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Abstract

An intercomparison of four air quality models is performed in the tropical megacity of Sao Paulo with the perspective of
developing an air quality forecasting system based on a regional model ensemble. During three contrasting periods marked
by different types of pollution events, we analyze the concentrations of the main regulated pollutants (Ozone, CO, SO2, NOx,
PM2.5 and PM10) compared to observations of a dense air quality monitoring network. The modeled concentrations of CO,
PM and NOx are in good agreement with the observations for the temporal variability and the range of variation. However,
the transport of pollutants due to biomass burning pollution events can strongly affect the air quality in the metropolitan area
of Sao Paulo with increases of CO, PM2.5 and PM10, and is associated with an important inter-model variability. Our results
show that each model has periods and pollutants for which it has the best agreement. The observed day-to-day variability
of ozone concentration is well reproduced by the models, as well as the average diurnal cycle in terms of timing. Overall the
performance for ozone of the median of the regional model ensemble is the best in terms of time and magnitude because it
takes advantage of the capabilities of each model. Therefore, an ensemble prediction of regional models is promising for an

operational air quality forecasting system for the megacity of Sao Paulo.
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Key Points:

e An ensemble of regional air quality models performs well in Sao Paulo for the main
regulated pollutants (ozone, CO, SO2, NOx, PM2.5 and PM10)

e Transport of pollutants due to biomass burning events can strongly affect the air
quality of the Sao Paulo megacity

e The median of the regional model ensemble gives a better result for ozone than
each model in the center of the megacity
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Abstract

An intercomparison of four air quality models is performed in the tropical megac-
ity of Sao Paulo with the perspective of developing an air quality forecasting system based
on a regional model ensemble. During three contrasting periods marked by different types
of pollution events, we analyze the concentrations of the main regulated pollutants (Ozone,
CO, SO4, NOx, PMy 5 and PM;g) compared to observations of a dense air quality mon-
itoring network.

The modeled concentrations of CO, PM and NOx are in good agreement with the
observations for the temporal variability and the range of variation. However, the trans-
port of pollutants due to biomass burning pollution events can strongly affect the air qual-
ity in the metropolitan area of Sao Paulo with increases of CO, PMs 5 and PM;(, and
is associated with an important inter-model variability.

Our results show that each model has periods and pollutants for which it has the
best agreement. The observed day-to-day variability of ozone concentration is well re-
produced by the models, as well as the average diurnal cycle in terms of timing. Over-
all the performance for ozone of the median of the regional model ensemble is the best
in terms of time and magnitude because it takes advantage of the capabilities of each
model. Therefore, an ensemble prediction of regional models is promising for an oper-
ational air quality forecasting system for the megacity of Sao Paulo.

Plain Language Summary

Forecasting air quality in megacities is especially difficult because of the diversity
and temporal variability of emission sources. Sao Paulo is the largest metropolitan area
in South America, and does not have an operational air quality forecast.

We perform an intercomparison of four air quality models with the perspective of
developing an air quality forecasting system. During three contrasting periods marked
by different types of pollution events, we analyze the concentrations of the main regu-
lated pollutants (Ozone, CO, SO2, NOx, PM2.5 and PM10) compared to observations
from the Sao Paulo air quality monitoring network.

Modeled concentrations of the main regulated pollutants agree well with observa-
tions for temporal variability and range of variation (except for SO2). However, the long-
range transport of pollutants due to fires can strongly affect the air quality in Sao Paulo,
and also reduce the performance of the models.

For ozone concentration, the observed daily variability is well reproduced by the
models, and the performance of the median of the models is the best in terms of time
and magnitude because it takes advantage of the capabilities of each model. Therefore,
an operational air quality forecasting system is promising for the megacity of Sao Paulo.

1 Introduction

Forecasting air quality in megacities is difficult due to the diversity and temporal
variability of emission sources, as well as the specific meteorology and photochemistry
of the urban boundary layer (Baklanov et al., 2016). Even though global air quality fore-
casts are now available, the spatial resolution of these forecasts is coarse compared to
the size of a megacity (Baklanov & Zhang, 2020). For this reason, high-resolution mod-
eling using an online approach coupling weather and air quality is needed to reproduce
the diurnal evolution of air composition in megacities. (G. Grell & Baklanov, 2011).

Sao Paulo is by far the largest metropolitan area in South America, one of the biggest
megacities of the world, located near the coast and on a plateau at about 700 m above
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sea level, in a subtropical climate, characterized by a dry and a wet season. Sdo Paulo

is special in different respects, for its geography and its climate but also for vehicle emis-
sions as there is a significant use of biofuels (Brito et al., 2018). The level of secondary
particles is particularly high due to the fuel composition (Albuquerque et al., 2019). More-
over, the air quality of the metropolitan area is frequently affected by the transport of
biomass burning pollutants from remote areas (Martins et al., 2018; Moreira et al., 2021;
Squizzato et al., 2021). Despite emission mitigation measures in place since the 1970s,

air quality is still poor in Sao Paulo for ozone and fine particulate levels (Andrade et al.,
2017; Schuch et al., 2019).

A megacity such as Sdo Paulo is therefore a challenge for regional air quality mod-
els: They must be applied at a resolution, which is high enough to represent the processes
leading to the high concentrations and high diurnal variability of the main pollutants,
and include specific vehicle emission factors (Andrade et al., 2015). In addition, com-
prehensive measurements are needed to evaluate the model outputs. In the case of Sao
Paulo, an extensive measurement network in and around the megalopolis was established
in the 1970s and since then has been continuously exploited and extended, constituting
an excellent support for evaluating the performance of models (Andrade et al., 2017).

Ensembles of regional air quality models have been first developed for Europe (Galmarini

et al., 2004) and North America (Monache et al., 2006). In these two regions, the Air
Quality Model Evaluation International Initiative (AQMEII) has shown that the discrep-
ancies between models for the main regulated pollutants (Ozone, CO, SO3, NOx, PMs 5
and PMjg) are due to the representation of the dynamics in the planetary boundary layer
(PBL), but also due to inaccurate emissions and boundary conditions (Im et al., 2015;
Solazzo et al., 2017). For forecasting the air quality in megacities, the use of an ensem-

ble of regional air quality models has two main interests: firstly, the inter-model range

is an indicator of the uncertainty of the state-of-the-art modeling (Vautard et al., 2009),
and secondly its median generally yields better performances than each single model (Riccio
et al., 2007).

Operational air quality forecasts based on model ensembles are available in Europe
(Marécal et al., 2015) and East Asia (Brasseur et al., 2019; Petersen et al., 2019). The
Klimapolis project, whose goal is to establish a ”Joint Laboratory on Urban Climate,
Water and Air Pollution: Modeling, Planning, Monitoring, Social Learning”, aims to de-
velop such an ensemble forecasting system for South America based on these two pre-
vious experiences. As a preliminary step to develop this system, this article evaluates
the performance of state-of-the-art regional air quality models focusing on the metropoli-
tan area of Sao Paulo.

Four chemistry-transport models are involved in this intercomparison of high-resolution
(i.e. less than 5 km) modeling results which are described in section 2. The evaluation
is supported by the Sao Paulo measurement network, for which we propose a method-
ology to compare the model outputs with a representative value for the whole megac-
ity, discussed in section 3. We assess the strengths and weaknesses of the models for the
main regulated pollutants over three contrasting time periods in section 4. In sequence,
we then focus on the diurnal variability of photochemistry-related variables in section
5. Finally, we analyze the performance of the ensemble forecast regarding the prediction
of ozone and PM, 5 alerts in section 6. Conclusions and perspectives are given in sec-
tion 7.

2 The air quality models

In this section, we briefly present the different chemistry-transport-models (Sect.
2.1) and we describe the main setup differences that may be important to interpret the
results presented in the next sections (Sect. 2.2).
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2.1 Strategy towards an operational ensemble forecasts

In this intercomparison study, a regional air quality model ensemble is compared
to the global forecasts generated by the European Centre for Medium-Range Weather
Forecasts through the Copernicus Atmosphere Monitoring Service (hereafter ECMWF—
CAMS) and by the US National Center for Atmospheric Research using Community At-
mosphere Model with Chemistry (hereafter NCAR-CAMchem).

All regional models provide hourly simulation outputs in a configuration fast enough
that it can be used for forecasting, and also with high spatial resolution (less than 5 km).
Four institutes are involved in this intercomparison, three of them are located in Brazil
and one in Germany, using their optimal setups for their model:

1. The Max Planck Institute for Meteorology (MPI) provides simulations made with
the WRFchem model.
The Weather Research and Forecasting model (WRF) coupled with chemistry (WR-
Fchem) is a mesoscale non-hydrostatic meteorological model online coupled with
chemistry that simultaneously predicts meteorology and atmospheric composition
(G. A. Grell et al., 2005; Fast et al., 2006; Powers et al., 2017). The model is based
on WRF version 4.1.2, with the Model for Ozone and Related chemical Tracers,
MOZART version 4, as chemical scheme (Emmons et al., 2010). The anthropogenic
emissions are taken from the CAMS-GLOB-ANT version 4.2 inventory (Granier
et al., 2019). The monthly emissions are distributed for each hour according to
vertical profiles based on (Bieser et al., 2011; Mailler et al., 2013), and to daily
and weekly profiles (Crippa et al., 2020). The biogenic emissions are calculated
using the Model of Emissions of Gases and Aerosols from Nature, MEGAN ver-
sion 2.1 (Guenther et al., 2006) and fire emissions using the Fire INventory from
NCAR, FINN version 1.5 (Wiedinmyer et al., 2011). Dust and sea salt are parametrized
online, depending on the wind intensity, using the Global Ozone Chemistry Aerosol
Radiation and Transport (GOCART) model (Ginoux et al., 2001).
For the meteorological configuration, the planetary boundary layer physics are cal-
culated by the YSU (Yonsei University) scheme (Hong et al., 2006), the surface
layer scheme is the Carlson-Boland viscous sub-layer with the surface physics cal-
culated by the 'Noah’ land surface model (Ek et al., 2003). The RRTMG radia-
tion scheme (Mlawer et al., 1997), the Thompson and Eidhammer (2014) aerosol
aware cloud microphysics scheme and the Grell-Devenyi 3D cumulus scheme (G. A. Grell
& Dévényi, 2002) are selected.
Two WRFchem simulations are carried out at the MPI using two meteorological
initial and boundary conditions, one with the FNL (Final) operational global anal-
ysis produced by the Global Data Assimilation System of the US National Cen-
ters for Environmental Prediction (NCEP-FNL; ds083.3 dataset, DOIL: https://
10.5065/D65Q4T4Z), and the other one with the ECMWF-ERAD reanalysis (Hersbach
et al., 2020).

2. The Universidade Federal de Minas Gerais (UFMG) provides simulations made
with the WRF-CMAQ model.
The Community Multiscale Air Quality Modeling System (CMAQ) is a three-dimensional
Eulerian atmospheric chemistry and transport, which is used by the United States
Environmental Protection Agency (Byun & Schere, 2006). The anthropogenic emis-
sions are taken from the Emissions Database for Global Atmospheric Research to
study Hemispheric Transport of Air Pollution, EDGAR-HTAP inventory version
2.2 (Janssens-Maenhout et al., 2015). The WRF model and Sparse Matrix Op-
erator Kerner Emissions (SMOKE) model were selected to generate meteorology
and emissions (Albuquerque et al., 2019). Pedruzzi et al. (2019) applied the CMAQ
model at a local scale over the urban and industrialized area of Vitéria-ES (Brazil),
and the setup used for this intercomparison is similar.



176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

3. The Universidade Federal do Rio Grande do Norte (UFRN) together with the Rhen-
ish Institute for Environmental Research at the University of Cologne provide sim-
ulations made with EURAD-IM model.

The EURopean Air pollution and Dispersion - Inverse Model (EURAD-IM) is chemistry-
transport model (Hass et al., 1995; Memmesheimer et al., 2004; Elbern et al., 2007),
which uses WRF as offline meteorological model. The anthropogenic emissions are

taken from the Emissions Database for Global Atmospheric Research, EDGAR
inventory version 4.3.2 (Crippa et al., 2018). The vertical distribution of emissions

and the emission strength per hour is calculated within the EURAD-IM model based

on prescribed source category dependent vertical profiles and daily, weekly, and

yearly time profiles. Fire emissions are from the Global Fire Assimilation System,

GFAS Version 1.2 (Kaiser et al., 2012).

4. The Universidade de Sao Paulo, Instituto de Astronomia, Geofisica e Ciéncias At-
mosféricas (USP-IAG) provides simulations made with the WRFchem model.

The WRFchem model is used on version 4.0, with the Carbon-Bond Mechanism
version Z (CBMZ) gas-phase chemistry mechanism (Zaveri & Peters, 1999) and

the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) aerosol
module (Zaveri et al., 2008). Vehicular emissions were estimated with LAPAt model
(Andrade et al., 2015). The Morrison 2-moment microphysics scheme (Morrison

et al., 2009) is selected.

The model configurations used by each institution are different due to their choices
of emissions inventories, meteorological and chemical configuration, and spatial resolu-
tion. We consider the variability of different forecasts to be representative of the uncer-
tainties in air quality forecasts using state-of-the-art chemistry and meteorology mod-
els.

In order to analyze the influence of the meteorological inputs, two WRFchem sim-
ulations are performed at the MPI with NCEP-GFS and with ECMWF-ERA5). We an-
alyze the results of the individual models as well as the median of the regional model en-
semble which we call Multi-Model Median, hereinafter MMM, which is calculated with-
out the ECMWF-ERAS5 simulation made at the MPI in order to have the same weight
for the model simulations carried out by each of the four institutions. The median is cho-
sen rather than the mean to reduce the influence of outliers.

2.2 Similarities and differences of the modeling setup

The main differences of model configuration chosen by the four institutes consists
in the model domain, the emission datasets, the chemistry and aerosol schemes, and the
meteorological parametrizations (Tab. 1).

The domains chosen by the four institutions are similar in terms of horizontal and
vertical resolution. Moreover, meteorological inputs and physical parametrizations are
similar for all models. Three of the institutions use similar anthropogenic emission dataset
of the EDGAR database.

However, one would expect anthropogenic emissions to be a large source of model
variability due to the difference in the geographical distribution of emissions by sector
(Huneeus et al., 2020), and how participating groups simulate temporal or vertical pro-
files for the sector-specific emission input data. Moreover, long-range transport of biomass
burning aerosols is important for the Sdo Paulo region (Martins et al., 2018; Squizzato
et al., 2021). Therefore, biomass burning emission integration in the domain or by bound-
ary conditions may also be sensitive for air quality forecast inside the megacity.
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3 A distance-weighted average for Sao Paulo

This section firstly presents the air quality measurement network of Sdo Paulo (Sect.
3.1), secondly analyzes the inter-station variability of the pollutant concentrations in 2019
(Sect. 3.2), and thirdly describes the three 15-day periods that we selected for the model
intercomparison (Sect. 3.3). The year 2019 is selected as sufficiently representative of
typical conditions, because it was a weak ’El Nifio’ year and not affected by, but shortly
before the COVID-19 pandemic.

We study the use of a distance-weighted average to represent the air quality in the
Sao Paulo megacity, which can be questionable in particular for the most short-lived pol-
lutants measured near sources, which is NO among our studied pollutants. Of course,
it is not possible to define the true value that represents a megacity because the concen-
trations vary spatially. However, we focus on hourly concentrations and, from one hour
to another, we can expect a stronger temporal co-variation of the concentrations (for all
the stations) than of its spatial variability of all the stations (for a given hour). Never-
theless, it is essential to avoid stations located too close to the sources, as they are not
representative for a large area.

3.1 Measurements of the CETESB air quality network

The Sao Paulo measurement network, maintained by CETESB (Companhia Am-
biental do Estado de Sao Paulo, https://cetesb.sp.gov.br/ar/qualar/), is composed
of 26 stations within the metropolitan area and another 63 within the state of Sao Paulo
mostly in or near other cities (Fig. 1). This network is excellent as it is well distributed
spatially and well maintained for several decades (Andrade et al., 2017). The number
of stations is large, for comparison there are 58 stations in the Ile-de-France region (which
includes the Paris megacity).

Although we mainly focus on (1) the metropolitan area of Sao Paulo, two other sur-
rounding localities are studied (2) Santos, and (3) Campinas (Fig. 1). We define a city
center for these three locations by choosing their traditional center, such as (1) Sao Paulo
center at Catedral da Sé (latitude: -23.5503°, longitude: -46.6339°), (2) Santos center
at Pardquia Sagrada Familia (latitude: -23.9427°, longitude: -46.3783°), and (3) Camp-
inas center at Catedral Metropolitana de Campinas (latitude: -22.9060°, longitude: -47.0605°).

Stations located within a radius of 15 km to the Sao Paulo city center are selected
(and within a radius of 10 km for the two other locations). For Sdo Paulo, we have a clas-
sification of stations composed of 5 classes, which depend on their spatial scale of rep-
resentativeness: 1 - Microscale, 2 - Neighborhood, 3 - Urban, 4 - Medium, 5 - Regional,
(based on CETESB report and characteristics of each station place) (CETESB, 2022).
In order to remove the stations not representative for the megacity, we compare the av-
erage of all the stations with the concentrations measured at each station using the cor-
relation coefficients over the entire year 2019 (Tab. Al).

The only station associated with the regional scale (higher representativeness scale
than the megacity) is weakly correlated with the average of all the stations (R j 0.4 ex-
cept for ozone). This station is removed to calculate an accurate average concentration
of the megacity. Conversely, the stations associated with the microscale class could lead
to a false representation of the whole megacity because they are close to specific emis-
sion sources. This applies to six stations, which can largely contribute to the average of
the available stations, and which are removed from the analysis as well (Tab. Al).

It should also be noted that the level of agreement between the stations is high for
all the variables considered, as evidenced by the correlation coefficients greater than 0.7,
with the highest for ozone (greater than 0.9). This result shows that, given the current
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Figure 1. Population density map showing the locations of Sao Paulo state measurement net-
work stations (dots) with distinguished metropolitan area stations (orange dots). The numbers
indicate the three cities studied: (1) Sao Paulo, (2) Santos, and (3) Campinas. The radius of
the circles (in purple and red) represent the stations included to calculate the distance-weighted
average of pollutant concentrations for the three cities. The city center of Sdo Paulo is located at
Catedral da Sé (red dot).

o measurement network, it is possible to consider the average of the stations to represent
272 the hourly variation of the concentrations for the metropolitan area of Sdo Paulo.

273 3.2 Spatial representativeness of the stations

274 Using stations from classes 2, 3 and 4, we compare two methods to calculate the

o1s average of each pollutant concentration for the megacity, (i) a simple method which con-
276 sists in averaging the selected stations, and (ii) a distance-weighted average using the

o7 distance from station to the city center, where the weight is based on the inverse of the
278 distance to a specific location (here the city center, CC). The concentration at the city
279 center (Concoe) is calculated as follows:

s=N s=N
Concco(t) = (D ws x Coney(t)/ > ws (1)

280 where the weights are:

ws = 1/d(s,CC)?, (2)
281 Conc, is the concentration measured at each station, and p is the power factor, which
282 changes the importance of the stations located the closest to the CC.
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The range of station weights calculated with p equal to 2 or 3 is five orders of mag-
nitude (Tab. 2). Therefore, given the Sdo Paulo network, p equal to 2 or 3 is not an ap-
propriate choice giving to much weight to the stations close to the city center while the
influence of more distant stations is highly reduced. With p equal to 1, the weight range
is less than two orders of magnitude, which is already significant (Tab. 2). Indeed, the
closest station to the city center (Parque Dom Pedro II) is 840 m away, much closer than
all the other stations, which are at least more than 3 km away. This causes this station
to contribute more than 30 % of the city center average calculated with a distance-weighted
average using the classes 2, 3 and 4.

We compare the averages obtained with two methods for the NO concentration (the
shortest lifetime of the pollutant studied) during the year 2019 with and without class
2. In addition, we plot the average of all the stations (as a reference to compare) in or-
der to estimate the influence of the selection of the stations based on their spatial scale
of representativeness. From the raw hourly data, we present the daily average and the
averaged hourly diurnal cycle (Fig. Al).

NO concentrations are higher from May to September (during the colder and dryer
months) than during the rest of the year, often above 20 ppb (Fig. Al). Moreover, the
highest concentrations occur at night, with two peaks at 01:00 and 08:00, suggesting the
combined effect of traffic emissions and a strong diurnal evolution of the PBL height.
Note that the peak at 01:00 is surprising because neither the emissions nor the height
of the PBL are likely to change so drastically during a single hour (averaged over a year).
In fact, this is due to the configuration of the automatic NOx analyzers, most of which
are calibrated at 01:00 (personal communication with CETESB by Maria De Fatima An-
drade).

By comparing the average of all the stations (’Stations mean’ in Fig. A1) with the
average of the selected stations (’Selected mean’ in Fig. Al), we note a greater differ-
ence for classes 3 and 4 (panels a and c) than for classes 2, 3 and 4 (panels b and d). This
shows that class 2 stations largely influence the average.

By comparing the distance-weighted average ('City center’ in Fig. Al) and the av-
erage of the selected stations, we see that the diurnal cycles are different for classes 2,
3 and 4, while it is the same for classes 3 and 4. This result shows that the distance-weighted
average for classes 2, 3 and 4 (with our CC defined at Catedral da Sé) is influenced by
the Parque Dom Pedro II station. Therefore, class 2 stations are excluded from the distance-
weighted average calculations used in the following.

From this analysis, we see also that the distance-weighted average and the aver-
age of the selected stations lead to similar NO concentrations using the stations class 3
and 4. To conclude, using the stations class 3 and 4, it is possible to define a consistent
value of concentration representing the megacity that can be used to evaluate the dif-
ferent models.

3.3 Selection of three time periods

We select three 15-day periods that are:

1. 27 January to 12 February 2019, a period of ozone episodes, five days with ozone
concentration above air quality standard in Sao Paulo were monitored despite the
precipitation occurring during this period.

2. 8 to 21 August 2019, a period of aerosol episodes from long-range transport, dur-
ing which biomass burning aerosols from the Amazon basin and central areas of
Brazil transported to Sdo Paulo, have created "black rain’.

3. 6 to 20 September 2019, a period of ozone and PMs 5 episodes, during which the
air quality standards for ozone and PM, 5 were exceeded for both pollutants.
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These three periods are presented for ozone and PMs 5 with the daily averages and
the averaged hourly diurnal cycles (Fig. 2). We notice for ozone and PMj 5 that the av-
erages calculated with the two methods lead to closer results than for NO, which is ex-
pected due to their longer lifetime. The correlation coefficient of the two methods is equal
to 0.84 for NO, whereas it is 0.92 for PMs 5 and 0.99 for ozone. Consequently, the av-
erages calculated with the two methods should lead to the same interpretation for PMs 5
and for ozone (and to a lesser extent for NO).

In conclusion of this analysis of the measurement network of Sao Paulo, we have
selected three periods and defined a method for calculating the concentrations of pol-
lutants representative of the city. Distance-weighted average to the city center is con-
venient for the model intercomparison because it allows model outputs to be interpo-
lated only to a single location (instead of all station locations). In the following, observed
concentrations are calculated using distance-weighted average (applied to class 3 and 4
stations for Sao Paulo city center).

a) Ozone daily average (using classes 3 and 4) b) PM, ; daily average (using classes 3 and 4)
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c) Ozone averaged diurnal cycle (using classes 3 and 4) d) PM, ; averaged diurnal cycle (using classes 3 and 4)
—— Stations mean 60 - —— Stations mean
601 — Selected mean _ —— Selected mean
- —— City Center T —— City Center
2 40 —— Background > —— Background
[ 3
e 2
o K]
o =
20 g

1 T T T T T T T
0 3 6 9 12 15 18 21
Hour (Local time) Hour (Local time)

Figure 2. Time series of the daily average (top) and the average hourly diurnal cycle (bottom)
of ozone and PMs. 5 concentrations for the year 2019 from the CETESB measurement network.
The three selected periods are marked by blue rectangles. The concentrations are calculated from
the average of all the stations (’Stations mean’ the gray line), from the average of the stations se-
lected from a classification of their spatial scale of representativeness (’Selected mean’ with classes
8 and 4, black line), from an average of the selected stations weighted by the distance between the
station and the center of Sao Paulo ("City center’, green line), and for the concentration at the
background station (’background’, red line). The color shadings (bottom) represent the standard

deviation of hourly concentrations over the year.

4 Performance of the regional model ensemble

We start the intercomparison by studying the general performances of the air qual-
ity models at the center of Sdo Paulo (Sect. 4.1), and we focus on the temporal varia-
tion of selected variables relevant for meteorology (Sect. 4.2), the long-range transport
(Sect. 4.3), and anthropogenic emissions (Sect. 4.4). We aim to understand the strengths
and weaknesses of each of the four regional models studied in comparison with the three
others, and also with the global forecasts.
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4.1 General performance

The general performance of the models is assessed for the main regulated pollu-
tants (Ozone, CO, SO2, NOx, PMs 5 and PMjg) using the correlation coefficients of the
hourly observations and the different model outputs over the first, second and third stud-
ied periods (Tab. 3, 4 and 5, respectively) as well as the root mean square error (RMSE)
(Tab. A2) and the mean bias (Tab. A3). In addition, we define the ’oxidant’ concentra-
tion as: Ox = NOy + Os.

Overall, all models perform well with a majority of correlation coefficients greater
than 0.5 (although a low correlation coefficient may be due to some outliers, a value greater
than 0.5 means that the model reproduced part of the observed variability), and both
the RMSE and the mean biases are small for most variables (because they are of the same
order of magnitude as the observation mean). It is also interesting to note that all mod-
els have episodically periods and pollutants with very good evaluation scores. For NOg,
ozone and Ox, we notice that the MMM has in some cases a higher correlation than all
the members that compose it. Comparing the regional models with the global forecasts,
we note that the scores are of the same order. However the MMM has the best scores
over the three periods for these three pollutants.

Looking at the individual variables, the correlation coefficients of CO are interme-
diate (R close to 0.5) with a low RMSE and biases (compared to the observation mean).
Aerosols are not well reproduced, especially during the second period. There is an im-
provement in the correlation coefficients with the ECMWF-ERAS reanalysis compared
to the NCEP-FNL forecast, which could be due to more accurate wind fields, improv-
ing the representation of the pollutant transport.

For PMs 5 and PMq, the correlation coefficients are less than 0.5, the biases are
low and the RMSE are high, which may reflect the high temporal variability of the aerosol
load (Tab. A2 and A3). This indicates that the modeled variability range is in good agree-
ment while the modeled temporal variability is not well reproduced, which may be caused
by the advent time of aerosols due to long-range transport. Moreover, the production
of secondary aerosols is generally underestimated in Sao Paulo, and this could lead to
a time-offset (Andrade et al., 2017). However, we notice that the correlation coefficients
for PMs 5 are slightly higher than for PMjg.

For SO, the correlation coefficients are low and the bias is several times higher than
the average concentration observed over each period, which may be due to the magni-
tude of anthropogenic emissions. For the nitrogenous species (NO, NOy and NOx), the
correlation coefficients are low and the RMSE is high (compared to the observation mean)
but the biases are low, which may be due to inaccurate hourly profiles applied to the an-
thropogenic emissions.

Ozone is in good agreement with observations even though the first and third pe-
riods were chosen because they include high ozone events. For all three periods, the MMM
ozone concentration has the best evaluation scores, and the UFMG-WRF-CMAQ scores
are the best of the regional model ensemble. It should be noted that the scores of the
global forecasts are similar to those of the regional models, but the correlations are cal-
culated with a smaller number of hours for the global forecasts due to their lower out-
put frequency (3 hours for ECMWF-CAMS and 6 hours for NCAR-CAMchem). For Ox,
the correlation coefficients are close to that of ozone with increased biases. All models
overestimate Ox over the three selected periods, which may be due to their lower diur-
nal variability. We also note that the ozone biases are mostly of the opposite sign to NO
(Tab. A3).

The remarks made in this section will be analyzed in the following by looking at
the temporal variability of the different variables.
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4.2 Meteorological variability

To investigate the differences of the regional models, we start by analyzing the tem-
poral variability of relative humidity, PBL height, wind speed and direction during the
three periods (Fig. A2 and A3) in order to identify the different meteorological condi-
tions occurring during this study. The PBL height data is obtained by a LIDAR mea-
suring the aerosol backscattered signal, which is located at the university of Sao Paulo
(Moreira et al., 2019). It provides accurate data from 11:00 to 16:00 using quality cri-
teria (Courtesy of G. de Arruda Moreira), allowing the analysis of the range of the PBL
height. To compare the 10-m wind speed diagnosed by the models with the observations
made at 2 meters, we multiply the observations by a factor of 4/3 (assuming that a log-
arithmic profile represents well the wind).

There are specific days shared by the four meteorological variables (RH, PBL height,
wind speed and direction) for each period, for which the values for this day differ from
other days: (i) 5 February, (ii) 12, 15 and 20 August, (iii) 14 September. These partic-
ular days are associated with high relative humidity (; 80 %) and high wind speed (,

3 m/s) continuously coming from the south for two days, and with a low height of PBL
(; 1 km), which corresponds to stormy weather conditions (Fig. A3). Excluding these
specific days, we notice a clear diurnal cycle of relative humidity, wind speed and PBL
height with a minimum at night and a maximum during the day. For the direction of
the wind, we notice there is often a change from north west to south east.

During these three periods, we see that the temporal variability found by the mod-
els corresponds well to the observations. The models overestimate wind speed, especially
during the daytime. During the days with the stormy weather conditions, a greater inter-
model variability can be observed.

In conclusion, it seems that the models agree well with the meteorological obser-
vations. Therefore the differences in the modeled meteorology may not be responsible
for persistent differences in the simulated concentrations by the models. These differ-
ences are rather to be found on the side of emissions or long-range transport.

4.3 Long-range transport of pollution

In order to focus on long-range transport, we analyze CO and PMs 5 concentra-
tions, which are two pollutants notably emitted by combustion processes and transported
due to their long lifetime (greater than a week) in Sdo Paulo (Fig. 3) and in Campinas
(Fig. A5). In addition, we analyze PM;q and the ratio of PMs 5 against PMjo (Fig. A4).

The amplitude of variation for CO ranges from 0.1 to 2.4 ppm and for PMj 5 from
10 to 80 pg.m 3. There are large increases synchronized for both pollutants (reaching
at least 1.5 ppm for CO and 50 pg.m~2 for PMy 5) for the three time periods. These in-
creases are associated with different ratios of CO to PMs 5, and different persistence over
time from some hours to one day. Considering that Sao Paulo is frequently affected by
biomass burning events throughout the year, either due to agricultural practices in the
surrounding rural areas, or by deforestation and pasture-maintainance fires from remote
regions (Godoy-Silva et al., 2017), this suggests biomass burning events. We note these
events on (i) 30, 31 January and 1 February, on 10, 11, 13 and 17 August, and (iii) on
11, 12, 17 and 18 September (which are different from the meteorological events; cf. Sect.
4.2).

By excluding these biomass burning events, the models reproduce well the ampli-
tude of variation for CO. PMs 5 is overestimated by the simulations of UFMG-WREF-
CMAQ and MPI-WRFchem, whereas it is in good agreement for IAG-USP-WRFchem
and UFRN-EURAD-IM. Biomass burning pollution events are identified by MMM be-
cause, for each event, there is at least one simulation in good agreement with the obser-
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Figure 3. Time series of hourly concentrations of CO (a, ¢ and e) and PMa.5 (b, d and f)
observed and modeled in Sao Paulo for the three selected 15-day periods of the year 2019. The
models include data from two global forecasts (yellow stars and green squares) and a regional
model ensemble of five simulations (colored lines) with the Multi-Model Median (red line).

vations. However, the overall CO concentration during biomass burning event is gener-
ally underestimated by the MMM. The two meteorological datasets used with WRFchem
(MPI-WRFchem-ERA5 and MPI-WRFchem-FNL) lead to close results for CO, PM, 5
and PMjg, although there is an improvement with ERA5 during some biomass burning
events, which may explain the slightly greater correlation coefficients (¢f. Sect. 4.1).

For global models, NCAR-CAMchem underestimates CO, while the variation range
of PMs 5 is in agreement with observations. Increases in CO and PMs 5 associated with
biomass burning events are not reproduced by NCAR-CAMchem. ECMWF-CAMS re-
produces well the average concentration of CO and PMj 5, however there are very high
concentrations, in particular during biomass burning events, for which the bias is the high-
est, and which may be related to the GFAS biomass burning emissions.

The observed temporal variability of PM;jg is similar to that of PMs 5, which is also
the case for the four regional simulations (Fig. A4). As for PMy 5, PMyg is overestimated
by all models except UFRN-EURAD-IM. The observed ratio of PMjy 5 against PMygq is
ranging mostly between 0.4 and 0.8. There are a few values above 0.8, i.e. dominated
by fine particles, and below 0.4, i.e. dominated by coarse particles. Biomass burning pol-
lution events are not clearly associated with a low value of this ratio, but during the pe-
riods of strong wind coming from the South (c¢f. Sect. 4.2), the value of the ratio is low
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which indicates a transport of large particles (to the south is a large harbor area in San-
tos). In general, the regional models have very different temporal behaviors with UFMG—
WRF-CMAQ nearly constant at 0.8, and UFRN-EURAD-IM with a clear diurnal cy-
cle. The regional models reproduce the variation range of PMy 5 against PM; ratio.

In Campinas (Fig. A5), the level of CO and PMy 5 is slightly lower than in Sdo Paulo,
and the same events are also observed for the two pollutants, which reinforces the in-
terpretation of these events as being related to the long-range transport of pollution caused
by biomass burning. The models underestimate the CO concentrations by about 0.2 ppm,
while the modeled PMs 5 level is well reproduced. However, for both pollutants, most
of the biomass burning events are not reproduced neither by the regional models nor by
the global forecasts at Campinas.

This section shows the importance of pollutant transport for air quality in Sao Paulo,
especially from biomass burning sources. Each model reproduces certain events well in
terms of magnitude and persistence. Therefore, the median of the regional model ensem-
ble (i.e. MMM) produces overall the best estimate for CO and PM.

4.4 Anthropogenic pollution

Two characteristic pollutants of anthropogenic activities and their emissions are
NOx and SOs. In a megacity, NOx is mainly emitted by traffic, while SO is mainly re-
lated to industries and electricity production from coal. We analyze here their tempo-
ral variability during the three periods in Sao Paulo (Fig. 4) and in Santos (Fig. A6).

The NOx observations show significant variability over the three periods. The di-
urnal variability shows an amplitude of about 30 ppb with daily minimums below 10 ppb.
Biomass burning pollution events (c¢f. Sect. 4.3) are associated with high NOx values,
reaching at least 150 ppb, and with a maximum reaching 300 ppb on 13 August.

For NOx, the models are in good agreement over the range of variation over the
three periods. Pollution events related to biomass burning lead to an increase in the mod-
eled NOx concentration for all models except NCAR-CAMchem. The magnitude of NOx
concentration during biomass burning events is reproduced with large inter-model vari-
ability. Therefore, the MMM has the best agreement with the observations.

For SO, the picture is different from that of the other compounds presented pre-
viously. The observations range from 0 to 5 ppb in Sdo Paulo, while there is almost a
factor of 10 overestimation by the regional models and ECMWF-CAMS. Interestingly,
the NCAR-CAMchem forecast run with coarse resolution has the best agreement. Ad-
ditionally, comparing the meteorology used with MPI-WRFchem, the modeled SO5 con-
centrations are very similar.

SO is also produced by fire emissions. Note that during biomass burning pollu-
tion events, the observed concentration of SO5 increases (up to 5 ppb). However, there
is a constant bias over time for regional models using high resolution in the center of Sao
Paulo as well as for ECMWF-CAMS. Only NCAR-CAMchem is in good agreement, which
may be related to its much coarser resolution of about 100 km. So this points towards
the anthropogenic inventory and the proxy used to downscale the emissions as main cause
for the overestimation.

We further investigate concentrations in the industrialized area of Santos, where
emissions from ships and industry are high compared to emissions from the traffic and
residential sectors. The modeled SOy concentrations are in good agreement with the ob-
servations in Santos, while the modeled NOx concentrations are underestimated by the
regional model ensemble. This points towards the industry sector which seems to be to
important in the metropolitan area of Sao Paulo. We also note very high concentrations
of NOx and SO3 modeled by ECMWF-CAMS during biomass burning events in both
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Figure 4. Time series of hourly concentrations of NOx (a, ¢ and e) and SOz (b, d and f)
observed and modeled in Sao Paulo for the three selected 15-day periods of the year 2019. The
models include data from two global forecasts (yellow stars and green squares) and a regional
model ensemble of five simulations (colored lines) with the Multi-Model Median (red line).

Sao Paulo and Santos, again suggesting an overestimation of the GFAS emissions for this
type of event.

To our knowledge, there have been no major regulatory changes that could explain
the large overestimation of modeled SO2 concentrations (on gasoline content or indus-
try stack emissions). Therefore, we suspect anthropogenic emissions (rather than fire emis-
sions), and more specifically the industrial sector (rather than traffic), to be responsi-
ble for the large model bias, which may be related to emission factors and to the spa-
tial proxy defining source locations.

In summary, the models reproduce the meteorology well and the modeled concen-
trations of CO, PM and NOx are in good agreement when there is no biomass burning
pollution event. This section shows the importance of these events for the air quality in
the Sao Paulo region as well as the difficulty for the models to obtain the correct mag-
nitude of CO, NOx, PM and SO, during these events.

5 Assessment of the modeled photochemistry

This section is dedicated to the evaluation of the photochemistry that the mod-
els reproduce in the tropical and urban environment of Sao Paulo. We expect the Sao
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Paulo center to be saturated with NOx and ozone production to be controlled by the level
of volatile organic compounds (Schuch et al., 2019; Rudke et al., 2021; Squizzato et al.,

2021).

The level of oxidant (i.e. Ox = NOg + O3) is an interesting quantity for our anal-
ysis because it should vary less between day and night (Wood et al., 2010). In urban ar-
eas, where NOx emission are important, there is a competition between the loss and the
production of ozone during the day (the titration of ozone by NO is compensated by the
photolysis of NO3). As a result, there is a partitioning between NOg and O3 due to the
daytime photo-stationary state, thus an increase of Ox during the day corresponds more
likely to the formation of ozone. At night, Ox is not affected by the titration of ozone.

We analyze the ozone and Ox concentrations in Sao Paulo, Santos and Campinas
during the three studied periods (Sect. 5.1), and we focus on the averaged diurnal vari-

ability in Sao Paulo (Sect. 5.2).

5.1 Ozone and oxidant levels

We investigate the temporal variability of ozone and Ox concentrations in Sao Paulo

(Fig. 5), Santos (Fig. A8) and Campinas (Fig. A7).
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Figure 5. Time series of hourly concentrations of ozone (a, ¢ and e) and oxidant (b, d and

f) observed and modeled in Sao Paulo for the three selected 15-day periods of the year 2019. The

models include data from two global forecasts (yellow stars and green squares) and a regional
model ensemble of five simulations (colored lines) with the Multi-Model Median (red line).
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Ozone observations in Sdo Paulo show a clear diurnal cycle for most days, with a
daily minimum below 10 ppb at night and a daily maximum above 50 ppb, except dur-
ing certain 2-day periods associated with storms (c¢f. Section 4.2). For Ox, there is a back-
ground level of around 20 ppb, and there are often increases during the day that match
the ozone increases. The second period has a more consistent oxidant level compared to
the other two periods, which were chosen because they contain high ozone events. Look-
ing at Santos and Campinas, ozone concentrations also show a clear diurnal cycle with
a smaller amplitude, and the oxidant level is more constant than in Sao Paulo, with the
same background level of around 20 ppb for the three periods. It is noted that in Camp-
inas, the ozone concentration is often high at night, above 20 ppb, which is not observed
in the other two places.

For the three locations, the models of the regional ensemble are in good agreement
with the temporal variation of the observed ozone concentrations. It can be seen that
the level of oxidant is overestimated by the regional model ensemble and the two global
forecasts. NCAR-CAMchem is the most in agreement regarding the range of concentra-
tions. Each model of the regional ensemble has days for which the modeled value is higher
than the maximum observed ozone concentration, suggesting that the modeled ozone pro-
duction reaches an intensity that is not observed. For ECMWF-CAMS, the three pe-
riods are not found with the same quality because during the third, the ozone is largely
overestimated (much more than for all the other models) in Sao Paulo, in Santos and
to a lesser extent in Campinas.

For all models, the oxidant level is overestimated in the metropolitan area of Sao
Paulo (Fig. 5) compared to Santos (Fig. A8) and Campinas (Fig. A7). We note that
the two WRFchem simulations run at MPI overestimate ozone and Ox, and that this
overestimation is greater with the ERADH reanalysis. Moreover, we note that TAG-USP—
WRFchem underestimates ozone, and that UFRN-EURAD-IM and UFMG-WRF-CMAQ
have good agreement. Focusing on individual days, we also note that each individual sim-
ulation has certain periods for which ozone is in better agreement. Therefore, the MMM
has overall the best agreement for ozone over all three time periods.

The two meteorological inputs used at MPI with WRFchem lead to significant mag-
nitude differences for certain days, for example during biomass burning pollution events
(cf. Sect. 4.2), which could be due to differences in the air masses transported to the megac-
ity. We further investigate the relationship between ozone and wind direction to iden-
tify sectors of wind direction associated with high or low ozone concentrations, and com-
pare those with modeled results (Fig. 6 and Fig. A9).

The wind direction observed is mainly from West to North sectors (more than 80 %
of the hourly occurrence) and sometimes from East to South sectors (less than 15 %) for
the three periods. Low (below 16 ppb) and high (above 50 ppb) ozone concentrations
are associated with west-north sectors, while high (above 50 ppb) concentrations are as-
sociated with east-south sectors.

The MMM reproduces well the occurrence of the wind direction as well as the ob-
served distribution of ozone concentrations (Fig. 6). The main wind direction is well re-
produced except for the third period where there is a shift (coming from N-NE instead
of N-NW). However, the individual simulations have significant biases regarding the oc-
currence of wind direction and the distribution of ozone concentrations (Fig. A9). This
analysis is limited by the difficulty of defining a wind direction when the wind speed is
low, especially in a megacity. Nevertheless, we still notice that the MMM is in better agree-
ment with the observation than each of its members.

To synthesize the results of the different simulations, we plot the modeled and ob-
served ozone and Ox concentrations in a scatter plot with the regression line of each re-
gional model using the reduced major axis method (Fig. 7). For each model of the re-
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Figure 6. Pollution roses obtained from the hourly occurrence of the observed and modeled
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selected 15-day periods of the year 2019. Each pollution rose shows the predominant direction of
the pollution transport. For each wind direction sector, the distribution of ozone concentrations is

given separated into four concentration ranges (color code).

gional ensemble, the regression lines are similar (in terms of agreement of slope with re-
spect to the line Mod=0bs) for the three periods for ozone and for Ox. For ozone, the
best agreement is obtained for the MMM, then UFMG-WRF-CMAQ), whereas the UFRN—
EURAD-IM and MPI-WRFchem simulations overestimate it and that of the TAG-USP-
WRFchem underestimates it. For Ox, we again observe the overestimation of the mod-

els because the vast majority of the points are located above the line Mod=Obs, and there-
fore the regression lines are shifted. For the two pollutants, the slopes are correct for IAG-
USP-WRFchem and UFMG-WRF-CMAQ whereas for UFRN-EURAD-IM and MPI-
WRFchem they are overestimated, which seems to indicate that ozone production is too
high.

5.2 Average diurnal cycles

The concentrations of NOx and ozone show marked diurnal variability over the three
periods studied, which is notably due to the evolution during the day of anthropogenic
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Figure 7. Ozone (a, ¢, and e) and oxidant (b, d, and f) scatter plots of observed versus mod-
eled hourly concentrations for the three selected 15-day periods of the year 2019. The regression
lines are calculated using the reduced major axis method for each model. The models include data
from a regional model ensemble from five simulations (colored lines) with the Multi-Model Median
(red line).

emissions and of the height of PBL. We continue by analyzing the average diurnal cy-
cles of ozone, NOx concentrations with the modeled PBL heights (Fig. 8) as well as NO
and NO (Fig. A10).

On average, the ozone concentration in Sdo Paulo has three phases: (i) it is below
20 ppb from midnight to 9h, (ii) it increases until 16h, up to 50 ppb, 35 ppb and 50 ppb
for the first, second and respectively the third periods, (ii) it decreases slowly until mid-
night for the first period, while the decreases are faster (until 19h) for the second and
third periods.

The diurnal cycle of NOx is opposite to that of ozone for the three periods because
high concentrations are observed at night (reaching 50 ppb) and low concentrations dur-
ing the day (below 25 ppb). The concentration of NOx, as well as NO and NOg, presents
a peak at 8h-9h, which seems to correspond to the morning peak of traffic emissions. There
is another period of high concentration in the evening which lasts longer and differs be-
tween periods (comparing Fig. 8 and Fig. A10). NOx concentrations are higher from
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Figure 8. Average diurnal cycles of hourly concentrations of ozone (a,c and e) and NOz (b,d
and f) observed and modeled in Sao Paulo over the three selected 15-day periods of the year 2019.
The models include data from two global forecasts (yellow stars and green squares) and a re-
gional model ensemble of five simulations (colored lines) with the Multi-Model Median (red line).
The modeled planetary boundary layer heights (PBLH) are the green dashed lines with colored
dots corresponding to the models. The black line is observation average and the gray shadings

correspond to the standard deviation.

19h to 3h during the second and third periods compared to the first, which is driven by
a difference in NO. It should also be noted that the morning peak is observed around
8h for NO and around 10h for NOg, while in the evening, a long period of high concen-
trations of NO and NOy from 19h to 3h.

The models reproduce well the chronology of the observed phases of the mean di-
urnal cycle of ozone. For NOx, the traffic peak is well modeled around 8h, while the pe-
riod of high NOx in the evening (observed between 19h to 3h) is modeled too early. Dur-
ing daytime, low NOx correspond well to the PBL height greater than 1 km. Looking
at the magnitudes of the diurnal cycles, we see that:

« For MPI-WRFchem, ozone is overestimated (day and night), and NOx is in good
agreement;

+ For IAG-USP-WRFchem, ozone is underestimated (day and night), and NOx is
overestimated at night;

e For UFMG-WRF-CMAQ), ozone is in good agreement during the day and under-
estimated at night, and NOx is overestimated at night;
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644 « For UFRN-EURAD-IM, ozone is overestimated during the day and underestimated

645 at night, and NOx is overestimated at night;

646 » For NCAR-CAMchem, ozone is overestimated (day and night), and NOx is un-
647 derestimated;

648 e For the ECMWF-CAMS, ozone is overestimated during the day and underesti-
649 mated at night, and NOx is overestimated at night.

650 In addition, the modeled PBL heights are similar for the regional model ensemble

651 over the three time periods. The PBL height modeled with ERA5 reanalysis (MPI-WRFchem-
652 ERAD) is the lowest. The modeled PBL height is highest during the day-to-night tran-

653 sition for the first period, which could explain the lower modeled NOx concentrations.
654 However, the modeled PBL, being similar in time and height, cannot explain the large
655 inter-model variability observed for ozone and NOx, which is particularly true from 6h
656 to 9h.

657 Regarding NO and NO, (Fig. A10), the differences between the models are more
656 important for NO than for NOs, and they seem related to modeled ozone biases because
659 we see that:

660 « For MPI-WRFchem, NO is underestimated (at night) and NOs is overestimated
661 (at night);

662 + For IAG-USP-WRFchem, NO and NOy are overestimated (day and night);

663 « For UFMG-WRF-CMAQ, NO and NOs are overestimated (night);

664 + For UFRN-EURAD-IM, NO and NOs are overestimated (night);

665 » For NCAR-CAMchem, NO and NO; are underestimated (day and night);

666 » For ECMWF-CAMS, NO and NOj are overestimated (night).

667 At night, for all models, the biases in modeled NO concentrations are opposite to
668 the biases in modeled ozone concentrations, despite the consistency between the mod-
669 eled PBL height. Consequently, the proportion of NO to NOg appears to be related to
670 the modeled ozone biases. We thus analyze the diurnal cycles of the proportion of NOg
671 in NOx and in Ox predicted by the regional model ensemble compared to observation

672 (Flg 9)

673 « For MPI-WRFchem, the proportion of NOs in NOx is overestimated, and in Ox
674 is in good agreement;

675 « For IAG-USP-WRFchem, the proportion of NOy in NOx is underestimated, and
676 in Ox is overestimated;

677 « For UFMG-WRF-CMAQ), the proportion of NOs in NOx is is underestimated,

678 and in Ox is overestimated (at night);

679 « For UFRN-EURAD-IM, the proportions of NO5 in NOx and of NOs in Ox are

680 underestimated (at night).

681 The MMM has the best agreement for ozone because two models overestimate it
682 and the other two underestimate it. The level of oxidant is especially overestimated in
683 the metropolitan area of Sdo Paulo (Fig. 5) compared to the two surrounding localities
684 studied (Fig. A8 and Fig. A7), and this for all models. Understanding this overestima-
685 tion may be essential to improve the modeled ozone variability in the PBL of Sao Paulo.
686 However, from this analysis it is not possible to identify the main drivers of the vari-
687 ability of ozone and the level of oxidant, which are related to anthropogenic and biogenic
688 emissions, urban dynamics in the PBL, to the chemistry, to the deposition, to the ra-

689 diation or to the configuration of the models. Thus, each institution should conduct sen-
69 sitivity studies to improve its simulation using the results of this intercomparison to as-
601 sess their performances.
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Figure 9. Average diurnal cycles of hourly proportion of NO2 in NOzx (a,c and e) and in
Oz (b,d and f) observed and modeled in Sao Paulo over the three selected 15-day periods of the
year 2019. The models include data from a regional model ensemble of five simulations (colored

lines) with the Multi-Model Median (red line). The black line is observation average and the gray

Hour

shadings correspond to the standard deviation.

Hour

In conclusion, there is a large inter-model variability in the magnitude of modeled

daily maximum of ozone (approximately + 20 ppb around the observed value). The ozone
bias of the models seems to be related to the relative proportions of NO and NO, as well
as to the amount of NOx. Overall, the Multi-Model Median has the best agreement.

6 Potential of the regional model ensemble

Of course, the small number of models involved in the calculation of the MMM,
i.e. the median of the four models, is an important limitation. However the previous sec-
tion showed that two models overestimate ozone, and the other two underestimate, lead-

ing to good scores for the MMM. This section proposes to focus on the MMM to finely

analyze the temporal biases of Ox and NOx (Sect. 6.1), and to evaluate the potential

of the MMM in the perspective of an early warning system for ozone and aerosol alerts

(Sect. 6.2).

6.1 Ox and NOx temporal biases

We analyze the temporal biases, i.e. the modeled minus observed concentration,
for Ox (Fig. 10) and NOx (Fig. All) as well as the average diurnal cycles in order to

distinguish the phases which occur during the day.
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Figure 10. Time series of hourly bias (difference in modeled and observed concentration) of
the Multi-Model Median for ozone, NOz and Oz (a, ¢ and e) and their associated average diur-

nal cycles (b, d and f) in Sao Paulo for the three selected 15-day periods of the year 2019. The
Multi-Model Median is calculated from a regional model ensemble of four simulations. The black

boxes mark the morning and evening hours.

We note that the concentration of Ox is overestimated during the three periods and
that there is an opposition of the bias in NOs and ozone, which seems to take place on
most days, and which is well represented in the average diurnal cycles. It follows that
it seems possible to define different diurnal phases of the bias in NOy and ozone, such
as:

1. At night (21h to 6h), the NO; bias is positive (overestimation) and that of ozone
is negative (underestimation);

2. In the morning (from 6h to 10h), the NOg and ozone biases are large at 6h and
then decrease;

3. During the day (from 10h to 17h), the ozone bias becomes positive while the NOg
bias is weak;

4. In the evening (from 17h to 21h), the biases are strongest, NOs is overestimated
and ozone is underestimated.

The evening period exhibits biases similar to the morning but stronger, which could
be related to the urban heat effect which would in fact keep the height of the PBL higher
than in the models. Looking at the NOx biases (Fig. Al1), we see that the NO bias is
much stronger than the NO2 bias, especially in the morning and evening. The same di-
urnal phases are noted for NOx as for Ox, suggesting that different factors or processes
are responsible for these biases during each phase:
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1. At night (21h to 6h): this phase is linked to nocturnal chemistry, when the height
of the PBL is low (a few hundred meters). During this phase, the MMM has a strong
NOx bias. The results of the individual simulations showed a high inter-model vari-
ability for NOx concentrations as well as for the proportion of NOs in NOx and
in Ox (Sect. 5). This suggests that the treatment of anthropogenic emissions (in
terms of sector or NO/NQOj ratio at the emission) and nocturnal chemistry play
an important role;

2. In the morning (from 6h to 10h): this phase is linked to the peak of morning traf-
fic and the transition from night to day, with an increasing PBL height. During
this phase, the bias of ozone becomes positive while the bias of NOy decreases. The
results of the individual simulations were similar for the height of the PBL but
there is a strong inter-model variability for NO and NOs. This suggests that there
are significant differences in the magnitude (and hourly profile) of anthropogenic
emissions associated with the traffic sector between models;

3. During the day (from 10h to 17h): this phase is related to the active period of pho-
tochemistry, with a high PBL up to about 2 km. During this period, the bias of
ozone is positive and that of NOs is weak. Individual simulations predict daily ozone
maxima with high variability, while PBL heights and low NOx concentrations are
similar. This suggests that ozone production is different, hence the ratios of NOx
to volatile organic compounds between models, which are related to anthropogenic
and biogenic emissions;

4. In the evening (from 17h to 21h): this phase is linked to the evening traffic peak
and the transition from day to night, with a decreasing PBL height. As for the
morning phase, there is an underestimation of ozone and an overestimation of NOq,
but it is the phase with the largest biases. In addition, there is high inter-model
variability of NO and NOs, indicating large differences in emissions from the traf-
fic sector.

In conclusion, our regional model ensemble shows an underestimation of ozone at
night and an overestimation during the day. This section indicates that anthropogenic
emissions are linked to the biases of each diurnal phase, particularly in the morning and
afternoon, and their treatment seems to be one of the keys to improving the models.

6.2 Air quality alerts

This section analyzes the performance of the median of the regional model ensem-
ble in terms of ozone and PMs 5 alerts. The WHO air quality standards are based on
the maximum daily average for 8 hours (MDAS) for the concentration of ozone, and on
the daily average for the concentration of PMs 5. We use the WHO standards, i.e. thresh-
old of concentration, of 50 ppb for ozone and of 25 ng.m=3 for PMy 5 (guidelines used
before 2021). If the WHO threshold is exceeded during a day, then there is an alert. There
are therefore four cases for each day:

« Case A: an alert is observed and modeled;

« Case B: an alert is observed and not modeled;

e Case C: an alert is neither observed nor modeled;
e Case D: an alert is not observed but modeled.

Moreover, in order to quantify the performance of MMM predictions, the probability of
detection (POD) and the false alarm rate (FAR) are calculated following Brasseur and
Jacob (2017) such that:

POD = N(CaseA)/N(CaseA + B) (3)

FAR = N(CaseD)/N(CaseA + D) (4)
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We compare the number of alerts and non-alerts between observations and the MMM
(Fig. 11).

Sao Paulo center
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Figure 11. Modeled and observed MDAS ozone concentrations (a, ¢ and e) and PMs.5 con-
centrations (b, d and f) for the three periods. The thresholds defined by the WHO standards are

represented by the horizontal red dotted lines.

The median of the regional model ensemble shows good performance for ozone and

poor performance for PMs 5 due to its constant overestimation. The number of alerts

is well predicted for ozone, even for the second period which is predicted without any
alert while one was observed (close to the threshold). The first and third periods have
low FAR and maximum POD for ozone concentration. For PMs 5, the overestimation

is of the order of 10 pg.m~3 for the three periods, which implies that there is too often
an alert for the three periods. Alerts associated with days of biomass burning pollution
events are less well reproduced (cf. Sect. 4.3).

In conclusion, the performance of the regional model ensemble is promising for the
development of the air quality warning forecast system, in terms of alerting the popu-
lation as the quality is good for ozone and for PM5 5 on condition of improving the fore-
cast of pollution due to biomass burning.

7 Conclusions

This study addresses the development of an air quality forecasting system based
on a regional model ensemble for the megacity of Sao Paulo. We compare the results of
regional air quality models carried out by four institutes, over three 15-day periods that
include particular air pollution events. We focus on the heavily urbanized area, where
we expect anthropogenic emissions to be dominant. We show that the median of the re-

—24—



794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

gional model ensemble, even with the low number of models we considered, performs well
for ozone (better than compared to the global forecasts made at NCAR and ECMWF),
although the performance for NOx is poor due to the large inter-model variability.

Our results suggest that the treatment of anthropogenic emissions is an important
factor in explaining the variability of modeled NO and NO, concentrations. There is a
strong overestimation of the level of oxidant (defined as Ox = O3 + NOy) in the metropoli-
tan area of Sdo Paulo compared to the surrounding localities. The transition from day
to night is particularly biased, which could be linked to the absence of urban heat ef-
fect. The overestimation of NO5 concentration made by all models in the evening should
be reduced with increased PBL height taking into account this effect. A study focusing
on the drivers of the level of oxidant in the PBL of megacities is particularly needed to
understand the sensitivity related to anthropogenic and biogenic emissions, urban dy-
namics, chemistry, deposition, or radiation.

Nevertheless, many other factors influence the performance of the regional model
ensemble. For example, the model configurations for the size domain and the horizon-
tal resolution were not constrained for this study. This choice is limited by available com-
puting time. On the one hand, the finest possible resolution is desired for the center of
Sao Paulo. On the other hand, a vast area integrating the different sources of pollutants
such as agricultural fires which are important on a regional scale is needed. For most of
the pollutants considered, the score of the median of the regional model ensemble is the
best because it seems to benefit of the different model configurations.

The use of more sophisticated chemical schemes or aerosol schemes, which would
cost more computation time, may not be the priority because the modeled biases are mostly
associated with primary emissions. Indeed, our results demonstrated the importance of
biomass burning pollution events occurring at the regional scale for the air quality of Sao
Paulo, as well as the difficulty for the model to represent these events. The use of satel-
lite information and its integration, in particular through data assimilation techniques,
should improve the forecasting of these events in Sao Paulo. In perspective, a similar study
on the composition of aerosols, and related to the meteorological systems, to the removal
processes and to the radiative balance would be interesting in addition to this study.
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Appendix A Supplemental Material

a) Daily average using classes 2, 3 and 4 b) Daily average using classes 3 and 4

NO (ppb)
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c) Averaged diurnal cycle using classes 2, 3 and 4 d) Averaged diurnal cycle using classes 3 and 4
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Figure Al. Time series of the average daily diurnal cycle (top) and of the average daily
hourly cycle (bottom) of the NO concentration for the year 2019. The stations are selected ac-
cording to a classification of their spatial scale of representativeness, 1 being the microscale and
5 being the background. Concentrations are calculated from the average of all the stations (’Sta-
tions mean’, gray line), from the average of the selected stations from the classification (’selected
stations’, black line) for classes 2, 3 and 4 (left) and for classes 3 and 4 (right), from an inter-
polation of the selected stations weighted by the distance between the station and the center of
Sdo Paulo (’City center DWT’, green line), and for the concentration at the background station
(’background’, red line). The color shadings (bottom) represent the standard deviation of hourly

concentrations over the year.
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Figure A2.
modeled in Sdo Paulo for the three selected 15-day periods of the year 2019. The models include

Time series of hourly relative humidity (RH) and wind speed (WS) observed and

data from a regional model ensemble of five simulations (colored lines) with the Multi-Model
Median (red line).
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Figure A3. Time series of hourly wind direction (degree) and PBL height (m) observed and
modeled in Sdo Paulo for the three selected 15-day periods of the year 2019. The models include

data from a regional model ensemble of five simulations (colored lines) with the Multi-Model

Median (red line).
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Figure A4. Time series of hourly concentrations of PMio (a, ¢ and e) and PMa.s/PMio (b, d
and f) observed and modeled in Campinas for the three selected 15-day periods of the year 2019.
The models include data from the two global forecasts (yellow stars and green squares) and a re-
gional model ensemble of five simulations (colored lines) with the Multi-Model Median (red line).
PMs .5 /PMo ratios are not presented for the global forecasts.
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Figure A5. Time series of hourly concentrations of CO (a, ¢ and e) and PMa5 (b, d and f)
observed and modeled in Campinas for the three selected 15-day periods of the year 2019. The
models include data from two global forecasts (yellow stars and green squares) and a regional
model ensemble of five simulations (colored lines) with the Multi-Model Median (red line).
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Figure A6. Time series of hourly concentrations of NOz (a, ¢ and e) and SOz (b, d and f)
observed and modeled in Santos for the three selected 15-day periods of the year 2019. The mod-
els include data from two global forecasts (yellow stars and green squares) and a regional model

ensemble of five simulations (colored lines) with the Multi-Model Median (red line).
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Figure AT7. Time series of hourly concentrations of ozone (a, ¢ and e) and ozidant (b, d and

f) observed and modeled in Campinas for the three selected 15-day periods of the year 2019. The
models include data from two global forecasts (yellow stars and green squares) and a regional

model ensemble of five simulations (colored lines) with the Multi-Model Median (red line).
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Time series of hourly concentrations of ozone (a, ¢ and e) and ozidant (b, d and

f) observed and modeled in Santos for the three selected 15-day periods of the year 2019. The

models include data from two global forecasts (yellow stars and green squares) and a regional

model ensemble of five simulations (colored lines) with the Multi-Model Median (red line).
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Figure A9. Pollution roses obtained from the hourly occurrence of the observed and modeled

wind direction by direction sector (in %) using 16 sectors, for the three selected 15-day periods
of the year 2019. FEach pollution rose shows the predominant direction of the pollution transport.

For each wind direction sector, the distribution of O3 concentrations is given separated into four
concentration ranges (color code).
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Figure A10. Average diurnal cycles of hourly concentrations of NO (a,c and e) and NO2
(b,d and f) observed and modeled in Sdo Paulo over the three selected 15-day periods of the year
2019. The models include data from two global forecasts (yellow stars and green squares) and

a regional model ensemble of five simulations (colored lines) with the Multi-Model Median (red
line). The modeled planetary boundary layer heights (PBLH) are the green dashed lines with col-
ored dots corresponding to the models. The gray shadings correspond to the standard deviation of

the observed hourly data.
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Figure A1ll. Time series of hourly bias (difference in modeled and observed concentration) of
the Multi-Model Median for NO, NO2 and NOz (a, ¢ and e) and their associated average diurnal
cycles (b, d and f) in Sao Paulo for the three selected 15-day periods of the year 2019. The Multi-
Model Median is calculated from a regional model ensemble of four simulations. The black boxes

mark the morning and evening hours.
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