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Abstract

The water cycle is an important component of the earth system and it plays a key role in many facets of society, including

energy production, agriculture, and human health and safety. In this study, the Energy Exascale Earth System Model version

1 (E3SMv1) is run with low-resolution (roughly 110 km) and high-resolution (roughly 25 km) configurations — as established

by the High Resolution Model Intercomparison Project protocol — to evaluate the atmospheric and terrestrial water budgets

over the conterminous United States (CONUS) at the large watershed scale. The water cycle slows down in the HR experiment

relative to the LR, with decreasing fluxes of precipitation, evapotranspiration, atmospheric moisture convergence, and runoff.

The reductions in these terms exacerbate biases for some watersheds, while reducing them in others. For example, precipitation

biases are exacerbated at HR over the Eastern and Central CONUS watersheds, while precipitation biases are reduced at HR

over the Western CONUS watersheds. The most pronounced changes to the water cycle come from reductions in precipitation

and evapotranspiration, the latter of which results from decreases in evaporative fraction. While the HR simulation is warmer

than the LR, moisture convergence decreases despite the increased atmospheric water vapor, suggesting circulation biases are

an important factor. Additional exploratory metrics show improvements to water cycle extremes (both in precipitation and

streamflow), fractional contributions of different storm types to total precipitation, and mountain snowpack.
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Abstract21

The water cycle is an important component of the earth system and it plays a key role22

in many facets of society, including energy production, agriculture, and human health23

and safety. In this study, the Energy Exascale Earth System Model version 1 (E3SMv1)24

is run with low-resolution (roughly 110 km) and high-resolution (roughly 25 km) con-25

figurations — as established by the High Resolution Model Intercomparison Project pro-26

tocol — to evaluate the atmospheric and terrestrial water budgets over the conterminous27

United States (CONUS) at the large watershed scale. The water cycle slows down in the28

HR experiment relative to the LR, with decreasing fluxes of precipitation, evapotran-29

spiration, atmospheric moisture convergence, and runoff. The reductions in these terms30

exacerbate biases for some watersheds, while reducing them in others. For example, pre-31

cipitation biases are exacerbated at HR over the Eastern and Central CONUS water-32

sheds, while precipitation biases are reduced at HR over the Western CONUS watersheds.33

The most pronounced changes to the water cycle come from reductions in precipitation34

and evapotranspiration, the latter of which results from decreases in evaporative frac-35

tion. While the HR simulation is warmer than the LR, moisture convergence decreases36

despite the increased atmospheric water vapor, suggesting circulation biases are an im-37

portant factor. Additional exploratory metrics show improvements to water cycle extremes38

(both in precipitation and streamflow), fractional contributions of different storm types39

to total precipitation, and mountain snowpack.40

Plain Language Summary41

This study seeks to better understand how the U.S. DOE’s Earth system model,42

E3SM, simulates the conterminous United States (CONUS) water cycle. To accomplish43

this goal, we examine the atmosphere and land water budget terms at the watershed and44

seasonal space and time scales. At higher resolution, all of the terms in the water bud-45

get become smaller: precipitation, evapotranspiration, moisture convergence, and runoff.46

Decreases in evapotranspiration result from an increased fraction of surface heat flux com-47

ing from sensible energy. Despite the HR simulation being warmer overall and having48

more water vapor in the atmosphere, moisture convergence is still reduced owing to changes49

in circulation patterns. We also examine exploratory metrics with expected resolution50

sensitivity — including precipitation and streamflow extremes, storm events, and snow-51

pack — and find modest improvements.52

1 Introduction53

The water cycle is a key component to many facets of life. Hence better understand-54

ing of the water cycle is a key science goal of the development of the Energy Exascale55

Earth System Model (E3SM) to address U.S. Department of Energy (DOE) mission needs56

related to climate change impacts on energy production and use (Leung et al., 2020; Za-57

muda et al., 2013). In particular, we seek to answer the question, “how does better re-58

solving features important to the water cycle at the watershed scale improve the repre-59

sentation of freshwater supplies at that scale?” At the watershed scale, important cli-60

matic features generated by complex topography, land surface cover and land use, and61

other surface heterogeneity and their interactions with atmospheric circulation are not62

well captured at the standard resolution used in E3SM (J. Golaz et al., 2019). We ex-63

pect some of these features to improve by increasing the horizontal resolution of the com-64

ponent models, which can lead to improvements in the overall simulation of the water65

cycle. Quantifying the sensitivity of the water cycle to resolution in E3SMv1 is the pri-66

mary goal of this manuscript.67

Any improvements to the simulated water cycle from increasing horizontal reso-68

lution depend on both the scales being resolved as well as the scales being analyzed. For69

example, Demory et al. (2014) found that the water cycle was sensitive to horizontal res-70
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olution down to roughly 60 km (as measured by the ratio of global land to global total71

precipitation). Vannière et al. (2019) found a similar sensitivity, while also noting (1)72

global precipitation increases with increasing model resolution and (2) improved seasonal73

mean circulations lead to improved regional precipitation features. The agreement be-74

tween results becomes less coherent when the focus shifts from a global to a regional per-75

spective. For example, Monerie et al. (2020) found that simulated precipitation improve-76

ments converge around 60 km resolution over northeast Brazil, but improvements over77

the Andes do not converge even down to 25 km resolution (the highest they tested). Sim-78

ilar scales of resolution (on the order of tens of kilometers) have found improvements to79

precipitation (e.g. Schiemann et al., 2018; Demory et al., 2020), though these are not80

uniform (Ito et al., 2020). Ajibola et al. (2020) found that increasing resolution to roughly81

quarter or half degree grid spacing showed no reliable improvement in rainfall over West82

Africa. Similarly, for a resolution change of ∼1.125◦ to ∼0.25◦, Benedict et al. (2019)83

found improvements for the Rhine region in Europe, but the same improvements were84

absent in the Mississippi region in North America, highlighting the need for a deeper look85

at which aspects of the hydrologic cycle are sensitive to which scales in different envi-86

ronments. Relevant to this study, X. Huang and Ullrich (2017) and many previous stud-87

ies cited therein found increased horizontal resolution (∼0.25◦) improved precipitation88

over the conterminous United States (CONUS), particularly in the mountainous regions89

of the Western US. Similarly, F. Huang et al. (2020) found model performance in pre-90

cipitation over the Rocky Mountain region was related to horizontal resolution in the fifth91

phase of the Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012) en-92

semble.93

Like mean rainfall, water cycle extremes show improvements with increased hor-94

izontal resolution (Iorio et al., 2004; Kiehl & Williamson, 1991; Terai et al., 2017; M. F. Wehner95

et al., 2010, 2014; Mahajan et al., 2015; X. Huang & Ullrich, 2017; Mahajan et al., 2018;96

Srivastava et al., 2020a; Bador et al., 2020; Schiemann et al., 2018; Balaguru et al., 2020;97

M. Wehner et al., 2021; Rhoades et al., 2021a; Mahajan et al., 2022). For the relatively98

small range of horizontal resolutions found across the CMIP6 (Eyring et al., 2016) en-99

semble, horizontal resolution is not a good predictor of model performance for rainfall100

extremes (Akinsanola et al., 2020). Uncertainty in extremes from observations can some-101

times be as large as intermodel differences (Srivastava et al., 2020a; Bador et al., 2020).102

Of particular interest, though, are the findings of M. Wehner et al. (2021), which note103

that typical measures of extreme precipitation increase with horizontal resolution over104

the CONUS, but carefully constructed model skill metrics that account for resolution105

do not show significant sensitivity. In other words, a large degree of the sensitivity was106

related to the metrics calculations themselves instead of improvement from the model.107

Bador et al. (2020) also note that increased horizontal resolution on its own is not suf-108

ficient for systematic improvement in simulating precipitation extremes.109

Sharma et al. (2019) point out that increased resolution in regional simulations can110

easily be disrupted by uncertainties in boundary forcing. In fully coupled global mod-111

els the boundary conditions are freely evolving according to each model component, which112

puts greater emphasis on the need for understanding how the system interacts as a whole.113

With global models, what is considered high resolution is often much coarser than re-114

gional models. Even convective-permitting global models (grid spacing on the order of115

a few kilometers), such as those simulations run as part of DYnamics of the Atmospheric116

general circulation Modeled On Non-hydrostatic Domains (DYAMOND; Stevens et al.,117

2019), cannot run long enough to provide insight to the seasonal cycle or modes of in-118

terannual variability. The High Resolution Model Intercomparison Project (HighResMIP;119

Haarsma et al., 2016) was proposed to organize a common framework for models (both120

coupled and uncoupled alike) to assess resolution sensitivity on simulated climate pro-121

cesses. E3SM high- and low-resolution experiments have been run generally consistent122

with the HighResMIP protocol. There are two deviations from the HighResMIP proto-123

col worth noting: (1) E3SM uses prognostic aerosols instead of the prescribed values sug-124
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gested for HighResMIP; and (2) the control simulations (from which the transient sim-125

ulations used herein are branched) follow a different initialization procedure for the ocean126

(documented in section 2.5 of Caldwell et al., 2019).127

The approach taken for this manuscript is to examine the CONUS seasonal wa-128

ter cycle at the level 2 Hydrologic Unit Codes (HUC2) watershed scale. We aim to quan-129

tify the biases in the terms important for the water budget in both the atmosphere and130

land, as well as the sensitivity of these biases to resolution at the scales used in the High-131

ResMIP experimental design. Further analyses allow us to quantify the factors leading132

to changes in the moisture budget terms. We will show that the CONUS water cycle slows133

down at higher resolution with all terms in the moisture budget decreasing in magnitude134

from low to high resolution.135

Many additional metrics can be used to gain insight into the simulated water cy-136

cle. Pendergrass et al. (2020) suggested a series of “exploratory metrics” for the water137

cycle that can aid in understanding its behavior. Some of these we anticipate having sen-138

sitivity to horizontal resolution and we will examine them within this manuscript. These139

include investigating precipitation unevenness distributions, storm events (including trop-140

ical cyclones, extratropical cyclones, and atmospheric rivers), extreme precipitation, ex-141

treme streamflow, and snowpack. Many of these features are also critical needs for wa-142

ter resource management.143

This manuscript serves two primary functions. First, it provides a quantitative as-144

sessment of the simulated water cycle over the CONUS in E3SM at two resolutions for145

the seasonally varying components of the water budget in both the atmosphere and land.146

The second is to identify which other aspects of the water cycle are sensitive to resolu-147

tion in E3SM using several exploratory metrics. The manuscript is organized in the fol-148

lowing manner. Section 2 details the key features of the simulations used. Section 3 ex-149

amines the seasonal water cycle at the watershed scale and quantifies changes to the bi-150

ases in the model owing to resolution. Section 4 details additional metrics to examine151

further sensitivities in the simulated water cycle to resolution changes in E3SM. Finally,152

in section 5, we summarize the findings of this study and make recommendations for fu-153

ture work.154

2 Experimental Design155

The simulations used in this study follow the experimental design described in Caldwell156

et al. (2019) with one primary difference: the simulation pair does not use repeating 1950157

conditions, but instead uses transient forcings following the HighResMIP (Haarsma et158

al., 2016) protocol for the years spanning 1950 through 2014. Analysis of these simula-159

tions is done using the final thirty years of each simulation (1985-2014). We reproduce160

a selection of the salient features of the E3SMv1 model design here for aid in understand-161

ing this particular manuscript. More thorough descriptions may be found in J. Golaz et162

al. (2019) and Caldwell et al. (2019).163

The atmosphere component is described in detail by Rasch et al. (2019) and its cloud164

and convective characteristics analyzed by Xie et al. (2018). It is based on the spectral-165

element dynamical core (Dennis et al., 2012) with 72 vertical levels. The following pro-166

cesses are parameterized: deep convection (Zhang-McFarlane; G. J. Zhang & McFarlane,167

1995; Neale et al., 2008; Richter & Rasch, 2008); macrophysics, turbulence, and shallow168

convection (Cloud-Layers Unified by Binormals; J.-C. Golaz et al., 2002; Larson & Go-169

laz, 2005; Larson, 2017); microphysics (Morrison-Gettelman Version 2; Gettelman & Mor-170

rison, 2015; Gettelman et al., 2015); aerosol treatment (four-mode Modal Aerosol Model;171

Liu et al., 2016; Wang et al., 2020); and radiative transfer (Rapid Radiative Transfer Model172

for general circulation models; Mlawer et al., 1997; Iacono et al., 2008).173
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atm/land atm/land ocean/sea ice ocean/sea ice river river
Grid ∼ ∆x # of columns ∼ ∆x # of columns ∼ ∆x # of columns

HR 25 km 777,602 8-16 km 3,693,225 0.125◦ 4,147,200
LR 110 km 48,602 30-60 km 235,160 0.5◦ 259,200

Table 1. Grid comparisons for the high-resolution (HR) and low-resolution (LR) configurations

of the model.

The ocean and sea ice components use the Model for Prediction Across Scales (MPAS;174

Petersen et al., 2019; Ringler et al., 2013). A mesoscale eddy parameterization (Gent-175

McWilliams; Gent & Mcwilliams, 1990) is used only for the low-resolution simulation176

(it is disabled for the high-resolution). Neither the high-resolution nor the low-resolution177

configurations use a submesoscale eddy transport scheme.178

The land model is nearly identical to its parent model, the Community Land Model179

version 4.5 (Oleson et al., 2013), run with satellite phenology and disabled prognostic180

carbon and nitrogen representation. There are 10 soil layers in the land model. The Model181

for Scale Adaptive River Transport (MOSART H. Li et al., 2013; H. Y. Li et al., 2015)182

is used for river transport (in its grid-based representation). Given runoff simulated by183

the land model, MOSART explicitly simulates channel velocity, channel water depth, and184

water surface area following a simplified form of the one-dimensional Saint-Venant equa-185

tion.186

Both the high-resolution (HR) and low-resolution (LR) configurations examined187

herein share the same tuning parameter values. In other words, our LR configuration188

mirrors that of the “LRtunedHR” simulation described and used in Caldwell et al. (2019).189

As a consequence, the LR configuration analyzed here differs from the standard E3SMv1190

(J. Golaz et al., 2019). We chose this approach to focus on the impact of resolution, rather191

than different tuning choices.192

There are three separate grids used for both the HR and LR configurations for the193

five components (the atmosphere and land share one grid, the ocean and sea ice share194

one grid, and the river transport model uses its own grid). Table 1 lists the key grid dif-195

ferences between the HR and LR configurations. The atmosphere and land are on a cubed196

sphere grid, the ocean and sea-ice use Spherical Centroidal Voronoi Tessellations, and197

the river model uses a regular lat-lon mesh. The vertical levels for all components are198

the same between the two resolutions except for the ocean model (80 levels for HR and199

60 levels for LR). The river model provides freshwater input to the ocean.200

To satisfy numerical stability requirements, higher resolution requires a shorter model201

time step to run. Table 2 shows the time steps used for the various components for each202

resolution. As in Caldwell et al. (2019), our analyses for model resolution sensitivities203

convolve both the resolution sensitivity and the time step sensitivity, and while we gen-204

erally use terminology such as “resolution sensitivity” throughout this manuscript, it has205

been shown that the time step sensitivity can be as large or larger than the resolution206

sensitivity in some instances (Jung et al., 2012).207

The HighResMIP protocol calls for pseudo-equilibrium 1950 repeating conditions208

as the control run from which to branch the transient experiments. Because the 1950209

conditions are not exactly in equilibrium, the model drifts throughout the ∼50 years of210

simulation. As the model state drifts, simulated sea surface temperature biases become211

larger in magnitude. Therefore, to minimize the biases in the model state at the begin-212

ning of the transient period, the transient runs branch off near the beginning of the con-213

trol runs analyzed by Caldwell et al. (2019). We use the earliest available restart point,214
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Time step (minutes) HR LR

atm dynamics and advection 1.25 5
atm physics-dynamics coupling 15 30
ocn 6 10
ocn barotropic 0.2 0.67
ice dynamics 7.5 15
ice thermodynamics 15 15
river 60 60
atm/ice/lnd coupling 15 30
ocn coupling 30 30
river coupling 180 180

Table 2. Time steps used in the high-resolution (HR) and low-resolution (LR) configurations.

Additional time step details can be found in Table 2 of Caldwell et al. (2019)

.

5 years after initialization for the HR configuration and 10 years after initialization for215

the LR configuration.216

We are interested in assessing the water cycle at the watershed scale. To that end,217

we focus our analysis on the hydrologic unit maps, which we will refer to by their hy-218

drologic unit code level 2 (HUC2) demarcation (see Figure 1 for a map of the HUC2 wa-219

tersheds and Table 3 for a list of watershed names). The HUC2 basins are adapted by220

the U.S. Geological Survery (USGS) from those established by Seaber et al. (1987). There221

are eighteen HUC2 basins covering the CONUS. The boundaries of these basins are marked222

on map plots throughout this manuscript. While there are higher level HUC categories223

denoting smaller hydrologic regions of the CONUS, the horizontal spatial resolution of224

the LR simulation is insufficient to resolve these features to make for a fair comparison225

against the HR simulation.226

Figure 1. HUC2 watershed map. We refer to watersheds 1-6 (in blue) as the Eastern

CONUS, watersheds 7-12 (in orange) as the Central CONUS, and watersheds 13-18 (in green)

as the Western CONUS.
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HUC2 Watershed name

01 New England
02 Mid Atlantic
03 South Atlantic-Gulf
04 Great Lakes
05 Ohio
06 Tennessee
07 Upper Mississippi
08 Lower Mississippi
09 Souris-Red-Rainy
10 Missouri
11 Arkansas-White-Red
12 Texas-Gulf
13 Rio Grande
14 Upper Colorado
15 Lower Colorado
16 Great Basin
17 Pacific Northwest
18 California

Table 3. Names of the HUC2 watersheds.

To analyze the model output at the watershed scale, we generate mapping files us-227

ing TempestRemap (Ullrich & Taylor, 2015; Ullrich et al., 2016) for both model grids228

onto each HUC2 watershed region. We also generate mapping files for each observational229

product onto each HUC2 watershed region. These mapping files are then used to remap230

the monthly timeseries of the moisture budget terms from the model and observations231

onto the HUC2 watershed regions. We use these monthly timeseries to quantify the bi-232

ases in each moisture budget term. To quantify uncertainties, the model output and data233

are grouped by month of the year; the mean is the average across all years, and each year234

is treated as an independent sample for statistical tests and confidence intervals. To test235

significance of differences at the watershed level, t-tests are computed using all available236

years for each observational dataset, and for all 30 years of the model output.237

A number of observational products are used to quantify the biases in the simu-238

lations. For precipitation, we use the Global Precipitation Climatology Project (GPCP)239

one-degree daily (1DD) data for years 1997-2017 (Huffman et al., 2001, 2009) and the240

Tropical Rainfall Measuring Mission (TRMM) 3B43 data for years 1998-2013 (Huffman241

et al., 2007). For evapotranspiration (ET), we use the Derived Optimal Linear Combi-242

nation Evapotranspiration (DOLCE) data (DOI: 10.4225/41/58980b55b0495) for years243

2000-2009 (Hobeichi et al., 2018), the Global Land Evaporation Amsterdam Model (GLEAM)244

data for years 1980-2018 (Martens et al., 2017; Miralles et al., 2011), and the MODer-245

ate Resolution Imaging Spectroradiometer (MODIS) data for years 2000-2014 (De Kauwe246

et al., 2011; Mu et al., 2011). Note that the DOLCE data are not independent of the other247

ET data, as that data set combines six different ET products, including the GLEAM and248

MODIS data. For terrestrial water storage anomaly we use the Gravity Recovery and249

Climate Experiment (GRACE) data for years 2002-2014 (Swenson & Wahr, 2006). For250

runoff we use a 1/16th degree daily runoff database generated by the Variable Infiltra-251

tion Capacity (VIC) hydrologic model over CONUS (Livneh et al., 2013). The VIC runoff252

was forced by a gridded daily near-surface observed meteorological data (Livneh et al.,253

2013).254
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3 CONUS water budget and its sensitivity to resolution255

The atmospheric water budget can be written as follows.256

∂tSatm +∇ · {vq} = E − P (1)

where ∂tSatm is the time-tendency of atmospheric water storage, v is the horizontal wind257

vector, q is the specific humidity, curly braces denote a column integral, P is surface pre-258

cipitation, and E is surface evapotranspiration. At the scales of interest for this study,259

changes in atmospheric moisture tendency (∂tSatm) are orders of magnitude smaller than260

the other terms at the time and space scales examined here, and we neglect that term261

for our analyses. The land surface water budget can be written as follows.262

∂tSsfc = P − E −R (2)

where ∂tSsfc is the time-tendency of surface water storage (including soil moisture, snow-263

pack, and groundwater), and R is runoff (combined surface and sub-surface).264

As described in the introduction, we seek to quantify the biases and resolution sen-265

sitivity of the terms in the moisture budget (equations 1 and 2) at the watershed scale266

and for the seasonal cycle. The HUC2 watersheds represent natural boundaries for the267

water cycle in the land and also make for an ideal level of granularity to use for this study268

as both LR and HR model grids can resolve each basin.269

Even restricting the spatial and temporal scales, there are several aspects that need270

to be quantified. First, we aim to quantify the biases in the E3SM at LR against obser-271

vations and ERA5 reanalysis (Hersbach et al., 2020). While reanalyses like ERA5 are272

still modeling products, ERA5 has the advantage over other observations of consistency273

between its water cycle budget terms. Here, “consistency” means that the moisture bud-274

get is closed. Second, we aim to quantify any changes to the water budget terms between275

LR and HR. Where differences arise, we then assess whether these differences are im-276

provements or degradations to the simulation. We perform these analyses for each month277

of the year and each watershed in the CONUS, and then make stoplight diagrams to sum-278

marize the results.279

3.1 Seasonal watershed water cycle budget280

A summary for precipitation is presented in Figure 2. Each row denotes a differ-281

ent HUC2 watershed basin and each column represents a month of the year. The num-282

bers are the mean difference in E3SM across resolution (HR - LR). The cells of the ta-283

ble are colored depending on the relationship between E3SM across resolutions, and with284

the observational and reanalysis products used to evaluate them. White denotes a month285

where no significant bias exists between either LR or HR with the observations. Yellow286

denotes months where no significant difference exists between LR and HR, but both are287

significantly biased relative to observations. Purple denotes months where LR is biased288

relative to observations, while HR is not (the amelioration of a previous bias). Green de-289

notes months where LR is biased relative to observations and HR makes a significant im-290

provement upon that bias (i.e., HR is still biased relative to observations, but the mag-291

nitude of that bias is significantly lower than in LR). Orange denotes the opposite of green292

– both LR and HR are biased against observations, but the bias is significantly larger293

in HR than in LR. Finally, red denotes regions where no bias exists for LR, but a bias294

does occur for HR (the creation of a new bias). Again, for all differences, statistical sig-295

nificance is determined using a two-tailed Student’s t-test (with a 95% significance thresh-296

old) and treating each year as an independent sample for a particular watershed and month.297

A value for a particular month and watershed is only considered significant if the test298

rejects the null hypothesis between the model and all observational and reanalysis prod-299

ucts. For example, if the model is considered significantly biased for precipitation, it means300

the bias is significant between the model and GPCP, the model and TRMM, and the model301
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Figure 2. Stoplight diagram for precipitation. Each column represents a month and each row

a HUC2 watershed. The values in each cell are the mean difference between LR and HR (HR -

LR). White denotes a month where no significant bias exists between either LR or HR with the

observations. Yellow denotes months where no significant bias exists between LR and HR, but

both are significantly biased relative to observations. Purple denotes months where LR is biased

relative to observations, while HR is not. Green denotes months where LR is biased relative to

observations and HR makes a significant improvement upon that bias. Orange denotes the op-

posite of green – both LR and HR are biased against observations, but the bias is significantly

larger in HR than in LR. Finally, red denotes regions where no bias exists for LR, but a bias does

occur for HR. Statistical significance is determined using a two-tailed Student’s t-test with a 95%

significance threshold and treating each year as an independent sample for a particular basin and

month. Comparison datasets for precipitation include GPCP, TRMM, and ERA5.

and ERA5. This approach means months and watersheds where observational products302

disagree are more likely to be colored white. To facilitate discussion, we group the wa-303

tershed basins into three broader regions: Eastern CONUS (HUC2 basins 1-6), Central304

CONUS (HUC2 basins 7-12), and Western CONUS (HUC2 basins 13-18).305

Figure 2 shows that for the Eastern CONUS, summertime precipitation biases are306

created when transitioning from LR to HR. In the fall, winter, and spring, there are no307

significant precipitation biases for the model at either resolution. For the Central CONUS,308

a similar degradation in precipitation is found for the summer months. The primary dif-309

ference between the Eastern and Central CONUS regions is the presence of significant310

biases for the Central CONUS in the LR configuration.311

For the Western CONUS, there are significant improvements in the precipitation,312

primarily in the late spring and early summer months. When comparing HR and LR,313

the precipitation response to increasing resolution is consistently negative across the East-314

ern, Central, and Western CONUS. The bias responses hinge on whether biases exist at315

LR. For the Eastern and Central CONUS, the precipitation reduction leads to new or316

exacerbated biases, while for the Western CONUS, the precipitation reduction leads to317

reduced biases.318

Figures 3–6 show the same breakdown as Figure 2, only for the surface evapotran-319

spiration, atmospheric moisture convergence, terrestrial water storage anomaly tendency,320

and runoff (combined surface and sub-surface), respectively. Supplementary Figures S1-321

S5 provide the full seasonal timeseries for each experiment and dataset. Like precipita-322

tion, ET decreases across virtually all watersheds when going from LR to HR. The changes323
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Figure 3. As in figure 2. Comparison datasets for evapotranspiration include MODIS,

GLEAM, DOLCE, and ERA5.

in biases, however, are not the same between precipitation and ET. For the Eastern CONUS,324

the reduction in ET leads to reductions or removals of the summertime biases. The Cen-325

tral CONUS, however, still shows some degradation in simulated ET. Closer examina-326

tion finds that the DOLCE data, despite drawing from data including MODIS and GLEAM,327

consistently underestimates ET relative to those other two datasets over the Eastern CONUS328

making it an outlier (Supplementary Figure S2). If we reproduce the ET stoplight di-329

agram without the DOLCE data (Supplementary Figure S6), we see a more consistent330

pattern emerge with improvements in late summer ET over the Eastern CONUS, and331

degradations in late summer ET over the Central CONUS. Both Eastern and Central332

CONUS show improvement in ET biases from November through January (a signal ab-333

sent in the precipitation field). The Western CONUS shows the most coherent agreement334

between precipitation and ET, with reductions in ET resulting in reduced biases for most335

western watersheds across much of the year.336

Figure 4. As in figure 2. The comparison dataset for moisture convergence is ERA5.

For the atmospheric moisture convergence (Figure 4) and terrestrial water storage337

anomaly tendency (Figure 5), the differences tend to be too small relative to interannual338

variability, such that very few significant differences exist between model (at either res-339

olution) and observations. The mean moisture convergence for the CONUS changes sign340
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throughout the year. In the cold months there is a net import of water into most wa-341

tersheds, while in the warm months the sign flips such that there is a net export of wa-342

ter for most watersheds. As expected from continuity, E − P shows a pattern consis-343

tent with the moisture convergence throughout the year (not shown). The net export344

of moisture during the summer means that the mean circulation provides limited insight345

to the precipitation processes for E3SM. Instead, we must examine time-varying circu-346

lation patterns. Further examination of such circulations is provided in section 4.2.347

Figure 5. As in figure 2. Comparison datasets for terrestrial water storage anomaly include

GRACE and ERA5.

For terrestrial water storage anomaly tendency (Figure 5), the GRACE data record348

is relatively short compared to the model output, which increases the uncertainty in the349

observed data. For ERA5, terrestrial water storage anomaly changes are computed as350

a residual between surface precipitation, ET, and surface plus sub-surface runoff. Some-351

what surprisingly, there tends to be better agreement between the LR and HR model352

output with the GRACE data than the ERA5 reanalysis (Supplementary Figure S4). De-353

spite these differences in the data, the LR and HR model results are statistically indis-354

tinguishable from one another over nearly all months and watersheds.355

Figure 6. As in figure 2. Comparison datasets for runoff include VIC and ERA5.
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Finally, for the runoff term, the patterns of improvement and degradation over the356

Central and Western CONUS reflect the changes seen in precipitation (Figure 6) only357

spread out over more months. In other words, the degradation in Central CONUS runoff358

is likely linked to the degradation in precipitation. Likewise, the improvement in West-359

ern CONUS runoff is likely linked to the improvement in precipitation. For the Eastern360

CONUS, there is little consistency in the response to changing resolution across water-361

sheds and even across seasons within the same watershed. The Great Lakes watershed362

is the exception for the Eastern CONUS, with simulated runoff degraded in HR from June363

through December.364

For all five components (precipitation, ET, moisture convergence, terrestrial wa-365

ter storage anomaly tendency, and runoff) summertime values all decrease going from366

LR to HR. The differences, however, are only statistically significant for precipitation,367

ET, and runoff when examining individual months and watersheds. This reduction in368

precipitation and evapotranspiration coincides with a significant increase in precipitable369

water and reduction in soil moisture in HR relative to LR (Supplementary Figure S7).370

While it is unclear whether either of these facts is the cause of the other, it is valuable371

for framing the changes to individual moisture budget terms, as we will discuss in more372

detail later.373

3.2 Regional budget attribution374

We can reduce statistical uncertainty by grouping months into seasons and the wa-375

tersheds into the three regions shown in Figure 1: the Eastern CONUS (watersheds 1-376

6), the Central CONUS (watersheds 7-12), and the Western CONUS (watersheds 13-18).377

We perform this grouping to better understand how the water cycle budget term changes378

relate to one another. In particular, which terms contribute most to the change in an-379

other? For example, are changes in surface ET or atmospheric moisture convergence the380

dominant control of precipitation changes, or do they contribute equally?381

We limit our analysis to just precipitation and runoff (one variable for the atmo-382

sphere moisture budget and one for the land moisture budget). For this analysis we ex-383

amine only the Eastern, Central, and Western CONUS (as an area weighted average across384

the individual watersheds within each region) and group over the months (weighted by385

the number of days in each month) where precipitation changes are largest (June-September386

for the Eastern and Central CONUS and April-July for the Western CONUS). We com-387

pute the contribution terms simply as388

∆P = ∆E −∆(∇ · {vq}) + Residual (3)

for precipitation, and389

∆R = ∆P −∆E −∆(∂tSsfc) + Residual (4)

for runoff, where we group the change in atmospheric moisture tendency with the resid-390

ual term since it is small. Figure 7 shows the contribution diagnostics for precipitation.391

The decrease in ET going from LR to HR is an important contribution to the decrease392

in precipitation for all three regions. Moisture convergence is only a significant contri-393

bution in the Eastern and Western CONUS. For the Eastern CONUS, moisture conver-394

gence accounts for a larger fraction of the decrease in precipitation than ET, while in395

the Central and Western CONUS regions, ET is the largest contribution. Figure 7 also396

summarizes the change in HR-LR precipitation bias seen in Figure 2 as a robust feature397

at the regional and seasonal scale. The precipitation bias is exacerbated in the Eastern398

and Central CONUS, and alleviated in the Western CONUS, consistent with the results399

of Figure 2. Figure 7 also suggests that the decrease in moisture convergence is a robust400

feature of high-resolution (except over the Central CONUS region), despite frequent lack401

of statistical significance at the individual watershed scale. With the increase in precip-402

itable water shown in Supplementary Figure S7, the decrease in moisture convergence403
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implies a reduction in dynamical (wind) convergence at HR relative to LR. Supplemen-404

tary Figure S8 shows that there is a westward expansion of the North Atlantic Subtrop-405

ical High (NASH) in HR compared to LR, characterized by an increase in surface pres-406

sure extending over the Eastern CONUS region. This change to the circulation pattern407

likely contributes to the reduction in moisture convergence occurring over the Eastern408

CONUS in HR.409

Since surface ET dominates the precipitation changes, it is important to understand410

why surface ET decreases with increasing resolution. Examining the surface energy bud-411

get reveals that the change in latent heat flux is largely offset by changes in surface sen-412

sible heat flux (Supplementary Figure S9). The changes in radiative fluxes are much smaller413

or negligible for all three regions. The offsetting changes in sensible and latent heat flux414

imply a decrease in the evaporative fraction (the ratio of latent heat flux to the sensi-415

ble plus latent heat flux), consistent with the decrease in soil moisture seen across many416

of the watersheds (Supplementary Figure S7). One possibility for this behavior is that417

the soil moisture-precipitation feedback in E3SMv1 is too large relative to observed val-418

ues, amplifying the resolution effects. Examining the lag correlation in pentad soil mois-419

ture with pentad precipitation would help to test the moisture precipitation feedback420

hypothesis, but unfortunately we do not have sub-monthly soil moisture output from these421

experiments. We therefore leave a full investigation of this change in evaporative frac-422

tion to future research efforts.423

Figure 7. Mean precipitation bias in LR, mean difference between LR and HR, and contri-

butions to the difference between LR and HR from ET and moisture convergence for (a) Eastern

CONUS, (b) Central CONUS, and (c) Western CONUS. The error bars provide the 95% confi-

dence interval for the mean differences.

Figure 8 shows the contributions of various terms to runoff. The reductions in runoff424

are driven by reductions in precipitation, with all other terms having an increasing or425

negligible influence on runoff. Like moisture convergence, grouping the terrestrial wa-426

ter storage anomaly tendencies into regions shows that there are statistically robust changes427

occurring over the CONUS. In this case, the terrestrial water storage anomaly tendency428

is losing soil moisture, hence its positive contribution to runoff. Taken together, Figures429

7 and 8 show that all terms in the moisture budget are significantly decreasing in mag-430

nitude across the whole of the CONUS — except for moisture convergence over the Cen-431

tral CONUS which decreases, but not at a statistically significant level.432

3.3 Local vs remote influences of resolution change433

All of the analyses so far are diagnostic in nature. A conclusive explanation for the434

drying of the land and slowdown of the water cycle is difficult to attribute to local res-435

olution impacts in these coupled simulations. As shown in Figure 9, the HR simulation436

is much warmer than the LR simulation. It is possible that this global temperature sig-437

nal may play a role on top of the local effects of grid refinement. While it is worth not-438

ing that there is no widespread reduction in precipitation and ET across the watersheds439
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Figure 8. Mean runoff bias in LR, mean difference between LR and HR, and contributions to

the difference between LR and HR from ET, precipitation and terrestrial water storage tendency

for (a) Eastern CONUS, (b) Central CONUS, and (c) Western CONUS.

from warming in the abrupt quadrupling of CO2 experiment in E3SMv1 at low-resolution440

(Supplementary Figure S10), this fact alone does not rule out the role of remote SST changes441

on the water cycle differences between HR and LR observed here.442

It is tempting to envision running the LR simulation with SSTs prescribed from443

the HR simulation to quantify the impact of remote SSTs on the CONUS water cycle444

changes. Under such a scenario, the global mean temperature would be similar, despite445

land temperatures being able to vary between the two experiments. Such an experiment,446

however, removes the two-way interactions between the atmosphere and ocean. This cou-447

pling is important to regional water cycle features. For example, Harrop et al. (2019)448

did exactly the above experiment where the SSTs from a coupled E3SMv1 simulation449

(the abrupt quadrupling of CO2 experiment) were used to run a prescribed SST exper-450

iment. They found noticeable differences over the South Asian Monsoon between the two451

experiments, despite their shared SST patterns. Using their simulation output, we find452

that the changes in precipitation going from interactive to prescribed SSTs over the CONUS453

exceed those going from LR to HR (supplementary Figure S11). Therefore, such an ex-454

periment is not well suited for quantifying how much of the water cycle change comes455

from improved local resolution and how much comes from global scale sensitivity to res-456

olution.457

An alternative option that has greater appeal involves running E3SM with a re-458

gionally refined mesh, where the high resolution region is constrained to a small region459

of interest (e.g. the CONUS), and the remainder of the globe uses the low resolution grid460

spacing. Such a configuration could allow for simulations to be compared where the global461

values (such as surface temperature) remain similar. A regionally refined mesh was used462

with E3SMv1, but global means are not the same between the regionally refined version463

and the uniform low-resolution owing to differences in model parameter values (Tang et464

al., 2019). The North American regionally refined mesh used for E3SMv2 has the same465

parameter values as the E3SMv2 uniform low-resolution mesh and their global temper-466

ature values are similar (Tang et al. 2022, to be sumbitted to GMD). Similar analyses467

of the water cycle metrics presented here will likely be valuable for those simulations.468

4 Additional Metrics469

It is worth examining several other metrics that we anticipate to be sensitive to res-470

olution. These include measures of the rainfall distribution and its relation to storm sys-471

tems, snowpack, and streamflow. These metrics will be covered in the following subsec-472

tions. In particular, we expect certain storm features responsible for extreme precipita-473

tion to exhibit precipitation production that matches observations closer at HR than LR.474

These systems include tropical cyclones (TCs), extratropical cyclones (ETCs), and at-475

mospheric rivers (ARs).476
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Figure 9. Comparison between observed global SST to LR and HR simulations for Annual

(ANN) mean. Top figures show ANN mean from the Hadley Centre Global Sea Ice and Sea

Surface Temperature (HadISST); Middle (LR) and bottom (HR) figures show simulated minus

observed values.

4.1 Precipitation distribution and its relation to storm events477

To better understand the water cycle changes between the different resolutions, we478

begin by examining a simple measure of the precipitation distribution for each water-479

shed. The metric we use is the unevenness, designed by Pendergrass and Knutti (2018)480

to quantify the contribution of heavy rainfall days to the total annual amount. Uneven-481

ness is defined as the number of days required to reach 50% of the total annual rainfall.482

It is computed by sorting the daily rainfall from most to least precipitation. The data483

is then cumulatively summed, divided by the total annual rainfall, and the unevenness484

value is the value of the sequence equal to 0.5 (computed by linear interpolation).485
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Watershed 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

TRMM 14 14 15 12 15 16 12 13 - 13 11 9 9 15 9 12 - 8
E3SM HR 27 25 24 27 27 25 21 20 23 25 18 16 19 29 15 26 35 15
E3SM LR 30 29 30 33 33 32 27 26 26 31 25 21 24 40 20 34 43 19

Table 4. Unevenness for TRMM, E3SM HR, and E3SM LR. Values provided in the table are

all for the native grid of the data.

Pendergrass and Knutti (2018) found that the wettest twelve days account for half486

of annual precipitation in observations (a collection of surface observing stations and TRMM487

data). Models, on the other hand, tend to have much less unevenness, requiring roughly488

twice as many days as observed to reach 50% of their annual total precipitation. Part489

of the bias is a result of too frequent light rain in models (Stephens et al., 2010), which490

is true of E3SM as well (Terai et al., 2017). Caldwell et al. (2019) showed an increase491

in the heaviest rain rates over tropical regions in E3SM and we hypothesize that sim-492

ilar increases (and hence improvements in unevenness) will be detectable over the CONUS.493

Table 4 shows the unevenness metric for the HR and LR experiments, as well as494

TRMM data. The unevenness is smaller for HR than LR, meaning it takes fewer days495

to accumulate 50% of the annual precipitation when the HR grid is used. While the val-496

ues presented in Table 4 are those computed on the native grid of each data source, Pendergrass497

and Knutti (2018) showed that the unevenness metric is sensitive to regridding (with larger498

values for coarser grid spacing). Thus for determining whether the differences in uneven-499

ness are statistically significant between LR and HR, the HR data were regridded to the500

LR mesh for significance testing. All watersheds show a statistically significant differ-501

ence in unevenness between LR and HR, even when both data are on the same mesh.502

The regridding effect increases the unevenness metric by about 1.5–4.5 days (not shown).503

The increase in the value of unevenness owing to regridding is smaller than the increase504

when comparing the LR experiment to the HR experiment. The TRMM data show that505

even at HR, E3SM still significantly overestimates the unevenness metric, meaning to-506

tal precipitation is still too uniformly spread across days of the year.507

The Upper Colorado (14) watershed shows the largest unevenness sensitivity to res-508

olution, with large changes also present in the Great Basin (16), Pacific Northwest (17),509

Arkansas-White-Red (11), Tennessee (6), and Missouri (10) watersheds — all exceed-510

ing a six day mean increase in unevenness. The Western CONUS tends to see larger un-511

evenness sensitivity to model resolution than the Eastern or Central CONUS regions,512

suggesting better resolved topography at HR improves the distribution of precipitation513

rates for these watersheds. The average bias in unevenness for the watersheds (not in-514

cluding the Souris-Red-Rainy (9) and Pacific Northwest (17) watersheds) is 17.6 days515

for the LR simulation and 12.3 days for the HR simulation. These biases are compara-516

ble to the biases in the CMIP5 archive relative to station data (Pendergrass & Knutti,517

2018).518

The GPCP 1 degree daily (1DD) product was also examined for comparison with519

the HR and LR simulations, but is not shown owing to a switch in data processing within520

that product at 40◦N that complicates interpretation of the northern watersheds. The521

GPCP 1DD uses the Threshold-Matched Precipitation Index (TMPI) between (40◦S–522

40◦N) and switches to scaling with Television and Infrared Observation Satellite Oper-523

ational Vertical Sounder (TOVS; Huffman et al., 2001) at higher latitudes. This switch524

in how rainfall is determined for the GPCP 1DD product significantly impacts the un-525

evenness metric (not shown), though the switch is not discernible in other features such526

as monthly mean precipitation.527
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The unevenness results suggest stronger rainfall events occur for E3SM HR com-528

pared to LR. It is worth asking if similar changes can be observed in the precipitation529

extremes. To evaluate the simulation of seasonal precipitation extremes in the HR and530

LR experiments, we use generalized extreme value (GEV) distributions to model extremes531

of daily precipitation and compute the return levels associated with a 20-year extreme532

event. We use a block (seasonal) maxima approach, where we estimate a GEV distri-533

bution of the maxima of a block of data. Here, the block size is a season. We first ag-534

gregate daily aggregated precipitation over the watershed basin scales. The seasonal max-535

ima of daily precipitation is computed for each watershed for each year. A GEV distri-536

bution is then estimated at each watershed using the seasonal maxima data (sample size537

of 20 for GPCP data, and 30 for HR and LRtunedHR runs) using the maximum like-538

lihood method. A GEV distribution, G(z), of block maxima, z, has three parameters -539

location (µ), scale (σ) and shape (ξ) - and is represented as follows for ξ ̸= 0:540

G(z) = exp

{
−[1 + ξ(

z − µ

σ
)]−1/ξ

}
(5)

G(z) is computed as the limit of the equation as ξ → 0, if ξ = 0 (Coles, 2001).541

These parameters are approximately multivariate normal, and the associated variance-542

covariance matrix is computed at the maximum likelihood estimates. We also conduct543

a Kolmogorov-Smirnov goodness of fit test to evaluate the null hypothesis that the em-544

pirical distribution is statistically equivalent to the derived GEV distribution at the 95%545

confidence level. We find that the null hypothesis is accepted for all GEV estimates. The546

return level of a τ -year event can be computed by inverting the model as follows (when547

ξ ̸= 0):548

R(τ) = µ+
σ

ξ
(− log(1− 1/τ)−ξ − 1) (6)

and its limit when ξ = 0 (Coles, 2001). The variance-covariance matrix of the GEV pa-549

rameters can also be used to compute the associated standard errors of R(τ), and we use550

these standard errors here to conduct statistical tests.551

Figure 10 shows the return level of a 20-year extreme event for GPCP for the win-552

ter and summer season for all the HUC2 watersheds. Somewhat surprisingly, the switch553

in rainfall calculation poleward of 40◦ for GPCP described above has virtually no im-554

pact on the GEV calculation for extremes described below (not shown). An exact ex-555

planation for why unevenness is more sensitive to the change in GPCP rainfall than the556

extremes is beyond the scope of this manuscript. The pattern of extreme precipitation557

over the CONUS is similar to other measures of extreme rainfall previously reported (Akinsanola558

et al., 2020). Also shown are the differences between LR and GPCP. Hatchings indicate559

watersheds where the difference is statistically significant at the 95% confidence level based560

on a two-tailed Student’s t-test. The LR shows a strong, statistically significant nega-561

tive bias over watersheds in the eastern half of the CONUS, simulating weaker than ob-562

served extremes in both the winter and summer seasons. The model also exhibits a neg-563

ative bias over California (18) and a positive bias over the Pacific Northwest (17) in the564

winter season. Over the western watersheds the model shows a positive bias in the sum-565

mer simulating stronger than observed extremes, which are statistically significant. This566

is consistent with simulations with other models at similar resolutions which generally567

underestimate precipitation extremes over the Southeast CONUS and overestimate it568

over Western US (Srivastava et al., 2020b).569

Figure 10 panels c and f show the difference between the HR and LR simulations570

for the winter and summer seasons. The HR experiment simulates stronger extremes than571

the LR experiment over the Eastern CONUS, generally reducing the bias there. How-572

ever, the improvements are not statistically significant. Over California (18), HR pro-573

duces stronger extremes than LR, which are statistically significant, reducing the bias574

there. Wintertime extremes over the Western CONUS are larger at HR than LR, though575

California (18) and the Lower Colorado (15) are the only significant differences.576
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While warm-season precipitation is reduced in HR relative to LR across all of the577

CONUS, as seen in sections 3.1 and 3.2, the precipitation extremes do not behave uni-578

formly. During the summer season, the changes in simulated extremes between HR and579

LR are the opposite of winter, with HR producing less intense extreme summertime pre-580

cipitation events over all watersheds except the Pacific Northwest (17), reducing much581

of the biases between LR and GPCP. Despite the differences not being statistically sig-582

nificant, similar improvements are hinted at for the Southeast CONUS, consistent with583

previous grid-point based studies (M. F. Wehner et al., 2010, 2014; Mahajan et al., 2015).584

Extreme precipitation can lead to extremes in river discharge. Rivers transport the585

runoff from the land to the ocean through river channels. Streamflow is the flow discharge586

rate in the river, which is of particular importance to society in terms of water supply587

for municipal and agriculture purposes, transportation, and hydropower generation and588

environmental flows. On the other hand, extreme streamflow events, or floods, are one589

of the most frequent types of natural disasters created by rivers. In this study, we ex-590

amine flood events between LR and HR by comparing the 20-year streamflow extreme591

events over the HUC2 regions using the same GEV distribution method used to exam-592

ine extreme precipitation (equation 5). For each gridcell, maximum daily streamflow dis-593

charge for each year was computed and fit with the GEV distribution. The MOSART594

river model uses latitude-longitude grids for river modeling, with 0.5 degree for LR and595

0.125 degree for HR. Since streamflow distribution is intrinsically tied to the river net-596

work, it is more reasonable to investigate it at the model native grid resolutions.597

Figure 11 shows maps of extreme streamflow over the CONUS. Visual comparison598

between LR and HR in Figure 11 shows larger values of extreme streamflow are more599

common in the LR configuration. Examining the cumulative distribution function of the600

20 year return flow (Figure 12) confirms this feature. These results suggest that the gen-601

eral decrease in runoff seen across the CONUS leads to a general decrease in streamflow602

extreme intensity. For individual watersheds, there is considerable variability in whether603

more intense streamflow extremes are found at LR or at HR (see Supplementary Fig-604

ures S12-S29), despite runoff generally decreasing across the CONUS. These results sug-605

gest that the physical characteristics of the river channel may be a larger factor in de-606

termining streamflow extremes across these resolutions than the changes in runoff. One607

exception appears to be the California (18) watershed, which is the one watershed with608

an increase in runoff at HR relative to LR, and also sees a significant increase in extreme609

streamflow at HR relative to LR (see Supplementary Figure S29).610

4.2 Feature based Precipitation611

To better understand the upstream atmospheric features responsible for precipi-612

tation, we employ TempestExtremes (Ullrich et al., 2021) to track tropical cyclones (TCs),613

atmospheric rivers (ARs), and extratropical cyclones (ETCs), as described in Appendix614

A. The catalogues of tracked features are then used to extract precipitation associated615

with each of these features following the criteria given in Table 5. While precipitation616

could be due to multiple features, in this analysis we associate precipitation first with617

TCs, then with ARs, then with ETCs, in order; as ARs and ETCs are often not distinct618

features, here ETC precipitation refers to ETC-related precipitation that is not already619

associated with an AR. Figure 13 shows total annual precipitation from LR, HR, and620

ERA5 reanalysis, and the percentage contribution associated with the occurrence of these621

three feature types. ERA5 is used here for both feature tracking and precipitation be-622

cause it provides precipitation which is coincident in time with the features being tracked.623

In other words, the precipitation fields are consistent with the reanalysis circulation pat-624

terns that are being tracked.625

Figure 13 shows improvements in the contribution to precipitation from the tracked626

features. TCs, in particular, show significant improvement at HR compared to LR which627
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Winter Season (DJF)
Observational Data: GPCP

Daily Precipitation Extremes
Summer Season (JJA)

20-year Return Period Level (mm/day)

Difference: 20-year Return Period Level (mm/day)

Difference: 20-year Return Period Level (mm/day)

Difference: LR - GPCP

Difference: HR - LR

a.

b.

c.

d.

e.

f.

Figure 10. Return levels of 20-year extreme events. Return levels of 20-year extremes of daily

precipitation aggregated over HUC2 watershed scales for GPCP precipitation data during (a)

winter and (d) summer season. Difference between (b, e) LR and GPCP and between (c, f) HR

and LR for winter and summer season. Hatching in b-c,e-f indicates watersheds where the differ-

ence in return levels are statistically different from zero at the 95% confidence level.

has been examined in detail by Balaguru et al. (2020). ETCs show improvement as well,628

though the changes are somewhat modest relative to the biases.629

Table 6 shows the regional contributions of each feature type, as well as a resid-630

ual category – the precipitation contribution not associated with TCs, ARs, or ETCs.631
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Figure 11. Twenty year return flow for river discharge over CONUS for the LR (left) and HR

(right) experiments. Units are m3/s.

Figure 12. Cumulative distribution of twenty year return flow for river discharge over

CONUS for the LR (blue) and HR (orange) experiments. Units are m3/s.

The residual category shows a decline in percentage contribution to the total over each632

region when comparing HR to LR. This decline in precipitation not associated with large-633

scale forcing from TCs, ARs, or ETCs brings the model closer to ERA5 over the East-634

ern and Central CONUS regions, but farther from ERA5 over the Western CONUS. Con-635

sistent increases across regions occur for both TC and AR contributions to precipitation.636

The bias in AR contributions is particularly large for the Western CONUS. This is not637

surprising since it has been previously noted that a similar model, the Community Earth638

System Model (CESM), has been shown to have atmospheric rivers that are too strong639

and last too long during landfall at ∼25 km resolution (Rhoades, Jones, Srivastava, et640

al., 2020; Rhoades, Jones, O’Brien, et al., 2020; Rhoades et al., 2021b).641

We use the Shannon Diversity Index (SDI) normalized by the natural log of the642

number of weather types present to quantify how similar the populations of weather types643

are between the LR, HR, and ERA5. We set a minimum percentage of 0.1% to have a644
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Feature Criteria

TCs Precipitation within 5◦ great-circle-distance of a TC point
ARs Precipitation clusters > 40 mm/6hr which are connected to detected AR

features, unless already classified as TC precipitation.
ETCs Precpitation within 10◦ great-circle-distance of a ETC point, unless al-

ready classified as TC or AR precipitation.

Table 5. Criteria for classifying precipitation associated with particular features.

Eastern CONUS Central CONUS Western CONUS
HUC2 Region LR HR ERA5 LR HR ERA5 LR HR ERA5

Tropical Cyclones 0.6% 2.3% 2.2% 0.4% 0.7% 0.7% 0.4% 0.8% 0.2%
Atmospheric Rivers 42.8% 44.7% 41.1% 20.8% 23.4% 25.2% 17.6% 19.9% 10.1%

Extratropical Cyclones 13.2% 11.6% 11.6% 15.9% 17.3% 14.9% 13.3% 16.4% 20.1%
Residual 43.4% 41.5% 45.2% 62.9% 58.5% 59.2% 68.8% 62.9% 69.6%

Normalized SDI 0.74 0.77 0.76 0.67 0.72 0.70 0.61 0.68 0.59

Table 6. Annual mean percentage contribution to precipitation totals in each CONUS region,

filtered by associated features.

weather type be considered present. The normalized SDI is computed as645

SDI =
−
∑N

i=1 pi ln (pi)

ln (N)
(7)

where pi is the proportion of total precipitation for weather type i (including the resid-646

ual category), and N is the total number of categories. The normalized SDI is provided647

in the last row of Table 6. In the Eastern and Central regions, the HR population be-648

comes closer to that of the ERA5, and the normalized SDI is closer to 1 (a more diverse649

population). In the Western CONUS, the SDI is farther from ERA5, though still closer650

to 1 at HR compared to LR. These results are consistent with the general trend of HR651

producing a larger fraction of its total precipitation from TCs, ARs, and ETCs.652

We have also examined the time period of greatest precipitation change examined653

in sections 3.1 and 3.2 (JJAS for the Eastern and Central CONUS and AMJJ for the654

Western CONUS). The results are tabulated in Supplementary Table S1. Since the large-655

scale forcing tends to be weaker in the warm season, the fraction of precipitation com-656

ing from ARs and ETCs is significantly lower during the warm months. There are in-657

creases in TC precipitation fraction for the Eastern and Central CONUS, while there658

is no TC precipitation over the Western CONUS (which is not surprising given the time659

period). In all three regions, the normalized SDI shows that the HR population becomes660

closer to that of the ERA5 relative to LR, and the normalized SDI is closer to 1 (a more661

diverse population). These results suggest that HR does make modest improvements to662

simulated storm features, regardless of the sign of the mean bias change. It is important663

to caution that the reapportionment of precipitation across events is not necessarily the664

cause or effect of the total precipitation decline. Future studies will be needed to bet-665

ter understand the connections between the simulated storms and the total precipita-666

tion.667

4.3 Snowpack668

The final metric investigated for this study is mountain snowpack. Mountain snow-669

pack is a key natural reservoir of water in the mountainous western United States (Sturm670
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Figure 13. Total annual precipitation from E3SM-LR, E3SM-HR, and ERA5 (in mm/day),

and fractional contribution of precipitation associated with three tracked feature types: Tropical

cyclones (TCs), Atmospheric Rivers (ARs), Extratropical Cyclones (ETCs), and residual precipi-

tation.

et al., 2017; Mote et al., 2018; Livneh & Badger, 2020; Lynn et al., 2020; Siirila-Woodburn671

et al., 2021), often shown through snow water equivalent (SWE). From a modeling per-672

spective, SWE also provides a unique litmus test in validating a model’s ability to rep-673

resent cross-scale, spatiotemporal interactions between precipitation, radiation, and tem-674
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Figure 14. The seasonal snow cycle is characterized by its daily snow water equivalent (SWE)

and linearly decomposed using the SWE triangle methodology to assess the western United

States mountainous hydrologic units for the E3SM low-resolution (LR, 1.00◦, blue) and high-

resolution (HR, 0.25◦, aquamarine) simulations spanning 1985-2014 (see Supplementary Figure

S30 for examples of two individual watersheds). ERA5 is shown in gray. The bars indicate the

30-year climatological average conditions simulated across all five mountainous hydrologic units

of the western United States (in order of appearance in each row from top to bottom, Upper

Colorado, Lower Colorado, Great Basin, Pacific Northwest, and California) for each of the seven

SWE triangle metrics (columns and histograms) with 95% confidence intervals indicated (black

lines).

perature over the water year (McCrary et al., 2017; Krinner et al., 2018; He et al., 2019;675

Xu et al., 2019), with important feedbacks to other components of the mountainous hy-676

drologic cycle (e.g., soil moisture, runoff, and groundwater recharge). To validate a model’s677

ability to represent the seasonal snow cycle over a given water year, Rhoades et al. (2018a,678

2018b) developed a multi-metric framework known as the SWE triangle that built off679

work of Trujillo and Molotch (2014). This model benchmarking framework represents680

a linear decomposition of the seasonal snow cycle (which resembles a triangle) and in-681

cludes metrics such as the snow accumulation and snowmelt rate (sides), the accumu-682

lation, melt, and snow season length (base), and the peak SWE volume and date of peak683

SWE, or peak accumulation date (vertex). The SWE triangle multi-metric framework684

was also developed with resource manager input, or what have been referred to as use-685

inspired metrics (Jagannathan et al., 2020). As such, peak SWE volumes are commu-686

nicated in million-acre feet (MAF), or the amount of water needed to flood an acre sized687

field by one-foot, which is commonly used terminology in water resource management688

in the United States.689

Supplementary Figure S30 panels a and b present two examples, a continental (Up-690

per Colorado, 14) and a maritime (California, 18) mountain range, of seasonal snowpacks691

simulated over the 30-year historical period by the HR and LR experiments decomposed692

using the SWE triangle framework and compared with ERA5. These two mountain ranges693

are sub-selected from the five shown in Figure 14 as they represent two of the largest rel-694

ative changes in snow cycle representation with resolution between LR and HR. Inter-695

estingly, seasonal snowpacks in the Upper Colorado (14) and California (18) watersheds696
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have opposite responses in E3SMv1 to a four-times refinement of horizontal resolution.697

In the Upper Colorado (14), climatological average peak SWE volumes are smaller in698

HR than LR (31±3 MAF and 37±4 MAF). Although peak SWE timing is comparable699

between LR and HR, and overlaps with ERA5 (March 9th), the reduction in peak SWE700

in HR, though still too high, more aligns with ERA5 (19±2 MAF). Conversely, in the701

California (18) basin, peak SWE volumes increase by 6 MAF from LR to HR (7±2 MAF702

to 13±2 MAF), which is more comparable to ERA5 peak SWE estimates (15±2 MAF)703

and another observation-based gridded SWE product (16±3 MAF) produced by Margulis704

et al. (2016) for water years 1985-2015. Peak SWE timing is also enhanced in HR rel-705

ative to LR and when compared with ERA5. The complete suite of SWE triangle met-706

rics for both the California (18) and the Upper Colorado (14) watersheds, as well as the707

three other mountain watersheds of the western United States, are depicted in Figure708

14.709

Notably, the increase in SWE in the California (18) and Pacific Northwest (17) re-710

gions occurs despite a decrease in annual total precipitation owing to a larger fraction711

of that total precipitation falling as snowfall instead of rain in the HR experiment (Sup-712

plementary Figure S31). Supplementary Figure S31 shows that the increase in snowfall713

fraction is concentrated over the Cascade and Sierra Nevada ranges. The changes in snow714

fraction are anti-correlated with 2 m air temperature (r = −0.86). Most of the CONUS715

experiences warming consistent with the warming SSTs, but over regions of complex to-716

pography, the increase in horizontal resolution allows for colder temperatures at higher717

elevation, also seen over the Cascade and Sierra Nevada mountain ranges (not shown).718

5 Discussion and Summary719

In this manuscript, we have examined the resolution sensitivity of the seasonal wa-720

ter cycle over the CONUS at the HUC2 watershed scale using E3SMv1 simulations run721

at low and high resolution. The results show a slow down of the water cycle with increas-722

ing resolution, with decreases in precipitation, evapotranspiration, moisture convergence,723

terrestrial water storage anomaly tendency, and runoff. The largest differences happen724

in the warm months (JJAS for the Eastern and Central CONUS, and AMJJ for the West-725

ern CONUS). Whether the decreases in these terms result in reductions in biases or not726

depend on the region and the budget term. Precipitation, for example, shows worsen-727

ing biases with HR over the Eastern and Central CONUS, but reductions in biases over728

the Western CONUS. ET, on the other hand, shows reduced biases with HR over the729

Eastern and Western CONUS, but increased biases over the Central CONUS. These dif-730

ferences highlight some of the difficulty in correcting biases in models like E3SM, since731

reductions in ET are an improvement, but can lead to exacerbation of biases in precip-732

itation amounts that are already too low. For the Eastern CONUS in particular, this high-733

lights the need for better moisture convergence, which requires better representation of734

storm dynamics and large-scale circulation that influences the storm tracks. While the735

results suggest changing the atmospheric resolution from roughly 110 km to 25 km does736

improve the representation of storms, it remains insufficient to improve upon the circu-737

lation biases (in particular the bias in the NASH).738

The Central and Western CONUS precipitation biases are largely controlled by changes739

in surface ET. Both regions show decreases in ET and precipitation at HR, but oppo-740

site responses in biases (worsening over the Central CONUS and improving over the West-741

ern CONUS). The decrease in surface ET results from a reduction in the evaporative frac-742

tion, with negligible changes in net radiative fluxes at the surface between HR and LR743

across all three regions. Again, these results show that improving the simulated water744

cycle over the CONUS requires more than increasing resolution, at least at the scales745

examined within this study.746
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Inspired by the suggestions of Pendergrass et al. (2020), we examined additional747

metrics involving precipitation distributions, extreme precipitation and streamflow, storm748

feature contributions to precipitation, and snowpack to further assess the simulated wa-749

ter cycle in E3SMv1 at both low and high resolution. The HR experiment generates days750

with more intense precipitation, leading to reduced values of unevenness across all wa-751

tersheds. Extreme precipitation, as measured by the 20-year return period level, shows752

both increases and decreases depending on season and watershed. Generally, however,753

the changes in extreme precipitation act to reduce biases in the LR experiment relative754

to observed precipitation extremes. Similarly, extreme streamflow also shows a lot of wa-755

tershed to watershed variability in its response to increasing horizontal grid spacing. The756

HR experiment generally shows modest improvements in the distribution of tracked storms:757

TCs, ARs, and ETCs. Unfortunately, these storm features do not provide an obvious758

explanation for the importance of moisture convergence over the Eastern CONUS, and759

lack thereof for the other two regions. Instead, it is expected that the westward expan-760

sion of the NASH is the primary cause for the moisture convergence reduction in the East-761

ern CONUS region. Finally, the snowpack metrics show better agreement with ERA5762

and observations over many of the Western CONUS watersheds at HR relative to LR.763

Taken all together, these results suggest that the HR experiment is doing a better job764

at reproducing the physical processes that occur within the water cycle, but the mean765

biases in exchanges of water between the land and atmosphere, as well as their lateral766

transports, still remain a challenge.767

We have discussed potential future work to help isolate the role of local grid refine-768

ment relative to remote changes in climate state such as SST patterns. Our results have769

shown that the global mean temperature increase in HR relative to LR is insufficient to770

explain the water cycle slow down, since it is not reproduced in other E3SMv1 warm-771

ing experiments. Additionally, the ocean-atmosphere coupling is too important to the772

simulated water cycle to allow for prescribing the SST patterns from the HR at LR. Re-773

gional refinement is an exciting experimental design that may help discern the local and774

remote influences of grid refinement on the simulated CONUS water cycle. The region-775

ally refined E3SMv2 experiments will need to be examined in future work to help dis-776

entangle this particular issue. Additionally, this work highlights the need for more en-777

semble members. Changes in the moisture convergence and terrestrial water storage anomaly778

tendency terms were only statistically discernible when aggregated over regions and sea-779

sons, but it is possible that with an ensemble of simulations, such differences could be780

quantified at the watershed and monthly scales.781

While this study highlights many important sensitivities of the water cycle to model782

resolution, one aspect that is not covered is how resolution might change the sensitiv-783

ity of the water cycle to climate change. More work is needed to understand what, if any,784

impacts increased horizontal resolution in E3SM has on the water cycle response to tran-785

sient warming. Given its importance to society, continued effort is needed for understand-786

ing how earth system models like E3SM represent the water cycle and its sensitivity to787

changes within those models.788

Appendix A Feature Tracking with TempestExtremes789

Command line arguments for TempestExtremes (TE) are described in the TE user790

guide (Ullrich, 2021). Tracking with TE is performed on the native E3SM grid (ne30 or791

ne120). For identifying tropical cyclones (TCs) we use the following TE commands (ex-792

cluding input/output data arguments for brevity):793

DetectNodes794

--searchbymin PSL795

--closedcontourcmd "PSL,200.0,5.5,0;_DIFF(Z200,Z500),-6.0,6.5,1.0"796

--mergedist 6.0797

–25–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

--outputcmd "PSL,min,0;U10,max,2;_DIV(PHIS,9.81),min,0"798

799

StitchNodes800

--in_fmt "lon,lat,slp,wind,zs"801

--range 8.0802

--mintime "10"803

--maxgap "3"804

--threshold "wind,>=,10.0,10;lat,<=,50.0,10;lat,>=,-50.0,10;zs,<=,15.0,10"805

PSL is the pressure at sea-level, Z200 and Z500 are the geopotential height at 200 hPa806

and 500 hPa, respectively, U10 is the 10 m wind speed, and PHIS is the surface geopo-807

tential. For identifying atmospheric rivers (ARs) we use the following TE commands,808

first detecting ridges in the IVT field, then filtering out points within 5 degrees great cir-809

cle distance of TC features:810

DetectBlobs811

--thresholdcmd "_LAPLACIAN{8,10.0}(_VECMAG(TUQ,TVQ)),<=,-30000,0"812

--minabslat 20813

--geofiltercmd "area,>,850000km2"814

--tagvar "AR_binary_tag"815

816

NodeFileFilter817

--bydist 5.0818

--invert819

--var "TC_binary_tag"820

TUQ and TVQ are the zonal and meridional column-integrated moisture fluxes, respec-821

tively. For identifying extratropical cyclones (ETCs) we identify sea level pressure min-822

ima that do not possess an upper level warm core and traverse a sufficiently far distance823

over their lifetime:824

DetectNodes825

--searchbymin PSL826

--closedcontourcmd "PSL,200.0,5.5,0"827

--noclosedcontourcmd "_DIFF(Z300,Z500),-6.0,6.5,1.0" --mergedist 9.0828

--outputcmd "PSL,min,0;U10,max,2;_DIV(PHIS,9.81),min,0"829

830

StitchNodes831

--in_fmt "lon,lat,slp,wind,zs"832

--range 9.0833

--mintime "24h"834

--maxgap "1"835

--min_endpoint_dist 12.0836

Open Research Section837

Complete native model output is archived on HPSS system at NERSC (National838

Energy Research Scientific Computing Center). The dataset will also be made available839

through the DOE Earth System Grid Federation (ESGF; Cinquini et al., 2014) at https://840

esgf-node.llnl.gov/search/e3sm/?model version=1 0. The output presented in this841

manuscript will be made available from https://e3sm.org/data/get-e3sm-data/. Some842

of the figures presented herein were generated in part using E3SM Diags (C. Zhang et843

al., 2022; C. J. Zhang et al., 2022). NCO (C. S. Zender, 2008; C. Zender et al., 2022) was844

used to generate climatologies and for data regridding.845
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Summary The following material provides additional results meant to supplement those

presented within the main manuscript. Figures include the full seasonal cycle of each

water budget term for all of the CONUS HUC2 watersheds, the streamflow sensitivity for

November 7, 2022, 4:31pm



X - 2 :

each watershed, as well as several other figures that provide insight into the water cycle

changes between HR and LR.
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Eastern CONUS Central CONUS Western CONUS
HUC2 Region LR HR ERA5 LR HR ERA5 LR HR ERA5

Tropical Cyclones 1.7% 6.5% 4.7% 0.5% 2.0% 1.6% 0.0% 0.0% 0.1%
Atmospheric Rivers 30.5% 26.5% 29.4% 13.0% 12.5% 17.1% 5.2% 4.6% 3.0%

Extratropical Cyclones 6.9% 5.9% 5.6% 8.9% 12.7% 8.4% 9.6% 19.4% 18.8%
Residual 60.9% 61.1% 60.3% 77.5% 72.8% 72.9% 85.2% 76.0% 78.1%

Normalized SDI 0.66 0.72 0.70 0.51 0.60 0.58 0.47 0.61 0.56
Table S1. Percentage contribution to precipitation totals in each CONUS region, filtered by

associated features. For the Eastern and Central CONUS, the averaging time period is June-

September, while for the Western CONUS, the averaging time period is April-July. These time

periods are consistent with the analysis in section 3.2.

Figure S1. Seasonal timeseries of precipitation for HR (blue), LR (orange), and observational

and reanalysis datasets (black) for each watershed (panels). The numbers in each panel provide

the amplitude of the first Fourier mode, denoting the amplitude of the seasonal cycle. The month

denotes the phase of the seasonal cycle.
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Figure S2. Seasonal timeseries of evapotranspiration for HR (blue), LR (orange), and obser-

vational and reanalysis datasets (black) for each watershed (panels). The numbers in each panel

provide the amplitude of the first Fourier mode, denoting the amplitude of the seasonal cycle.

The month denotes the phase of the seasonal cycle.
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Figure S3. Seasonal timeseries of moisture convergence for HR (blue), LR (orange), and

observational and reanalysis datasets (black) for each watershed (panels). The numbers in each

panel provide the amplitude of the first Fourier mode, denoting the amplitude of the seasonal

cycle. The month denotes the phase of the seasonal cycle.
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Figure S4. Seasonal timeseries of terrestrial water storage anomaly for HR (blue), LR (orange),

and observational and reanalysis datasets (black) for each watershed (panels). The numbers in

each panel provide the amplitude of the first Fourier mode, denoting the amplitude of the seasonal

cycle. The month denotes the phase of the seasonal cycle.
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Figure S5. Seasonal timeseries of runoff (combined surface and sub-surface) for HR (blue),

LR (orange), and observational and reanalysis datasets (black) for each watershed (panels). The

numbers in each panel provide the amplitude of the first Fourier mode, denoting the amplitude

of the seasonal cycle. The month denotes the phase of the seasonal cycle.
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Figure S6. Stoplight diagram for evapotranspiration. Each column represents a month and

each row a HUC2 watershed. The values in each cell are the mean difference between LR and

HR (HR - LR). White denotes a month where no significant bias exists between either LR or

HR with the observations. Yellow denotes months where no significant bias exists between LR

and HR, but both are significantly biased relative to observations. Purple denotes months where

LR is biased relative to observations, while HR is not. Green denotes months where LR is

biased relative to observations and HR makes a significant improvement upon that bias. Orange

denotes the opposite of green – both LR and HR are biased against observations, but the bias is

significantly larger in HR than in LR. Finally, red denotes regions where no bias exists for LR,

but a bias does occur for HR. Statistical significance is determined using a t-test with a 95%

significance threshold and treating each year as an independent sample for a particular basin and

month. Comparison datasets for evapotranspiration include MODIS, GLEAM, and ERA5, but

do not include DOLCE.
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Figure S7. Changes in column water vapor (a) and terrestrial water storage (b) going from

LR to HR. Both HR and LR are remapped to a regular 1x1 degree lat-lon grid for comparison.

The remapping from the different land meshes creates noise around the coastlines which should

be ignored when comparing the differences.

Figure S8. Surface pressure (with global mean subtracted) for (a) HR, (b) LR, and (c) ERA5.

Differences between (d) HR and ERA5, (e) LR and ERA5, and (f) HR and LR are shown in the

bottom row. All values are given in units of hPa.
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Figure S9. Mean difference in latent heat between LR and HR, and contributions to that

difference from sensible heat flux, surface net shortwave radiative flux, and surface net longwave

radiative flux for (a) Eastern CONUS, (b) Central CONUS, and (c) Western CONUS. The error

bars provide the 95% confidence interval for the mean differences.

Figure S10. Changes in precipitation (a) and evapotranspiration (b) between the piControl

and abrupt4xCO2 E3SMv1 experiments detailed by Golaz et al. (2019).
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Figure S11. Precipitation for HR (a), LR (b), the fully coupled abrupt4xCO2 experiment

(d), and an experiment with SSTs prescribed from the abrupt4xCO2 experiment (e). Panel c

shows the difference in precipitation between HR and LR, and panel f shows the difference in

precipitation between interactive and prescribed SSTs.

Figure S12. Simulated 20-year return streamflow for low resolution (Left) and high resolution

(Middle), and the comparison of the cumulative distribution functions (CDFs) between HR and

LR (Right) for the New England (1) region.
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Figure S13. Same as Figure S12, only for the Mid Atlantic (2) region.

Figure S14. Same as Figure S12, only for the South Atlantic-Gulf (3) region.
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Figure S15. Same as Figure S12, only for the Great Lakes (4) region.

Figure S16. Same as Figure S12, only for the Ohio (5) region.
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Figure S17. Same as Figure S12, only for the Tennessee (6) region.

Figure S18. Same as Figure S12, only for the Upper Mississippi (7) region.
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Figure S19. Same as Figure S12, only for the Lower Mississippi (8) region.

Figure S20. Same as Figure S12, only for the Souris-Red-Rainy (9) region.
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Figure S21. Same as Figure S12, only for the Missouri (10) region.

Figure S22. Same as Figure S12, only for the Arkansas-White-Red (11) region.
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Figure S23. Same as Figure S12, only for the Texas-Gulf (12) region.

Figure S24. Same as Figure S12, only for the Rio Grande (13) region.
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Figure S25. Same as Figure S12, only for the Upper Colorado (14) region.

Figure S26. Same as Figure S12, only for the Lower Colorado (15) region.
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Figure S27. Same as Figure S12, only for the Great Basin (16) region.

Figure S28. Same as Figure S12, only for the Pacific Northwest (17) region.
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Figure S29. Same as Figure S12, only for the California (18) region.
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Figure S30. The seasonal snow cycle is characterized by its daily snow water equivalent (SWE)

and linearly decomposed using the SWE triangle methodology to assess two western United States

mountainous hydrologic units, a) California and b) Upper Colorado, for the E3SM low-resolution

(LR, 1.00◦, blue) and high-resolution (HR, 0.25◦, aquamarine) simulations spanning 1985-2014

with the climatological average SWE triangle represented in black. ERA5 is shown in gray.
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Figure S31. Fraction of total annual mean precipitation falling as snow for HR (a), LR (b),

and their difference (c). All panels have units of percent.
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