channels 

involved, and, most of all, bias correction (Dee 2005; Auligné, et al. 2007; Auligné and 

McNally 2007; Auligné 2007).  The latter can be cumbersome and challenging to implement, 

especially in limited-area models, due to the non-uniform coverage of polar orbiting satellites.  

In contrast, TR assimilation into a limited-area model like WRF is straightforward, from the 

user perspective, because it eliminates the need for a radiative transfer model.  Once the NWP 

model is equipped with a dedicated assimilation module, minimal parameters tuning is needed, 

as most of the sensor-related parameters are handled by the retrieval processor (Mirto).  While 

direct radiance assimilation of hyperspectral sensors with thousands of channels requires the 

understanding and tuning of many parameters, the retrieval process compresses all the 

underlying physical information into a very limited number of parameters (< 20 eigenvectors), 

provides an ad hoc observation operator, and reduces the observation error covariance to the 

Identity Matrix regardless of the hyperspectral sensor’s characteristics, thus limiting the 

amount of tuning needed by the users at assimilation time. The present study also shows that 

TR assimilation does not seem to require bias correction, as TR assimilation is ultimately more 

comparable to single profile assimilation than radiance assimilation. 

Three parallel experiments were designed to evaluate the impact of assimilating TRs and 

the combined assimilation of TR and MW radiances in a WRF 3-h cycling system on the 
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system’s nowcasting and forecasting accuracy.  Each experiment produces analyses every 3 

hours between 0300 UTC 20 November and 1200 UTC 18 December 2020.  These analyses 

initialize 12-h WRF forecasts.  The GFS and ECMWF analyses, available at synoptic times, 

are used to validate the WRF predictions.   

This paper is structured as follows: section 2 provides the working framework in terms of 

the description of the involved models’ configurations and the observational data availability; 

section 3 describes the experiments design and section 4 the adopted validation strategies; and 

results are presented in section 5. Conclusions and future work are outlined in section 6.  

2. Model set up and data availability 

The underlying working framework used in this study is partially described in section 2 of 

A2020.  The chosen WRF model configuration encompasses the domain in Fig. 1 of A2020, 

with horizontal grids spacing of 4500 m centered over the north-central Pacific area and the 

island of Hawai‘i, which correspond to the coarser and parent domain in the MKWC 

operational configuration (A2020 and Table 1).  A custom adaptation of the WRF Data 

Assimilation system version 3.9.1, which includes modules to assimilate TR, is used in this 

study (Antonelli et al. 2015; A2020; DeHann et al. 2015).  The WRFDA is capable of ingesting 

a wide variety of observation types. The different datasets used in the assimilation experiments 

in this study are described hereafter. 

Table 1: WRF configuration 
Domain parameters 

E-W n of grid points N-S n of grid points Δx = Δy [km] Integration time step  

451 451 4500 30s 

Map Projection Mercator 

Physical Packages 

Microphysics WRF Single-Moment 6-class microphysics scheme which allows for ice, snow and 
graupel (Hong and Lim 2006) 

Cumulus Tiedtke cumulus convention scheme (Zhang and Wang 2017) 

PBL Mellor-Yamada-Janjic (MYJ) Planetary Boundary Layer scheme (Janjic 2002) 

Radiation RRTM longwave-shortwave radiation scheme (Mlawer et al. 1997; Dudhia 1989) 

Land surface Noah Land Surface Model (https://ral.ucar.edu/solutions/products/noah-
multiparameterization-land-surface-model-noah-mp-lsm) 

Surface Layer  Eta similarity surface layer scheme (as used in Eta Model). 
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a. Conventional Observations 

In data assimilation experiments, in-situ observations are the classical and most commonly 

used type of data. They include conventional radiosondes as well as ground and upper air 

observations. Only two radiosondes are available in the Central Pacific Area: Hilo (PHTO, 

91285) and Lihue (PHLI, 91165) radiosondes. Other conventional observations include: 

METAR, SYNOP, ship and buoy for ground observations; and TEMP, AIREP, ACARS, 

TAMDAR for upper air observations. The WRFDA is also capable of assimilating some 

remote sensing derived products. Among these, Atmospheric Motion Vectors (AMV; 

Cherubini et al. 2006) and QuickScat winds are present in the data used in this study. For the 

sake of simplicity, we refer to them as “Conventional Observations” (CO) throughout this 

paper (National Centers for Environmental Prediction, NCEP/NWS/NOAA/U.S. Department 

of Commerce, 2008). This dataset is the output from the final step of the NCEP Global 

Forecasting System (GFS) Data Assimilation System (GDAS), which prepares the majority of 

conventional observational data for assimilation into various NCEP analyses. A certain level 

of quality control is already performed to this dataset before making it available. WRFDA is 

capable of ingesting these data “as is” with no pre-processing necessary. Figure 1 shows 

examples of the typical geographical distribution of available conventional observations. 

 



7 

 

 

 

b. Transformed Retrievals 

Level 1 data from both the CrIS and IASI sensors on Suomi NPP and NOAA-20, and 

MetOp-A/B/C for the period from November 20th to December 31st, 2020 were fed to the 

Mirto processor (Antonelli et al. 2017), which produced 1DVAR physical retrievals of 

temperature and relative humidity, instability indices, and TRs, along with their observation 

Fig. 1: Examples of the spatial distribution of conventional observations available from the Global Data 
Assimilation System. 
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operators for the entire timeframe. The TRs and their corresponding observation operators are 

the quantities used in the assimilation process within the modified WRFDA system (A2020). 

Although the version of Mirto under development is capable of retrieving information on 

cloudy-sky conditions also, only retrievals in clear-sky conditions are included in this study. 

The impact of assimilating TRs above cloud top is left for future investigations.  

An example of the distribution of clear-sky fields of view (FOVs) associated with 

successful Mirto retrievals is provided in Fig. 2.  This distribution is obtained by patching 

together the CrIS data from adjacent Suomi-NPP overpasses that overlap the model domain 

and occur during the 2-h windows centered at 1200 UTC on December 1st, 2020. The 

aggregated data for each overpass are quality controlled and then thinned to 80 km. The 

performed quality control is described in A2020.  

 

 

The TRs are assimilated in WRFDA by an adapted version of the original satellite radiance 

module (A2020, section 3b). The TR observation operators are characterized by at most 20 

eigenvectors of the Signal to Noise matrix (Migliorini et al. 2008; Migliorini 2012). In the 

current WRFDA implementation only eigenvectors associated with eigenvalues of the signal 

to noise matrix greater than 1 are retained.  Due to refinements of the a-priori covariance matrix 

in Mirto, 15 of the available 20 eigenvalues are actively assimilated (versus 12 over 20 of the 

previous study).  The TRs used in the experiment timeframe consistently show that the bulk of 

the information from the underlying hyperspectral sensors is carried by the first 15 eigenvectors 

Fig. 2: Locations of convergent, non-saturated CrIS retrievals (RH < 100% for any level) obtained from two 
adjacent Suomi-NPP overpasses, before (a) and after (b) the 80 km thinning is applied. Data are overlaid on 
a VIIRS true color image valid for 0000 UTC 01 December. 
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(Fig. 3).  Within WRFDA, eigenvector selection for TR works just like channel selection for 

radiance assimilation1. A quality control (QC) is implemented within the assimilation module 

that rejects any normalized observation whose difference with the background is outside the 3-

σ confidence interval (A2020). In the current configuration of Mirto and the WRFDA module 

for TR assimilation no bias correction scheme has been implemented. Although bias correction 

is very relevant for radiance assimilation experiments to be successful (Eyre 2016), our results 

seem to suggest that there is no need for bias correction in TR assimilation (see section 3). 

 

 

c. MicroWave Radiances 

The microwave radiances used are from: (i) Advanced Microwave Sounding Units A 

(AMSU-A) on board of various satellite systems (Aqua, METOP-A/B, NOAA18/19), which 

has 15 channels in the microwave range; (ii) Microwave Humidity Sounder (MHS), which has 

five channels in the MW range, on board the NOAA-18/19 and METOP-A/B; (iii) Advanced 

Technology Microwave Sounder (ATMS), which currently flies on the Suomi NPP and 

 
1 https://www2.mmm.ucar.edu/wrf/users/wrfda/Docs/radiance_userguide_v1.pdf, page 6 

Fig. 3: Logarithmic distribution of eigenvalues (mean and standard deviation) of the signal-to-noise matrix 
(Eq. 7 in A2020) for 01 December 2020 at 1200 UTC.  Three hundred thirty-three IASI FOVs with 3306 
channels per FOV were assimilated. The eigenvalues larger than 1, are those that actually carry significant 
information about the true state vector. 
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NOAA-20 satellite missions and senses the atmosphere through 22 channels. These sensors, 

which observe the Earth in the MW portion of the electromagnetic spectrum, can “see” through 

clouds. Although available, the MetOP-C MW radiance data are not used in this study because 

assimilation capability is only implemented from WRFDA version 4.3. Table 1 summarizes 

the sensors included in the assimilation and also indicates which channels are actively 

assimilated. Only channels active in the default set up of the WRFDA are used here.  Sensitivity 

tests for the number of channels used is beyond the scope of this study2.  IASI and CrIS radiance 

data are not included in this experiment to avoid the same information content being 

assimilated twice.  However, IASI and CrIS radiance data could be present in the initial 

conditions of the cold-start cycles because the GFS fields are the results of the NCEP GDAS, 

which assimilates radiances from these sensors.  Moreover, only radiance data in the MW range 

is included, as it is believed to provide information complementary to that from hyperspectral 

sensors. 

Table 2: Assimilated radiances 

Satellite ID Sensor Channels 

NOAA-18/19 MHS 3,4,5 

EOS-Aqua AMSU-A 5,6,8,9 

NOAA-18/19 AMSU-A 5,6,7,8,9 

MetOP-A/B AMSU-A 5,6,7,8,9 

MetOP-A/B MHS 3,4,5 

Suomi NPP ATMS 6,7,8,9,10, 18,19,20,21,22 

 

3. Experiment set up 

The WRF modeling system can run in cold-start mode, which uses the NCEP GFS analyses 

and forecast as initial and boundary conditions, or in cycling/hot-start mode, where each 

 
2 More can be found in terms of channel quality at:  
www.emc.ncep.noaa.gov/mmb/data_processing/Satellite_Historical_Documentation.htm 
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forecast cycle is initialized using the forecast from the previous cycle as background, and a 

custom analysis is created by ingesting available local observations in WRFDA.  A 3-h cycling 

frequency is used and the WRF forecasting system is refreshed with a cold-start run every three 

days. Whether in cold-start or cycling mode, each forecast is 12-h-long for the purpose of this 

study. Each forecast is kept short to limit the amount of output data given the long experiment 

timeframe. Moreover, at this stage, the focus is on the analyses and early simulation hours, 

which are the ones likely to carry the largest effect from the assimilation process as described 

in A2020.  

 

 

 
Three cycling assimilation experiments were configured.  The first solely assimilates 

conventional observations and is hereafter referred to as the control (CO) experiment.  The 

second experiment also assimilates the high-resolution infrared data in the form of TR and is 

hereafter referred to as the TR experiment.  Finally, the third experiment also assimilates MW 

radiances and is hereafter referred to as FULL/TRMW experiment.  Each experiment consists 

Fig. 4: FOVs locations on Dec. 05, 2020 at 1800 UTC0 UTC for (a) TR from IASI on MetOP platforms and 
(b) MW from AMSU-A on MetOP-2 and (c) corresponding InfraRed GOES 17 image (channel 15, cloud 
top temperature); FOVs location on Dec. 1, 2020 at 1200 UTC0 UTC for (d) TR from CrIS on JPSS and (e) 
MW from ATMS on JPSS and (f) corresponding Infra-Red GOES 17 image (channel 15, cloud top 
temperature). 
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of a 3-h cycling system that starts on November 20th at 0000 UTC and ends on December 18th, 

at 1200 UTC, 2020. Each experiment is cold-started every three days and comprises nine full 

cycles (nine cold start forecasts).  Given the typical overpass times over Hawai‘i of polar 

orbiting satellites carrying hyperspectral sensors, TRs are usually available for the 0000/1200 

UTC (CrIS on Suomi NPP/NOAA-20) and 0600-0900/1800-2100 UTC (IASI on MetOPs) 

assimilation times.  MicroWave radiances are available for the same times as the TRs are 

because Suomi NPP/NOAA-20 carries both CrIS and ATMS, and MetOP-A/B/C carries both 

IASI as hyperspectral sensor and AMSU-A and MHS as MW sensors. Moreover, MW sensors 

are available on the NOAA constellation (NOAA-18/19) with AMSU-A.  Figure 4 shows the 

geographical distributions of the TR and MW observations that were successfully assimilated 

from the sensors (IASI and AMSU-A) on board of MetOP and the sensors (CrIS and ATMS) 

on board JPSS.  Aside from the difference in assimilated observations, the three experiments 

were otherwise configured identically. Only the observations within "1 h of the analysis time 

were assimilated and all observations were assumed to be valid at analysis time. 

 As for radiance assimilation, the Community Radiative Transfer Model (CRTM, Weng et al. 

2005) is used and a Variational Bias Correction (VarBC, Auligné et al. 2007; Auligné and 

McNally 2007; Auligné 2007) applied.  In particular, the VarBC is cold started3 on the first 

cycle of the sequence where radiance assimilation happens (Nov 20, 2020 at 0600 UTC) and 

is updated throughout the experiment timeframe. A radiance data thinning of 80 km is applied 

during assimilation to avoid potential correlations between adjacent observations (Ochotta et 

al. 2005) and maintain consistency with the TR thinning.  Figure 5 shows the effects of the 

applied VarBC to one of the ATMS channels for one of the assimilation times. A similar 

behavior is found for all used channels and times. On the other hand, Fig. 6 seems to suggest 

that the TRs might not need a bias correction scheme and similar behavior is found for all 

assimilated eigenvectors. While VarBC is an important step in satellite radiance data 

assimilation, it can be challenging to perform, more so in limited area models, as it requires a 

deep understanding of the underlying predictors and anchoring observations (Auligné et al. 

2007). VarBC also requires a spin up time in order to produce meaningful predictors4. 

 
3 VarBC needs bias predictor statistics (mean and standard deviation) that depend on the model configuration 
chosen and assimilated radiances. The first-time radiances are assimilated, VarBC is cold started (i.e., biases are 
unknown). Afterword, during any future assimilation cycle, VarBC bias predictor coefficients are updated if 
enough independent anchoring observations exist. (https://www2.mmm.ucar.edu/wrf/users/wrfda/Docs/radiance_ 
userguide_v1.pdf, page 13) 
4 https://www2.mmm.ucar.edu/wrf/users/wrfda/Docs/radiance_userguide_v1.pdf, page 11 
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Fig. 5: Scatterplots of observed versus computed brightness temperatures for JPSS ATMS channel 9, before 
(a) and after (b) bias correction. 

Fig.  6: Scatterplot of observed versus computed TRs for Suomi NPP CrIS, corresponding to the first 
eigenvector. No BC is applied nor is one needed. 
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As polar-orbiting satellite positions vary temporally, data from a given satellite may be 

unavailable over the computational domain at a particular analysis time. Given the typical 

overpass times of the satellite platforms involved in this experiment, the cycling times with 

less or near nil satellite data availability are the 0300 and 1500 UTC (Fig. 7).  For the TR 

experiment the number of assimilated statistically independent data is (blue bar segments in 

Fig 7a): 

NTR=NTR_FOVS * Neigen     (1) 

where NTR_FOVS is the number of assimilated TR FOVs and Neigen is the number of assimilated 

eigenvectors that passed the internal/local quality check procedure. The number of assimilated 

eigenvectors can change during the various cycles depending on local conditions.  

 

For the TRMW experiments the total number of assimilated data is (red bar segment in Fig. 

7a):   

NTRMW=NTR’+NMW_FOVS * NMW_ch  (2) 

where NTR’ is the number of assimilated TRs data (which could differ from the case when only 

TR are assimilated, NTR), NMW_FOVS is the number of assimilated MW FOVs, and NMW_ch is the 

number of actively assimilated MW channels. The amount of satellite data flowing into the 

TRMW experiment is broken down by sensor in Fig. 7b, while Fig. 7c shows the difference 

ΔN(TR)=NTR-NTR’.  In general, the number of TRs assimilated changes slightly through the 

various assimilation cycles depending on whether MW radiances are also assimilated.  

However, the difference is large on the first TR assimilation cycle.  In fact, while the 

experiments start with a cold start forecast on Nov 20, 2020 at 0000 UTC, only conventional 

observations and no satellite data of any kind are assimilated at the following cycle (0300 

UTC). At 0600 UTC on Nov 20, 2020 the TRs, which are available for this time frame, are 

assimilated and not rejected by the WRFDA only in the experiment when MW data are also 

assimilated. A cycling system needs many observations in order not to diverge. Conventional 

observations might be too few and sparse in the region of interest, more so at asynoptic times, 

to realistically constraint a new cycle. The concurrent use of TR and MW seems to kick off the 

system sooner, highlighting the synergy and complementary nature of these two datasets.  
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The meteorological conditions during the experiment time frame included periods of fair 

weather, characterized by the effect of ridging and subsidence, alternating with frontal systems, 

and/or short-wave troughs, drifting through the modeled domain. The last week of November 

and the first week in December 2020 were particularly active with a series of troughs or short-

wave troughs quickly passing through. A deeper marine boundary layer, with increased 

moisture and cloud cover characterized this period.  In contrast, average weather conditions 

were rather benign during the timeframe from December 8 to 15, with at most very weak and 

shallow fronts skimming across the northern portion of the model domain. A rather sharp 

upper-level trough impacted the area in mid-December (15-17), followed again by fair weather 

for the Christmas’ holidays, and ahead of a short-wave trough that developed in a cut-off low 

over and east of the Big Island on the 27th and 28th of December. The role of the 

meteorological conditions on the results will be discussed in the results section.  

 

Fig.  7: Number of satellite observations used at each assimilation cycle after passing quality control: 
a) in the TR (blue bar) and TRMW (red bar) experiments; b) in the TRMW experiment broken down by 
sensor. c) Difference between the amount of TR data assimilated in the TR experiment minus the amount 
of TR assimilated in the TRMW experiment. 
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4. Evaluation Methodology 

Evaluation of the experiments performance is carried out in reference to two different 

analyses datasets: (i) the NCEP GFS analyses (NCEP 2015), and (ii) the European Centre for 

Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) CY41r2 High-

Resolution Operational Analysis and Forecasts (ECMWF 2016). The GFS and ECMWF 

analyses are used to evaluate all the WRF forecast hours validating the synoptic times for which 

the global analyses are available. The ECMWF analyses, being the result of an independent 

model and different data assimilation system, provide complementary insights in the validation 

procedure. Moreover, the two global analysis datasets have different spatial resolutions. The 

GFS analyses are available at 0.25-degree resolution, which corresponds to ~25 km horizontal 

resolution at the experiment latitudes. On the other hand, the operational ECMWF analyses, in 

which variables are originally available as spectral coefficients, are transformed at RDA to a 

regular 5120 longitude by 2560 latitude N1280 Gaussian grid, which results in an ~9 km (0.08 

degrees) horizontal resolution. Validation using analyses with different spatial resolutions 

provides insights on the model ability to reproduce processes on different spatial scales. 

The WRF model outputs from each forecast cycle are interpolated from their original 

resolution (lat/lon regular, 4.5 km x 4.5 km grid) onto both the GFS and ECMWF grids to allow 

for a comparison on a common scale. The WRF model output and global analyses are also 

interpolated on common pressure levels. Because WRF cycling frequency is 3 hours, and the 

global models’ analyses are available at synoptic times only, the 6 and 12-h WRF forecasts 

from the 0000, 0600, 1200 and 1800 UTC WRF cycles and the 3 and 9-h forecast from the 

0300, 0900, 1500 and 2100 UTC WRF cycles can be validated against global model analyses 

(Fig. 8).  
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Statistics can then be built, aggregating the predicted variables of interest temporally and 

spatially over some or all the analyses time and on various levels. To objectively quantify the 

differences in the three experiments, the following statistical measures are used.  The BIAS, 

RMSE, and bias corrected RMSE (RMSEb) are defined as: 

BIAS =  '
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#$%

  (3) 
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where, F and O refer to the forecast and observed field under investigation, respectively.  

Fig.  8: Verification strategy for 6 and 12-h forecasts from 1800, 0000, 0600 and 1200 UTC cycles 
and 3 and 9-hour forecasts from the 2100, 0300, 0900, 1500 UTC. The cycles can be validated against GFS 
and ECMWF analyses. 
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The ECMWF analyses at 0000 and 1200 UTC are the results of a sophisticated data 

assimilation system comprising more real time observations than those at 0600 and 1800 UTC 

(Lean et al. 2020; Haseler, 2004) and are, therefore, of higher quality than the 0600 and 1800 

UTC analyses. For the sake of simplicity, only the 0000 and 1200 UTC analyses are considered 

when using ECMWF in this validation study.  

Additional verification is performed against the radiosondes’ data available from the two 

Hawaii locations (PHTO, Hilo; PHLI, Līhu‘e).  The t0 +3, t0 +6, t0 +9 and t0 +12 hour forecast 

vertical profiles for temperature, relative humidity, and water vapor from the closest grid point 

to the two radiosondes’ location are extracted and compared against the corresponding sonde’s 

observations. Radiosonde soundings consist of a series of point measurements of atmospheric 

pressure, temperature, humidity, and wind at high resolution taken from a balloon borne 

instrument package as it ascends through the atmosphere.  The advection of the ascending 

sonde by the wind results in the sonde drifting away from the launching location. The model 

vertical profiles instead represent the meteorological variables through the vertical column over 

the model grid point closest to the radiosonde location. To allow for a fairer comparison, the 

radiosonde profiles are interpolated on the model vertical grid.  

The main statistical measure used is the bias corrected RMS (eq.5). For validation against 

global model analyses, the results are stratified by forecast hour and averaged throughout all 

the forecast cycles (0000 UTC, 0300 UTC… et cetera). This validation does not include the 

model analysis time (t0) as radiosondes are also included in the CO assimilation and, therefore, 

are not an independent set of observations for this particular time. 

 

5. Results 

Most of the results discussed hereafter refer to the effect of satellite assimilation on the 

moisture field relative humidity (RH). In fact, the assimilation of TRs has a greater impact on 

the characterization of the water vapor distribution than the temperature field because of the 

higher spatial variability of the water vapor concentrations and independence of the water 

vapor field from temperature and pressure (A2020).  
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The RH bias corrected RMSE (RH RMSEb, eq. 5) time series for each of the three month-long 

experiments are calculated considering the RH WRF forecasts at the validating time and chosen 

level (600 and 800 hPa), and the corresponding RH GFS analyses (Fig. 9 and 10). The grid 

points falling on land are excluded from the calculations because of the relatively coarse 

resolution of the global model when compared to island dimensions and complex topography.  

The statistics are averaged over the WRF domain and stratified by validation date and time. 

The time series highlight the consecutive cycling experiments: a cycle is the results of eight 

WRF simulations, each providing a 12h long forecast. The statistics show decreasing absolute 

forecast accuracy with an increasing cycling number (that is, away from each cold start) within 

the same cycle, but an increasing relative accuracy (lower RMSEb) for both the TR and TRMW 

experiments compared to the control run where only conventional observations are ingested.  

As expected, the improvement in the forecast accuracy performance is cumulative through each 

3-day model cycle and accentuated even more on the 800 hPa level (Fig. 10). It is also 

consistent throughout most of the month-long timeframe, although there are periods when the 

Fig. 9: The RMSEb of the 6 h (a), 3 h (b) forecast RH, and at analysis time (c) at 600 mb, over a one month 
period.  Graphs show CO (red line), TR, (blue line), and FULL, TRMW (green line) experiments. GFS 
analyses are used as reference field in the statistics. 
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differences between experiments are quite small (assimilation cycles 4, 7 and 8). These periods 

correspond to spells of relatively calm weather in the area of interest and, therefore, the 

additional assimilated data might not add much more information into the custom analyses.  

 

 

In the second assimilation cycle (Nov. 23–26), the TRMW experiment performs better than 

the control  and the TR experiment, at the 600 hPa level. In all the other cycles where TR 

outperforms the control run, the TRMW experiment either performs equally or slightly worse.  

Both the 3-h and 6-h forecasts show a similar impact. 

Fig. 10: RMSEb of the 6 h (a), 3 h (b) forecast RH and at analysis time (c) at 800 mb, over a month:  CO 
(red line), TR, (blue line), and FULL, TRMW (green line) experiments are shown. GFS analyses are used 
as reference field in the statistics. 
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These results can be explained by the underlying amount of information provided by the TRs, 

which are a compressed form of the information content in thousands of channels from the 

hyperspectral sensors.  Although MWs are available in larger numbers in terms of FOVs, they 

represent a smaller number of satellite channels (~ of tens or less). Also, TRs for a single FOV 

are statistically independent, whereas MW channels for a single FOV are not. In fact, the 

retrieval process through Mirto provides a representation of the information embedded in 

thousands of correlated channels in form of uncorrelated quantities (TRs). On the other hand, 

there are fewer MW channels but they are still correlated among themselves because of their 

broad and overlapping weighting functions. When the ECMWF is used as true state in the 

RMSEb calculation in equation 5, the RH RMSEb time series for the 600 hPa level (Fig. 11) 

shows very similar results to those obtained when GFS is used in the validation. On the other 

hand, a larger improvement is found on the 800 hPa level (Fig. 12) when TR are assimilated, 

both with and without MW. This finding is true for all analyzed forecast hours 0, 3, and 6. This 

particular result is encouraging for several reasons.  

Fig. 11: RMSEb of the 6 h (a), 3 h (b) forecast RH and at analysis time (c) at 600 mb, over a one month 
period. Graphs show CO (red line), TR, (blue line), and FULL, TRMW (green line) experiments. ECMWF 
analyses are used as reference field in the statistics. 
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The improvement at 800 hPa is likely due to a refinement in the vertical definition of the trade 

wind inversion. An increased model performance against higher resolution analyses (ECMWF) 

points to better custom WRDA analyses. Smaller scale moisture structures that would usually 

be smoothed out by the coarser GFS analyses resolution are captured instead.  The custom 

analysis from the assimilation of TRs improves with respect to an independent and higher 

resolution analysis provided by ECMWF.  On the other hand, validating against ECMWF 

analyses versus GFS analyses shows similar gains in the middle/higher levels of the 

atmosphere as meteorological fields are naturally smoother in the free atmosphere, being 

further removed from the effects of turbulence induced by surface friction. 

 

 

Fig. 12: RMSEb of the 6 h (a), 3 h (b) forecast RH and at analysis time (c) at 800 mb, over a one month 
period. Graphs show CO (red line), TR, (blue line), and FULL, TRMW (green line) experiments. ECMWF 
analyses are used as reference field in the statistics. 
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Fig. 13: Vertical profiles of RMSEb for the 3 h forecast temperature (a) and RH (b) on Nov. 25 2020 at 1200 
UTC for the CO experiment (red line), TR experiment (blue line), and TRMW experiment (green line). The 
GFS is used as reference field in the statistics. 

Fig. 14: Vertical profiles of RMSEb for the 3 h forecast temperature (a) and RH (b) on Nov. 25 2020 at 
1200 UTC for the CO experiment (red line), TR experiment (blue line), and TRMW experiment (green 
line). The ECMWF is used as reference field in the statistics 
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a. Impact of assimilation on vertical profiles 

Vertical profiles of RMSEb, for temperature and relative humidity, averaged throughout the 

model domain, are also analyzed (Figs. 13 and 14). Given all the possible statistical 

stratifications (e.g., variable, analysis type, forecast hour, and cycling time) it would be too 

lengthy to show and discuss all of them here. Both the TR and TRMW experiment show an 

increase in the 3 h forecast accuracy in the moisture field between 900 and 300 hPa when the 

GFS is used as the reference field (Fig. 13b). On the other hand, the impact of assimilating both 

sources of data on the temperature field is very small (Fig. 13a). Figure 14 shows the same but 

when ECMWF analysis is used as the reference field and the results are similar. Very similar 

results are also found for all the analyzed profiles/cases: the assimilation of TR alone and both 

TR and MW improves the 3, 6 and 12 h forecast accuracy in the middle atmosphere, from 

about 850 hPa to 300 hPa. Also, the larger impact of the TR assimilation is found in the lower 

portion of this range, in the atmospheric layer from 800 hPa to 600 hPa.  Figure 15 shows three 

more cases during the time from Nov. 25 at 1800 UTC to Nov 26 at 0600 UTC. This time 

period corresponds to the end of the second assimilation cycle. Again, the largest impact from 

TR assimilation is found in the lower portion of the middle atmospheric layers. On the other 

hand, MW assimilation has a large impact in the 600 to 300 mb, complementing the lack of 

TRs at these levels. TR availability during this cycle is low (Fig. 7) in comparison to the rest 

of the timeframe, likely due to increased cloud coverage. 

 

 

 

Fig. 15: Vertical profiles of RMSEb for the: (a) 6 h forecast started on Nov. 25 at 1200 UTC; (b) 3 h forecast 
started on the Nov. 25 at 2100 UTC; and c) 6 h forecast started on Nov. 26 at 0000 UTC. The GFS is used 
as the reference field in the statistics. 
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Validation against radiosondes observations is summarized in Fig. 16 for the t0+3h and t0 +6h 

forecasts. Results from this analysis are consistent with what was found in our validation 

against global model analyses: on average, both the TR and TRMW RH forecasts outperform 

the CO experiment in the middle atmosphere, from about 850 hPa to about 350 hPa. Moreover, 

the TR experiment provides slightly better results at t0+3h than the TRMW experiment. 

Differences between experiments in terms of temperature RMSEb are generally quite small. 

However, while they seem negligible at t0+6h, small positive impact is found at t0+3h, 

Fig. 16: Vertical profiles of RMSEb for the 3 h RH (a), Qv (b) and T (c) forecast, and 6 h RH (a), Qv (b) and 
T (c) forecast throughout the entire experiment (Nov. 20–Dec. 20, 2020). Radiosonde data are used as the 
reference field for model validation. The statistical sample comprises 107 forecasts. Cold start model runs 
are not included in the statistics. 
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particularly in the highest atmospheric levels (100 to 200 hPa) where a warm bias is often 

found in the model initial conditions when compared to observational data (Cucurull and 

Anthes, 2014). The improvement from assimilating TR and TR and MW together is still 

discernible in the t0 +6h RH forecasts.    

 

b. Impact of assimilation on horizontal synoptic structures 

The assimilation of TR alone and both TR and MW improves the 3-h forecast accuracy on 

the 600 hPa level both when verifying against GFS (Fig. 17) and ECMWF analyses (Fig. 18). 

These figures, which includes all the 3-h forecasts started at 0900 UTC in the fifth assimilation 

cycle, shows how the areas of larger RMSEs shrank for the TR and TRMW experiments versus 

the control experiment. There is significant reduction everywhere, however, two areas stand 

out: i) the area interested by the passage of a weak frontal system, north of the islands; ii) a 

large area in the Big Island’s wake, in the southwestern quadrant of the model domain. The 

reduction of the former is perhaps an indication of a better handle by the forecast model of the 

location and timing of the frontal passage during those simulations. The area of greater errors 

in the wake of the Big Island is associated with the turbulent shifting of a convergence zone 

that results from the flow splitting around the high volcanos that make up the island.  The 

higher errors are a reflection of sub-grid-scale processes that are not well captured by the global 

models but are captured by the higher resolution WRF model. Assimilation of TR alone or TR 

and MW results in a reduction of this forecast error. The smoother features in Fig. 18 reflect 

ECMWF’s higher resolution grid. 

 

Fig. 17: RMSEb for the 3 hour 600 mb RH forecasts started at 09000 UTC in the timeframe spanning from 
02 Dec to 5 Dec. (5th cycle) when the GFS is used as reference field in the statistics for experiment: a) CO; 
b) TR; and c) TRMW.   
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Fig. 18: RMSEb for the 3-hour 600 mb RH forecasts started at 0900 UTC in the timeframe spanning from 
02 Dec to 5 Dec. (5th cycle) when the ECMWF is used as reference field in the statistics for experiment: a) 
CO; b) TR; and c) TRMW. 

Fig. 19: RH RMSEb distribution for the 3-hour forecasts started at 0900 UTC throughout the entire 
experiment (Nov. 20 through Dec. 20, 2020) at 600 hPa, when the GFS is used as reference field in the 
statistics: a) comparison between TR and CO at 600 hPa; b) comparison between TRMW and CO at 600 
hPa; c) comparison between TR and CO at 800 hPa; d) comparison between TRMW and CO at 800 hPa. 
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Figures 19 and 20 summarize these results when the entire experiment timeframe is considered.  

The RH RMSEb distribution for all the 3-h forecasts started at 0900 UTC in the month-long 

experiment and the 600 hPa and 800 hPa levels are shown using histograms.  When both GFS 

and ECMWF analyses are used in the validation procedure, the distributions corresponding to 

forecasts where either TR or TR and MW were assimilated shift toward lower values, 

indicating a significant overall improvement in predicting RH in the middle atmospheric levels. 

The overall improvement is larger when ECMWF is used as reference field on the 800 hPa 

level (Fig. 20c, d). This reinforces the conclusion made earlier those improvements at this level 

are larger due to better placement of the trade wind inversion. 

 

 

  

Fig. 20: Fig. 20. RH RMSEb distribution for the 3-hour forecasts started at 0900 UTC throughout the entire 
experiment (Nov. 20 through Dec. 20, 2020) at 600 hPa, when the ECMWF is used as reference field in the 
statistics: a) comparison between TR and CO at 600 hPa; b) comparison between TRMW and CO at 600 
hPa; c) comparison between TR and CO at 800 hPa; d) comparison between TRMW and CO at 800 hPa. 
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6. Conclusions and Discussion 

This work is an extension of A2020 and presents the results of an assessment of the impact 

of TR assimilation into the WRF modeling system in a month-long experiment over the Central 

North Pacific Area.  TRs are generated using ‘‘Mirto’’ (Antonelli et al. 2017) while a modified 

version of the WRFDA model is used to ingest TRs. Three cycling assimilation experiments 

were configured: (i) control (CO) experiment, where only conventional observation are 

assimilated; (ii) TR assimilation experiment, where high-resolution infrared data in the form 

of TR are also assimilated; (iii) and a TRMW experiment, where MW radiances are also 

ingested.  Each experiment consists of a 3-h cycling system that starts on November 20th at 

0000 UTC and ends on December 18th, at 1200 UTC, 2020.  Each experiment is cold-started 

every three days and comprises nine full 3-day cycles. Each 3-day cycle contains 24 forecasts, 

initialized every three hours. For the purpose of this study, each forecast is 12-h-long. Both the 

GFS and ECMWF analyses, available at synoptic times, were used to evaluate the impact of 

the new assimilation approach on the accuracy of the WRF forecasts.  Radiosonde profiles 

available within the domain of interest are also used in the validation.  

A comparison between model analyses and forecasts is performed on the horizontal and 

vertical grid each GCM analysis is defined on and the RMSEb is the main statistical measure 

used in the statistical analyses. For validation against radiosondes, observed profiles are 

interpolated on the model vertical grid over the model grid point closest to the sonde launching 

locations. Again, the RMSEb is used as main statistical measure.  

This study confirms that assimilation of hyperspectral data has a larger impact on water 

vapor distribution than on the temperature field.  The results of the statistical analysis can be 

summarized as follows. 

- The positive results presented in this study seem to suggest that there is no need for 

Bias Correction. This implies that: (i) the a-priori information embedded in the retrievals 

is removed quite efficiently by the inversion process; and (ii) the hyperspectral radiances 

are radiometrically accurate.  

- TR assimilation is ultimately more comparable to single profile assimilation than 

radiance assimilation.  

- RH RMSEb timeseries on 800 and 600 hPa show a decreasing absolute forecast 

accuracy with the increasing cycling number, within the same 3-day cycle, but an 
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increasing relative accuracy (lower RMSEb) for both the TR and TRMW experiments 

compared to the control run where only conventional observations are ingested.  

- In most cycles, forecast accuracy after TR assimilation outperforms the control forecast 

accuracy. The forecast’s accuracy after both TR and MW are assimilated either performs 

equally or slightly worse that assimilation only of TRs, but for one 3-day cycle when the 

number of available TRs was relatively small (due to higher cloud coverage).   

- The improvement is even greater when ECMWF output is used as the reference field 

in the statistics particularly at the 800 mb level, for the shorter 3h forecasts, and at analysis 

time.  

- The analysis of the RH RMSEb vertical profiles indicates that the assimilation of TR 

alone and combined assimilation of TR and MW improves the 3, 6, and 12 h forecast 

accuracy in the middle atmosphere from about 850 hPa to 300 hPa, both when the GFS and 

the ECMWF are used as reference field in the statistics. Also, a larger impact of the TR 

assimilation is found in the atmospheric layer from 800 hPa to 600 hPa. 

- The RH RMSEb cumulated over time and analyzed on the modeled domain at 800 hPa 

and 600 hPa shows that forecasts after TRs assimilation perform better in predicting the 

timing and location of horizontal synoptic structures like fronts passing by. Also, the 

forecast’s error is reduced in the convergence zone, which results from the flow splitting 

around the Big Island (Hawai‘i). Moreover, the spatial RH RMSEb  distribution calculated 

through the entire experiment timeframe shows significant improvement (lower RMSEb) 

when TRs are assimilated both alone (best results) and in combination with MW. Results 

are even better when the independent ECMWF analyses are used as reference field in the 

statistics, particularly at the 800 mb level.  

- The analysis of the RMSEb vertical profiles obtained when radiosondes are used as 

reference field indicates that the assimilation of TR, alone or in combination with MW, has 

a small positive impact, compared with assimilation of CO only, on the 3- and 6-h RH 

forecasts in the middle atmosphere from about 850 hPa to about 350 hPa.  Moreover, a 

small positive impact is also found in the 3-h temperature forecast at the highest 

atmospheric levels (100 to 200 hPa) where a warm bias is often found in the model initial 

conditions when compared to observational data.  



31 

In addition to the positive impact of this new assimilation approach on the accuracy of both 

the analyses and forecasts, once the diagnostic system is equipped with the TR assimilation 

module, assimilation of TRs is easier than radiance assimilation for the following reasons. 

- A radiative transfer model is not needed. 

- The information content is compressed into a limited number of parameters (< 20).  In 

contrast, direct radiance assimilation requires fine tuning many factors, most of them sensor 

related. 

- The observation operator comes with the TR data, making the assimilation independent 

of the sensor.  

Discussion 

The dominant impact of the TRs on the forecast accuracy can be explained by the 

underlying amount of information provided by the TRs: the information content contained in 

thousands of channels from the hyperspectral sensors is highly and efficiently compressed into 

a limited number of uncorrelated parameters. On the other hand, MW radiances, although 

available in larger numbers in terms of FOVs, underlie a small number or satellite channels, 

that are likely correlated, because of their broad and overlapping weighting functions. 

Nevertheless, because of the lack of TRs information in cloudy area (so far), assimilation of 

MW radiances can prove complementary to TRs assimilation for those cases where cloud 

coverage can be an issue because MWs can penetrate clouds.  The combination of IR TR and 

MW radiances seems to confirm their complementary nature in terms of spatial coverage, 

vertical resolution, and cloud impact mitigation.  Having Mirto soundings available over the 

clouds would add additional useful information to the forecast system. 

Both the assimilation of TRs and MWs results in a higher forecast accuracy in predicting 

the distribution of the water vapor in the middle atmosphere. The assimilation of TRs improves 

the model performance in the lower portion of the middle atmosphere (800–700 hPa) and this 

is an even clearer takeaway from the statistical analysis carried out against the ECMWF 

analyses. This result is encouraging for several reasons. The improvement at 800 hPa is likely 

due to a refinement in the vertical definition of the trade-wind inversion.  An increased model 

performance against higher resolution analyses (ECMWF) points out to better custom WRDA 

analyses. Smaller scale moisture structures that would be smoothed out by the coarser GFS 

analyses resolution are captured instead.  The custom analysis from the assimilation of TRs is 
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improved with respect to an independent and higher resolution analysis provided by ECMWF.  

Validating against ECMWF analyses versus GFS analyses shows similar gains in the 

middle/higher levels of the atmosphere as meteorological fields are naturally smoother in the 

free atmosphere, being further removed from the effects of turbulence induced by surface 

friction. 

When forecasts and initial analyses are compared against the higher spatial resolution of 

ECMWF analyses, the diagnostic and forecasts are able to capture small weather features and 

improve the placement of the trade wind inversion.  This latter is particularly important for the 

central North Pacific region for several reasons: i) the trade wind inversion produces a layer of 

warm temperatures and dry air in the mid-levels of the atmosphere due to the sinking and 

adiabatic warming of the mid-level air, which inhibits deep convection and produces a stable 

lapse rate that inhibits formation of thunderstorms and tropical cyclones; ii) the trade wind 

inversion height and strength is correlated with rainfall intensity and distribution, particularly 

on the windward slopes of the Hawaiian islands (Esteban and Chen, 2008); iii) an accurate 

prediction of the trade wind inversion height provides helpful guidance to the MKWC 

forecaster in assessing the weather at the summit of Maunakea (Lyman et al. 2020). 

Hyperspectral instruments on polar orbiting satellites provide global coverage with high 

spatial and temporal resolution and can be an important resource for regions where 

conventional observations are lacking, such as over the open ocean and the Arctic. In fact, these 

data are widely assimilated in the NWP (Baker et al. 2005).  Research shows that the ECMWF 

forecast errors are largest over the Arctic and far fewer MW observations are assimilated during 

winter than in summer in the ECMWF system, especially in regions covered by snow and sea 

ice (Lawrence et al. 2019).  TR assimilation holds particular promise in these data sparse areas 

of the globe.     

The authors of this study are currently pursuing operational implementation of the WRF 

cycling system with TR and MW assimilation both over the Pacific and the Arctic. Another 

area of active research is calculation and assimilation of TRs in cloudy regions, which will be 

particularly important over the Arctic.  A future goal is to make TR assimilation available to 

other operational models such as NCEP’s GFS and the Navy’s new Neptune model through 

implementation in the JEDI framework (https://www.jcsda.org/jcsda-project-jedi).   
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