Deep long-period earthquakes at Akutan Volcano are more directly related to magmatic processes than volcano-tectonic earthquakes

Zilin Song¹, Yen Joe Tan², and Diana C. Roman³

¹Chinese University of Hong Kong ²The Chinese University of Hong Kong ³Carnegie Institution of Washington

December 7, 2022

Abstract

Both volcano-tectonic (VTs) and deep long-period earthquakes (DLPs) have been documented at Akutan Volcano, Alaska and may reflect different active processes. In this study, we perform high-resolution earthquake detection, classification, and relocation using seismic data from 2005-2017 to investigate their relationship with underlying magmatic processes. We find that the 2,787 VTs and 787 DLPs are concentrated above and below the shallow magma reservoir respectively. The DLPs' low-frequency content is likely a source instead of path effect considering its uniformity across stations. Both VT and DLP swarms occur preferentially during inflation episodes with no clear migration. However, the largest VT swarms occur during non-inflating periods, and only VT swarms contain repeating events. Therefore, we conclude that the VTs represent fault rupture triggered by magma/fluid movement or larger earthquakes, while the DLPs are directly related to unsteady magma movement through a complex pathway or represent slow fault ruptures triggered by magma movement.

Deep long-period earthquakes at Akutan Volcano are more directly related to magmatic processes than volcano-tectonic earthquakes

Zilin SONG¹, Yen Joe TAN¹, Diana C. Roman²

 $^{1}\mathrm{Earth}$ and Atmospheric Sciences, The Chinese University of Hong Kong, Hong Kong, China $^{2}\mathrm{Earth}$ and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA

Key Points:

1

2

3

4

5

7

8	•	Akutan deep long-period earthquakes are likely due to source instead of just path
9		or station site effects.
10	•	Both deep long-period and volcano-tectonic earthquake swarms occur preferen-
11		tially during inflation episodes with no clear migration.
12	•	Moment release of deep long-period earthquake swarms is more strongly correlated
13		with inflation episodes than volcano-tectonic earthquakes.

Corresponding author: Yen Joe TAN, $\verb"yjtan@cuhk.edu.hk"$

14 Abstract

Both volcano-tectonic (VTs) and deep long-period earthquakes (DLPs) have been doc-15 umented at Akutan Volcano, Alaska and may reflect different active processes. In this 16 study, we perform high-resolution earthquake detection, classification, and relocation us-17 ing seismic data from 2005-2017 to investigate their relationship with underlying mag-18 matic processes. We find that the 2,787 VTs and 787 DLPs are concentrated above and 19 below the shallow magma reservoir respectively. The DLPs' low-frequency content is likely 20 a source instead of path effect considering its uniformity across stations. Both VT and 21 DLP swarms occur preferentially during inflation episodes with no clear migration. How-22 ever, the largest VT swarms occur during non-inflating periods, and only VT swarms 23 contain repeating events. Therefore, we conclude that the VTs represent fault rupture 24 triggered by magma/fluid movement or larger earthquakes, while the DLPs are directly 25 related to unsteady magma movement through a complex pathway or represent slow fault 26 ruptures triggered by magma movement. 27

²⁸ Plain Language Summary

Volcano eruption forecasting is a challenging task that often requires the decipher-29 ing of processes underlying observed signs of volcanic unrest. As seismometers become 30 common monitoring sensors on volcanoes, the recorded ground motion is valuable for 31 scientists to study eruption precursors. Earthquakes are commonly observed and gen-32 33 erally inferred to be associated with stress perturbations in the shallow crust. However, earthquakes with predominantly lower-frequency energy are sometimes observed at depth 34 and their origin is enigmatic. In this paper, we use the existing catalog of earthquakes 35 at Akutan Volcano in Alaska between 2005-2017 as templates to successfully detect more 36 earthquakes before locating them with higher precision. We find that the earthquakes 37 tend to occur in bursts and during times when surface inflation was also detected due 38 to ascending magma. However, only the sizes of the earthquakes with lower-frequency 39 energy are strongly correlated with surface inflation. Their waveform characteristics also 40 suggest their underlying source mechanism is different from regular earthquakes. There-41 fore, we conclude that these lower-frequency earthquakes are related to unsteady magma 42 movement through a complex pathway unlike regular earthquakes which represent sud-43 den fault movements. 44

45 **1** Introduction

Seismometers are the most commonly deployed monitoring sensors on volcanoes 46 (Saccorotti & Lokmer, 2021) as exemplified by the seismic networks maintained by the 47 Hawaiian (Nakata & Okubo, 2010) and Alaska (Power et al., 2013) volcano observato-48 ries. Over the years, development in volcano seismology has given rise to several successes 49 in eruption forecasting. Recent examples include the 1991 Pinatubo (Harlow et al., 1996) 50 and 2000 Hekla eruptions (Einarsson, 2018) which were successfully forecasted based on 51 precursory increases in seismicity rate. However, seismic anomalies prior to eruptions 52 are not always observed, limiting our forecasting ability. For instance, only 30% of re-53 cent eruptions among Alaskan volcanoes have statistically significant precursory increase 54 in seismicity rate (Pesicek et al., 2018). Cameron et al. (2018) also found that between 55 1989-2017, Alaska Volcano Observatory's (AVO) forecasting success rate for certain types 56 of volcanoes e.g. those with short repose time (<15 years) or small eruption size (Vol-57 canic Explosivity Index of 2 or less) is < 20%. Therefore, further advances in our under-58 standing of how seismic activity evolves through eruption cycles and relate to various 59 volcanic and magmatic processes at different volcanoes are crucial for improving our abil-60 ity to forecast eruptions (Thelen et al., 2022). 61

Earthquake occurrence are often clustered in space and time. The most common
 clustering are mainshock-aftershock sequences where the largest magnitude earthquake

(i.e. mainshock) is followed by decaying numbers of smaller earthquakes nearby (i.e. af-64 tershocks), with the magnitude difference between the mainshock and the largest after-65 shock being ~ 1.2 on average (Båth, 1965). Mainshock-aftershock sequences are gen-66 erally thought to reflect a cascade of inter-event stress triggering (Marsan & Lengliné, 67 2008). Another type of clustering, where a burst of seismic activity is not associated with 68 a clear mainshock, is commonly termed swarms (Mogi, 1963; Roland & McGuire, 2009). 69 Swarms occurring on plate boundary fault systems are often inferred to indicate fluid 70 diffusion in heterogeneous structures (Nishikawa & Ide, 2017; Ross & Cochran, 2021) or 71 aseismic slip in low coupling regions (Nishikawa & Ide, 2018; Peng et al., 2021). In com-72 parison, swarms in volcanic or geothermal regions are often inferred to be related to mi-73 gration of magma (Power et al., 1998; Hensch et al., 2008) or hydrothermal fluids (Shelly 74 et al., 2013), though these interpretations can be non-unique. In addition, while the pro-75 portion of swarms versus mainshock-aftershock sequences is thought to be higher in vol-76 canic compared to non-volcanic regions (Benoit & McNutt, 1996), this is still under de-77 bate (Vidale et al., 2006; Traversa & Grasso, 2010; Garza-Giron et al., 2018). Therefore, 78 it remains challenging to interpret the physical mechanism underlying bursts of seismic 79 activity at volcanic regions. 80

Earthquakes recorded at volcanic regions that are rich in high-frequency content 81 are usually referred to as volcano-tectonic events (VTs). VTs are commonly observed 82 in the shallow crust (e.g. Matoza et al. (2014)) and considered to be related to stress per-83 turbation from processes such as shear failures in volcanic edifice (Chouet & Matoza, 2013) 84 or dike propagation (Roman & Cashman, 2006). In contrast, earthquakes that predom-85 inantly radiate low-frequency (1-5 Hz) energy are sometimes found at mid- to lower-crustal 86 depths (Power et al., 2004; Kurihara & Obara, 2021) and are known as deep long-period 87 events (DLPs). DLPs are characterized by emergent phase arrivals which make them hard 88 to detect using traditional earthquake detection methods (Pitt, 2002). Therefore, even 89 though it has been observed that eruptions, steam emission and summit inflation are some-90 times preceded by DLPs which points to their potential as eruption precursors (R. A. White, 91 1996; Power et al., 2013), these events are not well studied. Various source mechanisms 92 for DLPs have been proposed, and generally fall into two categories: 1) DLPs are gen-93 erated near stalled magma e.g. due to thermal stress from magma cooling (Aso & Tsai, 94 2014) or volatile release from second boiling (Wech et al., 2020); 2) DLPs are generated 95 where there is unsteady fluid movement e.g. due to intermittent magma flow (Ukawa & 96 Ohtake, 1987), melt degassing (Melnik et al., 2020) or resonance in fluid-filled cracks (Bean 97 et al., 2014). Nevertheless, sometimes it is difficult to even ascertain whether the observed 98 waveform characteristics of DLPs are due to source or path effects (Saccorotti & Lok-99 mer, 2021). Deciphering the physical processes underlying DLPs will improve their util-100 ity for volcano monitoring purposes. 101

Akutan Volcano is one of the most active volcanoes in the Aleutian Arc with at 102 least 27 eruptive episodes reported since 1790 (Miller et al., 1998; Lu & Dzurisin, 2014). 103 A network of 14 seismometers has been deployed around the volcano since 1996 and both 104 VTs and DLPs have been documented (Power et al., 2004). In addition, based on both 105 Interferometric Synthetic Aperture Radar (InSAR) (Lu et al., 2000; Wang et al., 2018) 106 and local Global Positioning System (GPS) (Ji & Herring, 2011; Ji et al., 2017) obser-107 vations, a magma reservoir is inferred to be located at ~ 8 km depth with inflation episodes 108 every 2-3 years between 2002-2017. Therefore, Akutan Volcano is a promising site to in-109 vestigate the characteristics of DLPs and VTs and their relationship to magmatic pro-110 cesses. In this paper, we analyze 12 years of continuous waveform data at Akutan Vol-111 cano to detect and locate VTs and DLPs using cross-correlation-based template match-112 ing (Gibbons & Ringdal, 2006) and double-difference relocation (Waldhauser & Ellsworth, 113 2000). We then characterize their spatiotemporal clustering properties and how their ac-114 tivities relate with the inflation episodes, as well as investigate the underlying cause for 115 the waveform characteristics of DLPs. 116

¹¹⁷ 2 Matched filter detection, magnitude estimation, and relocation

Between November 2005 and December 2017, continuous waveform data from 14 118 stations (Fig. 1a) are available from the Incorporated Research Institution for Seismol-119 ogy Data Management Center (IRIS DMC), whereas between 2002-2005, 1-minute event 120 waveforms are available (Alaska Volcano Observatory/USGS, 1988). Therefore, we ob-121 tain waveforms of 1785 events from 2002-2017 in the unified catalog of earthquakes pro-122 duced by the AVO (Power et al., 2019) falling in the region of $[(53.9^\circ, -166.5^\circ), (54.5^\circ), (54.5^\circ),$ 123 -166.5°), (53.9°, -165.9°), (54.5°, -165.9°)] (Fig. 1). All waveforms are resampled to 50 Hz 124 125 and bandpass filtered 1-15 Hz, and only those with signal-to-noise ratio (SNR) above 2 are retained for further analysis. 126

We apply EQcorrscan, an open-source python package, to perform matched filter 127 detection (Chamberlain et al., 2017). By cross-correlating waveforms of template events 128 with continuous waveforms across the seismic network, detections are declared when the 129 sum of normalized cross-correlations (NCC) exceeds a certain threshold. We use 1,510 130 events with distinct (SNR>2) P arrival on the vertical channel or S arrival on the hor-131 izontal channel of more than 4 stations as templates. Template waveforms start from 1s 132 before P/S arrivals and have lengths of 7 s. Each template is used to scan through con-133 tinuous data from 2005-2017 (Fig. S1). To improve the stability of the detection pro-134 cess, we split the continuous waveforms into hourly segments with 30 s overlaps and re-135 move traces with excessive gaps or spikes before the template matching process (Warren-136 Smith et al., 2017). 137

We use 10 times median absolute deviation (MAD) as a conservative threshold for 138 declaring a detection following Hotovec-Ellis et al. (2018). Since the matched filter de-139 tection method mainly detects events with similar waveforms as the templates, our de-140 tections can be limited by the available initial catalog of templates. To quantify this ef-141 fect, we check whether each of our 1278 templates between 2005-2017 was detected from 142 continuous waveforms by any other templates using EQ corrscan. We find that 99.61%143 of the templates were successfully detected by another template which suggests that the 144 method can detect unique events reasonably well. We further manually inspect new de-145 tections' waveforms and remove detections with average network NCC that is less than 146 0.4 to remove false detections. Finally, for detections with origin time difference of less 147 than 2 s, the ones with the lowest NCC values are removed to avoid duplicate (van Wijk 148 et al., 2021). We end up with 2,077 newly-detected events. 149

150

151

For newly-detected events, we estimate their local magnitudes as follow:

 $M_{detection} = M_{template} + c * log(\alpha) \tag{1}$

where α is the amplitude ratio between detected and template events while c is a constant that scales the amplitude-magnitude difference and is approximately 1 (Fig. S2) (Schaff, 2008; Shelly et al., 2016). We measure α using principal component analysis on 7s long waveforms and use the median α value from paired waveforms across all the available stations. The magnitude of completeness (M_c) improved from M_L 0.1 to M_L -0.3 (Fig. S3) when estimated using the maximum curvature method (Wiemer & Wyss, 2000).

We then relocate both the catalog (Power et al., 2019) and newly detected events 158 using the HypoDD double-difference method (Waldhauser & Ellsworth, 2000). Newly 159 detected events are assumed to be co-located with their templates as initial input to Hy-160 poDD. We calculate pick-derived differential arrival times for all event pairs within 10 161 km of each other with at least 6 observations. For event pairs with distance less than 162 5 km, we derive cross-correlation-derived differential arrival times at each station when 163 NCC value of the waveforms is larger than 0.7. The window begins 0.5 s before and con-164 tinue for 1.5 s and 2 s after the P and S-wave arrivals, respectively. We successfully re-165 locate 3,144 events using a 3D velocity model from Syracuse et al. (2015) between Novem-166 ber 2005 and December 2017 (Fig. 1c). We then perform bootstrapping by repeatedly 167

relocating 100 random events using singular value decomposition mode to estimate their location uncertainties (Waldhauser & Ellsworth, 2000). On average, we find that the relative horizontal and vertical location uncertainties are 0.75 km and 1.07 km respectively.

¹⁷¹ **3 Earthquake classification**

176

208

The long-period (LP) and VT events in the AVO catalog have been manually classified (Power et al., 2019), but manual classifications are subjective and can be inconsistent (Matoza et al., 2014). Therefore, we reclassify all events systematically using the frequency index (FI) following Buurman and West (2010):

$$FI = \log_{10} \left(\overline{A}_{upper} / \overline{A}_{lower} \right) \tag{2}$$

where \overline{A}_{upper} and \overline{A}_{lower} represent mean spectral amplitudes in the higher and lower fre-177 quency bands respectively. For each event, we calculate the power spectral density spec-178 trum of its vertical component seismograms with a 7 s time window starting from 1 s 179 before the P picks, after correcting for instrument response. When P pick is unavailable 180 from the catalog, we use the predicted arrival time derived from the event location and 181 1-D velocity model (Power et al., 2019). We first calculate FI at each station using 10-182 15 Hz and 1-5 Hz as the A_{upper} and A_{lower} respectively, since we find that these frequency 183 bands allow the FI to most effectively differentiate the VTs and DLPs (Fig. S4). The 184 median FI across all available stations is then assigned to each event as their final FI value. 185

Figure 1b shows the FI distribution of earthquakes in the AVO catalog, color-coded 186 by their manual labels (Power et al., 2019). There is a clear bimodal distribution and 187 near the boundary, manual labels can be inconsistent i.e. events with the same FI val-188 ues can have different labels. We select FI of -1.6 as the classification boundary, hence 189 259 events with FI lower than -1.6 are classified as LP while the remaining events are 190 classified as VT. Newly detected events are classified into the same category as their tem-191 plates. Overall, 561 newly detected events are LPs which is 2 times more than the num-192 ber of LP templates. In comparison, 1,516 newly detected events are VTs which is sim-193 ilar to the number of VT templates. The larger number of new detection relative to the 194 available templates for LP events may reflect AVO's current event detection system be-195 ing less well-optimized for detecting LP events. 196

Combined with earthquake spatial distributions (Fig. 1c), we observe that 1) most VTs are located beneath the caldera and above the inferred magma reservoir (DeGrandpre et al., 2017); 2) there are some VTs located to the west of the caldera that extend down to 30 km depth; 3) most LPs are located below the inferred magma reservoir in a region with low P wave velocity (Syracuse et al., 2015). We refer to these LPs below the shallow magma reservoir as DLPs.

²⁰³ 4 Earthquake clusters and moment release

We cluster the LP and VT events above M_c separately following Mogi (1963)'s algorithm which takes into account 1) the total number of events in a sequence (E_T) , and 2) the empirical relation between maximum number of daily events (N_d) and duration of sequence in days (T):

$$N_d > 2 \times \sqrt{T} \tag{3}$$

We use E_T of 10 as the minimum threshold to define a cluster and iterate through T values from 0.5 to 5. For each cluster, we calculate the distance between each clustered earthquake and the largest one. Events located further than 3 times standard deviation from the largest earthquake are regarded as outliers and removed. To improve clustering results, absolute locations are also used for earthquakes that are not successfully relocated (Fig. S5). We finally obtain 8 DLP and 34 VT clusters (Fig. 2c) and further classify each cluster as a swarm when 1) the magnitude difference between the largest magnitude event and the following second largest events is less than 1, and 2) the occurrence time of the
largest event is near/after the middle of the sequence. We find that all DLP and VT clusters fulfill these criteria and are classified as swarms (Fig. S6). There are no mainshockaftershock sequences detected.

For each swarm, we estimate its cumulative moment release. The seismic moment (M_0) of each event is calculated as

$$M_0 = 10^{1.5*M_w + 9.105} \tag{4}$$

where M_w represents an earthquake's moment magnitude. We obtain each event's M_w by converting their M_L following $M_w = M_L$ for $M_L > 3$ events (Kanamori & Brodsky, 2004) and $M_w = 2/3 * M_L + 1$ for $M_L \leq 3$ events (Munafò et al., 2016), which accounts for the expected change in scaling between M_L and M_w for smaller earthquakes (Deichmann, 2017). Cumulative moment release of a swarm is the sum of M_0 for all the involved earthquakes.

²²⁹ 5 Discussion

222

230

5.1 Dominant frequency content of DLPs

As the VTs and DLPs predominantly located in different regions (Fig. 1c), the dif-231 ference in their dominant frequency content could be a result of differences in wave prop-232 agation path with different attenuation effect. Firstly, we investigate whether the lower 233 frequency content of DLPs can be a path effect due to the overlying low velocity regions 234 (Fig. S7a) with the presence of melt or extensive fracturing (Coté et al., 2010; Bean et 235 al., 2014; Clarke et al., 2021). We calculate the FI values of DLPs recorded at the MTBL 236 station which is located ~ 50 km west of Akutan Volcano (Fig. 1a). We find that their 237 FI values remain low (Fig. 3a) and similar to the FI values measured using waveforms 238 recorded on the local stations (Fig. 1b). In comparison, deep VTs located a few kilo-239 meters west of the DLP zone recorded on the MTBL station all have higher FI values 240 (Fig. 3a-b) despite having similar travel paths (Fig. S7a). Therefore, we conclude that 241 the lower frequency content of DLPs at Akutan Volcano is not only a path effect due to 242 the overlying structure. 243

Subsequently, we investigate whether the lower frequency content of DLPs is a path 244 effect due to attenuation in their source region (Fig. S7b). In this case, there should not 245 be any VT events in the DLP source region. However, while they do not occur in large 246 numbers, we manage to identify ~ 60 deep VT events within the DLP source region (Fig. 247 3b-c, S8). Time differences between P and S arrivals of the deep VTs are similar to those 248 of deep LPs and significantly larger than those of shallow VTs, indicating that these deep 249 VTs are not mislocated (Fig. 3c, S8). Hence, the lower frequency content of DLPs at 250 Akutan Volcano is unlikely to be only a path effect due to attenuation in their source 251 region. Therefore, we conclude that the lower frequency content of DLPs at Akutan Vol-252 cano is most probably a source effect, though we cannot completely rule out the possi-253 bility of kilometer-scale structural heterogeneity with highly variable attenuation effect 254 around the DLP source region (Fig. S7c). 255

256

5.2 How VT and DLP swarms relate to inflation episodes

Earthquake swarms have been found to sometimes coincide with volcanic inflation e.g. (Ji et al., 2017). Swarms are considered more likely to occur in volcanic regions than mainshock-aftershock sequences due to the presence of hydrothermal fluids or viscous flow, which can reduce rocks' elastic moduli and hence earthquake aftershock productivity (Garza-Giron et al., 2018). This is consistent with our findings at Akutan where all the clustered VTs and DLPs are swarms instead of mainshock-aftershocks. To investigate how VT and DLP relate to magma movements, we analyze temporal correlations

between identified swarms and magma inflation at Akutan. Based on GPS measurement 264 from November 2005 to December 2017, we manually identify 4 inflation episodes, each 265 lasting 5-14 months (Fig. 2), when the inferred Mogi source exhibits a significant vol-266 ume increase (Xue et al., 2020). In total, the inflation episodes span 39 months out of the 145 months that our study period encompasses. We find that 3 (73 DLPs) out of the 268 8 DLP swarms (179 DLPs) and 13 (225 VTs) out of the 34 VT swarms (541 VTs) oc-269 curred during an inflation episode. That means the rate of DLP and VT swarms are 0.92 270 and 4.00 per year (22.46 DLPs/year and 69.23 VTs/year) respectively during the inflat-271 ing periods, which is almost twice the rate of 0.57 and 2.38 per year (12.00 DLPs/year 272 and 35.77 VTs/year) during the non-inflating periods (Fig. 2a). Therefore, both DLP 273 and VT occurrence are strongly correlated with magma inflation. This finding is rela-274 tively robust, since we find that both DLP and VT swarms rates during inflation episodes 275 remain higher than during non-inflating periods even when we do not cluster earthquakes 276 or use E_T of 5 or 15 instead during the clustering process (Fig. S9-10, Table S1). We 277 also find that the proportions of VT and DLP swarms corresponding to surface inflation 278 are both 0.38 even though they are located in different regions (Fig. 1c). In addition, 279 neither VT nor DLP swarms show clear migration from depth with time (Fig. 2c, Fig. 280 S6), which is similar to observations at Makushin Volcano (Lanza et al., 2022). Such event 281 migrations at Akutan should have been resolvable since half of all identified swarms span 282 at least 5 km spatially (Fig. S6) compared to the earthquake location uncertainty of only 283 ~ 1 km. 284

Previous research suggests that cumulative moment release of proximal volcanic 285 earthquake swarms in a single swarm can be used as a proxy for intruded magma vol-286 ume (R. White & McCausland, 2016). If this relationship holds for Akutan Volcano, swarms 287 occurring during inflation episodes should have larger cumulative moment releases com-288 pared to those occurring during non-inflation periods. We find that the two largest DLP 289 swarms in terms of cumulative moment releases indeed occurred during an inflation episode 290 (Fig. 2d). The third DLP swarm that occurred during an inflation episode in 2016 have 291 comparable cumulative moment releases with the two largest DLP swarms that occurred 292 during non-inflation periods. In comparison, the largest VT swarms in terms of cumu-293 lative moment releases do not coincide with inflation episodes (Fig. 2d). We also esti-294 mate the moment release rates of DLP and VT swarms during inflation and non-inflation 295 periods (Fig. 2b). We find that the moment release rates of DLP swarms during infla-296 tion periods is 3.88×10^{13} N·m/year, which is significantly larger than 2.26×10^{12} N·m/year 297 during non-inflation periods. Comparatively, the moment release of VT swarms in in-298 flation periods $(1.21 \times 10^{13} \text{ N} \cdot \text{m/year})$ is only slightly higher than that in non-inflation 299 periods $(1.03 \times 10^{13} \text{ N} \cdot \text{m/year})$. This pattern remains consistent when we use either all 300 the events with magnitude above magnitude completeness or E_T of 5 and 15 instead dur-301 ing the clustering process (Table S2, Fig. S10). Therefore, it appears that although both 302 DLP and VT swarms occur preferentially during inflation episodes, the moment release 303 of DLP swarms is more strongly correlated with magma inflation compared to VT swarms. 304

305

5.3 Physical process underlying VT and DLP swarms

Swarms of VT are commonly inferred to be related to physical processes like dike 306 propagation (Roman & Cashman, 2006), fluid diffusion (Yukutake et al., 2011), and aseis-307 mic slip (Yukutake et al., 2022) based on observations of vertical alignment in earthquake 308 distributions (Roman & Cashman, 2006), earthquake migration speed that gives reason-309 able diffusivity/permeability estimates (Yukutake et al., 2011), and detections of repeat-310 ing earthquakes (Yukutake et al., 2022). In comparison, DLP swarms have been asso-311 312 ciated with magma transport based on their low-frequency energy content, non-doublecouple source moment tensor (Oikawa et al., 2019), and migration path that co-locates 313 with estimated magma movement path (Kurihara et al., 2019) or stalled magma at depth 314 based on observations of stationary, repeating DLPs that correlate with gas emissions 315 (Wech et al., 2020). 316

At Akutan, the VT swarms do not delineate clear planar structures nor show clear 317 migration patterns. Therefore, they are unlikely to represent dike propagation. The VT 318 events are mostly located within regions with high V_p (Fig. 1c) hence regions without 319 pervasive fluids (Yukutake et al., 2015). However, due to the limited spatial resolution 320 of the tomography study (Syracuse et al., 2015), it remains possible that these swarms 321 were triggered by small-scale fluid diffusion (Igarashi et al., 2003; Hatch et al., 2020). In 322 addition, we have identified "repeating" events with highly similar (NCC>0.9) waveforms 323 (Fig. S11) within these swarms, though we could not verify that their rupture areas in-324 deed overlap. Considering that the VT swarms are more likely to occur during inflation 325 episodes, they might reflect fault asperities that were driven to failure due to stress load-326 ing from the underlying inflating magma reservoir. However, since many VT swarms, 327 including the ones with the largest cumulative moment release, occur during non-inflation 328 periods, they are likely also linked to other non-magmatic processes e.g. fluid diffusion 329 (Farrell et al., 2009) or triggering by nearby or far-field large earthquakes (Peng et al., 330 331 2021).

Repeating DLPs are usually interpreted to reflect a repeating, non-destructive source 332 process occurring at the same location, such as rapid pressure changes due to magmatic 333 gas passing through cracks (Brill & Waite, 2019; Wech et al., 2020) or resonance of a fixed 334 geometry fluid-filled crack (Okubo & Wolfe, 2008). However, out of the ~ 600 DLPs at 335 Akutan, we only find one pair with NCC value above 0.9 and these two events have FI 336 of -1.7 which is close to the boundary of -1.6 that we used to separate LP and VT events. 337 Therefore, we conclude that DLPs at Akutan do not reflect a stationary, repeating source 338 process. Considering the DLP swarms, especially the ones with the largest cumulative 339 moment release, are strongly correlated with inflation episodes and their low-frequency 340 content is likely a source effect, we infer that DLPs at Akutan are either directly related 341 to unsteady magma movement through a complex pathway (Kurihara et al., 2019) or 342 represent slow fault ruptures triggered by magma movement (Bean et al., 2014). In this 343 case, the lack of DLP swarms during certain inflation episodes (Fig. 2b) could reflect aseis-344 mic magma movement e.g. magma flow that are too slow to radiate detectable seismic 345 energy (Gualandi et al., 2017). DLP swarms occurring outside of inflation episodes with 346 smaller cumulative moment release (Fig. 2c) could instead represent magma influxes that 347 are too small or too deep to generate surface deformation signal detectable by the ex-348 isting GPS network. 349

6 Conclusions

In conclusion, we detected 2,077 new events at Akutan Volcano by applying tem-351 plate matching on continuous data from 2005-2017. We then systematically classified all 352 events into 2,787 VTs and 767 LPs based on their frequency index. After waveform-based 353 double difference relocation, we find that the VTs and DLPs are primarily distributed 354 above and below the shallow magma reservoir (10 km depth) respectively. The low-frequency 355 content of DLPs is relatively uniform across the seismic network hence is likely a source 356 instead of path or site effect. After clustering both VTs and DLPs based on their interevent 357 time, distance and magnitude, we find that they both only occur as swarms instead of 358 mainshock-aftershock sequences. In addition, while they occur asynchronously with no 359 clear depth migration, both DLP and VT swarms occur preferentially with greater mo-360 ment release during inflation episodes. However, the largest VT swarms in terms of cu-361 mulative moment releases do not coincide with inflation episodes and only VT swarms 362 contain repeating events. Therefore, we infer that the VT swarms likely reflect fault slips 363 triggered by magma inflation, fluid diffusion or larger earthquakes. In contrast, we in-364 fer that the DLP swarms are either directly related to unsteady magma movement through 365 a complex pathway or represent slow fault ruptures triggered by magma movement. 366

³⁶⁷ Open Research

A unified catalog of earthquake hypocenters and magnitudes at Alaska volcanoes during 1989-2018 from Power et al. (2019) is used for this research, which is available at https://doi.org/10.3133/sir20195037. Using IRIS Data Services, waveforms and related metadata from Alaska Volcano Observatory and Alaska Regional Network can be accessed at https://doi.org/10.7914/SN/AK and https://doi.org/10.7914/SN/AV.

373 Acknowledgments

Z. Song and Y.J. Tan are supported by Tan's start-up fund (Grant Number 4053512)
and the Direct Grant for Research (Grant Number 4053483) from the Chinese University of Hong Kong, Hong Kong RGC General Research Fund Grant Number 14300422,
and the Croucher Tak Wah Mak Innovation Award.

378 References

388

389

390

391

408

- Alaska Volcano Observatory/USGS. (1988). Alaska volcano observatory. Interna tional Federation of Digital Seismograph Networks. Retrieved from https://
 www.fdsn.org/networks/detail/AV/ doi: 10.7914/SN/AV
- Aso, N., & Tsai, V. C. (2014). Cooling magma model for deep volcanic long period earthquakes [Journal Article]. Journal of Geophysical Research: Solid
 Earth, 119(11), 8442-8456. Retrieved from https://agupubs.onlinelibrary
 .wiley.com/doi/abs/10.1002/2014JB011180 doi: https://doi.org/10.1002/
 2014JB011180
- Bean, C. J., De Barros, L., Lokmer, I., Métaxian, J.-P., O' Brien, G., & Mur
 - phy, S. (2014). Long-period seismicity in the shallow volcanic edifice formed from slow-rupture earthquakes [Journal Article]. Nature Geoscience, 7(1), 71-75. Retrieved from https://doi.org/10.1038/ngeo2027 doi: 10.1038/ngeo2027
- Benoit, J. P., & McNutt, S. R. (1996). Global volcanic earthquake swarm database
 1979-1989 (Report No. 96-69). Retrieved from http://pubs.er.usgs.gov/
 publication/ofr9669 doi: 10.3133/ofr9669
- Brill, K. A., & Waite, G. P. (2019). Characteristics of repeating long-period seismic events at fuego volcano, january 2012 [Journal Article]. Journal of Geophysical Research: Solid Earth, 124(8), 8644-8659. Retrieved from https://doi.org/ 10.1029/2019JB017902 doi: https://doi.org/10.1029/2019JB017902
- Buurman, H., & West, M. (2010). Seismic precursors to volcanic explosions during
 the 2006 eruption of augustine volcano [Journal Article]. The 2006 Eruption of
 Augustine Volcano, Alaska, 1769.
- Båth, M. (1965). Lateral inhomogeneities of the upper mantle [Journal Article].
 Tectonophysics, 2(6), 483-514.
- Cameron, C. E., Prejean, S. G., Coombs, M. L., Wallace, K. L., Power, J. A., &
 Roman, D. C. (2018). Alaska volcano observatory alert and forecasting time liness: 1989–2017 [Journal Article]. Frontiers in Earth Science, 6. Retrieved
 from https://www.frontiersin.org/article/10.3389/feart.2018.00086
 - from https://www.frontiersin.org/article/10.3389/feart.2018.00086 doi: 10.3389/feart.2018.00086
- Chamberlain, C. J., Hopp, C. J., Boese, C. M., Warren-Smith, E., Chambers,
 D., Chu, S. X., ... Townend, J. (2017). Eqcorrscan: Repeating and
 near-repeating earthquake detection and analysis in python [Journal Article]. Seismological Research Letters, 89(1), 173-181. Retrieved from
- https://doi.org/10.1785/0220170151 doi: 10.1785/0220170151
 Chouet, B. A., & Matoza, R. S. (2013). A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption [Journal Arti-
- cle]. Journal of Volcanology and Geothermal Research, 252, 108-175. Re-
- trieved from https://www.sciencedirect.com/science/article/pii/

418	S0377027312003435 doi: https://doi.org/10.1016/j.jvolgeores.2012.11.013
419	Clarke, J., Adam, L., & van Wijk, K. (2021). Lp or vt signals? how intrinsic
420	attenuation influences volcano seismic signatures constrained by whakaari
421	volcano parameters [Journal Article]. Journal of Volcanology and Geother-
422	mal Research, 107337. Retrieved from https://www.sciencedirect.com/
423	science/article/pii/S0377027321001669 doi: https://doi.org/10.1016/
424	j.jvolgeores.2021.107337
425	Coté, D. M., Belachew, M., Quillen, A. C., Ebinger, C. J., Keir, D., Ayele, A.,
426	& Wright, T. (2010). Low-frequency hybrid earthquakes near a magma
427	chamber in afar: Quantifying path effects [Journal Article]. Bulletin of
428	the Seismological Society of America, 100(5A), 1892-1903. Retrieved from
429	https://doi.org/10.1785/0120090111 doi: 10.1785/0120090111
430	DeGrandpre, K., Wang, T., Lu, Z., & Freymueller, J. T. (2017). Episodic inflation
431	and complex surface deformation of akutan volcano, alaska revealed from gps
432	time-series [Journal Article]. Journal of Volcanology and Geothermal Research,
433	347, 337-359. doi: 10.1016/j.jvolgeores.2017.10.003
434	Deichmann, N. (2017). Theoretical basis for the observed break in ml/mw scaling
435	between small and large earthquakes [Journal Article]. Bulletin of the Seismo-
436	logical Society of America, 107, 505-520.
437	Einarsson, P. (2018). Short-term seismic precursors to icelandic eruptions 1973–2014
438	[Journal Article]. Frontiers in Earth Science, 6, 45.
439	Farrell, J., Husen, S., & Smith, R. B. (2009). Earthquake swarm and b-value
440	characterization of the vellowstone volcano-tectonic system [Journal Arti-
441	cle]. Journal of Volcanology and Geothermal Research, 188(1), 260-276.
442	Retrieved from https://www.sciencedirect.com/science/article/pii/
443	S0377027309003266 doi: https://doi.org/10.1016/j.jvolgeores.2009.08.008
444	Garza-Giron, R., Brodsky, E. E., & Prejean, S. G. (2018). Mainshock-aftershock
445	clustering in volcanic regions [Journal Article]. Geophysical Research Let-
446	ters, 45(3), 1370-1378. Retrieved from https://agupubs.onlinelibrary
447	.wiley.com/doi/abs/10.1002/2017GL075738 doi: https://doi.org/10.1002/
448	2017GL075738
449	Gibbons, S. J., & Ringdal, F. (2006). The detection of low magnitude seismic events
450	using array-based waveform correlation [Journal Article]. Geophysical Journal
451	International, 165(1), 149-166. Retrieved from https://doi.org/10.1111/j
452	.1365-246X.2006.02865.x doi: 10.1111/j.1365-246X.2006.02865.x
453	Gualandi, A., Nichele, C., Serpelloni, E., Chiaraluce, L., Anderlini, L., Latorre,
454	D., Avouac, JP. (2017). Aseismic deformation associated with an
455	earthquake swarm in the northern apennines (italy) [Journal Article]. Geo-
456	physical Research Letters, 44(15), 7706-7714. Retrieved from https://
457	agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073687 doi:
458	https://doi.org/10.1002/2017GL073687
459	Harlow, D. H., Power, J. A., Laguerta, E. P., Ambubuyog, G., White, R. A., &
460	Hoblitt, R. P. (1996). Precursory seismicity and forecasting of the june 15,
461	1991, eruption of mount pinatubo [Journal Article]. Fire and Mud: eruptions
462	and lahars of Mount Pinatubo, Philippines, 223-247.
463	Hatch, R. L., Abercrombie, R. E., Ruhl, C. J., & Smith, K. D. (2020). Evidence
464	of aseismic and fluid-driven processes in a small complex seismic swarm
465	near virginia city, nevada [Journal Article]. Geophysical Research Letters,
466	47(4), e2019GL085477. Retrieved from https://agupubs.onlinelibrary
467	.wiley.com/doi/abs/10.1029/2019GL085477 doi: https://doi.org/10.1029/
468	2019GL085477
469	Hensch, M., Riedel, C., Reinhardt, J., & Dahm, T. (2008). Hypocenter migration
470	of fluid-induced earthquake swarms in the tjörnes fracture zone (north iceland)
471	[Journal Article]. Tectonophysics, 447(1), 80-94. Retrieved from https://
472	www.sciencedirect.com/science/article/pii/S0040195107003770 doi:

473	https://doi.org/10.1016/j.tecto.2006.07.015
474	Hotovec-Ellis, A. J., Shelly, D. R., Hill, D. P., Pitt, A. M., Dawson, P. B., & Chouet,
475	B. A. (2018). Deep fluid pathways beneath mammoth mountain, california,
476	illuminated by migrating earthquake swarms [Journal Article]. $Sci Adv, 4(8)$,
477	eaat5258. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30116785
478	doi: 10.1126/sciadv.aat5258
479	Igarashi, T., Matsuzawa, T., & Hasegawa, A. (2003). Repeating earthquakes and
480	interplate aseismic slip in the northeastern japan subduction zone [Journal Ar-
481	ticle]. Journal of Geophysical Research: Solid Earth, 108(B5). Retrieved
482	from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
483	2002JB001920 doi: https://doi.org/10.1029/2002JB001920
484	Ji, K. H., & Herring, T. A. (2011). Transient signal detection using gps mea-
485	surements: Transient inflation at akutan volcano, alaska, during early 2008
486	[Journal Article]. Geophysical Research Letters, 38(6), n/a-n/a. doi:
487	10.1029/2011gl046904
488	Ji, K. H., Yun, SH., & Rim, H. (2017). Episodic inflation events at akutan vol-
489	cano, alaska, during 2005-2017 [Journa] Article]. Geophysical Research Letters.
405	4/(16) = 8268-8275 doi: 10.1002/2017gl074626
401	Kanamori H & Brodsky E E (2004) The physics of earthquakes [Journal Arti-
491	cle] Reports on Progress in Physics $67(8)$ 1429
492	Kurihara B & Obara K (2021) Spatiotemporal characteristics of relocated deep
493	low-frequency earthquakes beneath 52 volcanic regions in japan over an analy-
494	sis period of 14 years and 9 months [Journal Article] Journal of Geophysical
495	Research: Solid Earth 126(10) e2021.IB022173 Betrieved from https://
490	agunubs onlinelibrary wiley com/doi/abs/10 1029/2021 IB022173 doi:
497	https://doi.org/10.1029/2021.IB022173
490	Kurihara B Obara K Takao A k Tanaka V (2010) Deep low-frequency
499	earthquakes associated with the eruptions of shipmoe-dake in kirishimavolca-
500	noes [Journal Article] Journal of Geonbusical Research: Solid Earth 12/(12)
501	$13079-13095$ Betrieved from https://doi org/10_1029/2019 IB018032 doi:
502	https://doi.org/10.1029/2019.IB018032
505	Lanza F. Roman D. C. Power I. A. Thurber C. H. & Hudson T. (2022). Com-
504	pley magmatic-tectonic interactions during the 2020 makushin volcano, alaska
505	earthquake swarm [Journa] Article] Earth and Planetary Science Letters 587
507	117538. Retrieved from https://www.sciencedirect.com/science/article/
508	pii/S0012821X22001741 doi: https://doi.org/10.1016/i.epsl.2022.117538
509	Lu Z & Dzurisin D (2014) Insar imaging of aleutian volcances [Book Section] In
510	Insar imaging of aleutian volcanoes (p. 87-345). Springer.
511	Lu Z Wicks C Power J A & Dzurisin D (2000) Ground deformation asso-
512	ciated with the march 1996 earthquake swarm at akutan volcano, alaska, re-
512	vealed by satellite radar interferometry [Journa] Article]. Journal of Geophysi-
514	cal Research: Solid Earth, 105(B9), 21483-21495, doi: 10.1029/2000ib900200
514	Marsan D & Lengliné O (2008) Extending earthquakes' reach through cascading
516	[Journal Article]. Science, 319(5866) 1076-1079 Retrieved from https://www
517	science org/doi/abs/10.1126/science.1148783 doi: doi:10.1126/science
518	1148783
510	Matoza R S Shearer P M & Okubo P G (2014) High-precision relocation
520	of long-period events beneath the summit region of kilauea volcano, hawai'i
520	from 1986 to 2009 [Journal Article] Geophysical Research Letters /1(10)
522	$3413-3421$, doi: 10.1002/2014 σ 1059819
522	Melnik O Lyakhovsky V Shaniro N M Galina N & Bergal-Kuwikas O
524	(2020) Deep long period volcanic earthquakes generated by degassing of
525	volatile-rich basaltic magmas [Journal Article] Nat Commun 11(1) 3018
526	Retrieved from https://www.ncbi.nlm.nih.gov/nubmed/32764570 doi:
520	10 1038/s41467-020-17759-4
521	

528	Miller, T. P., McGimsey, R., Richter, D., Riehle, J., Nye, C., Yount, M., & Du-
529	moulin, J. A. (1998). Catalog of the historically active volcanoes of alaska
530	[Book]. United States Department of the Interior, United States Geological
531	Survey.
532	Mogi, K. (1963). Some discussions on aftershocks, foreshocks and earthquake
533	swarms: the fracture of a semi-infinite body caused by an inner stress origin
534	and its relation to the earthquake phenomena (third paper) [Journal Article].
535	= Bulletin of the Earthquake Research Institute, University of Tokyo, $41(3)$,
536	615-658.
537	Munafò, I., Malagnini, L., & Chiaraluce, L. (2016). On the relationship between
538	mw and ml for small earthquakes [Journal Article]. Bulletin of the Seismologi-
539	cal Society of America, 106(5), 2402-2408. Retrieved from https://doi.org/
540	10.1785/0120160130 doi: 10.1785/0120160130
541	Nakata, J. S., & Okubo, P. G. (2010). Hawaiian volcano observatory seismic data,
542	january to march 2009 [Journal Article]. US Geological Survey Open-File Re-
543	port, 1079.
544	Nishikawa, T., & Ide, S. (2017). Detection of earthquake swarms at subduction
545	zones globally: Insights into tectonic controls on swarm activity [Journal
546	Article]. Journal of Geophysical Research: Solid Earth, 122(7), 5325-5343.
547	Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
548	10.1002/2017 JB014188 doi: https://doi.org/10.1002/2017 JB014188
549	Nishikawa, T., & Ide, S. (2018). Recurring slow slip events and earthquake nucle-
550	ation in the source region of the m 7 ibaraki-oki earthquakes revealed by earth-
551	quake swarm and foreshock activity [Journal Article]. Journal of Geophysical
552	Research: Solid Earth, 123(9), 7950-7968. Retrieved from https://doi.org/
553	10.1029/2018JB015642 doi: https://doi.org/10.1029/2018JB015642
554	Oikawa, G., Aso, N., & Nakajima, J. (2019). Focal mechanisms of deep low-
555	frequency earthquakes beneath zao volcano, northeast japan, and rela-
556	tionship to the 2011 tohoku earthquake [Journal Article]. Geophysical
557	Research Letters, $46(13)$, 7361-7370. Retrieved from https://agupubs
558	.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL082577 doi:
559	https://doi.org/10.1029/2019GL082577
560	Okubo, P. G., & Wolfe, C. J. (2008). Swarms of similar long-period earthquakes in
561	the mantle beneath mauna loa volcano [Journal Article]. Journal of Volcanol-
562	ogy and Geothermal Research, 178(4), 787-794. doi: 10.1016/j.jvolgeores.2008
563	.09.007
564	Peng, W., Marsan, D., Chen, K. H., & Pathier, E. (2021). Earthquake swarms in
565	taiwan: A composite declustering method for detection and their spatial char-
566	acteristics [Journal Article]. Earth and Planetary Science Letters, 574, 117160.
567	Retrieved from https://www.sciencedirect.com/science/article/pii/
568	S0012821X21004155 doi: https://doi.org/10.1016/j.epsl.2021.117160
569	Pesicek, J. D., Wellik, J. J., Prejean, S. G., & Ogburn, S. E. (2018). Preva-
570	lence of seismic rate anomalies preceding volcanic eruptions in alaska
571	[Journal Article]. Frontiers in Earth Science, 6(100). Retrieved from
572	https://www.frontiersin.org/article/10.3389/feart.2018.00100 doi:
573	10.3389/feart.2018.00100
574	Pitt, A. M. (2002). Midcrustal, long-period earthquakes beneath northern california
575	voicanic areas [Journal Article].
576	Power, J. A., Friberg, P. A., Haney, M. M., Parker, T., Stihler, S. D., & Dixon,
577	J. P. (2019). A unified catalog of earthquake hypocenters and magni-
578	tuaes at voicanoes in alaska—1989 to 2018 (Report No. 2019-5037). Re-
579	trieved from http://pubs.er.usgs.gov/publication/sir2019503/ doi:
580	10.0100/SII20190001
581	Fower, J. A., Stinler, S. D., Chouet, B. A., Haney, M. M., & Ketner, D. M. (2013).
582	Jeisniic observations of redoubt voicano, alaska — 1989–2010 and a concep-

583	tual model of the redoubt magmatic system [Journal Article]. Journal of
584	Volcanology and Geothermal Research, 259, 31-44. Retrieved from https://
585	www.sciencedirect.com/science/article/pii/S0377027312003009 doi:
586	https://doi.org/10.1016/j.jvolgeores.2012.09.014
587	Power, J. A., Stihler, S. D., White, R. A., & Moran, S. C. (2004). Observations
588	of deep long-period (dlp) seismic events beneath aleutian arc volcanoes:
580	1989–2002 [Journal Article] Journal of Volcanology and Geothermal Research
500	138(3-4) 243-266 doi: 10.1016/j.jvolgeores 2004.07.005
550	Power I A Villesoñer A k Bonz H M (1008) Seismic image of the mount
591	spure magmatic system [Journal Articla] $Bulletin of Valcanalogy 60(1) 27$
592	37 Betrioved from https://doi.org/10.1007/c004450050214_doi: 10.1007/
593	s004450050214 doi: 10.1007/s004450050214 doi: 10.1007/
594	Baland E & McCuine I I (2000) Earthquake grouped on transform faulta I aun
595	nol Article] Coophysical Isournal International 178(3) 1677 1600 Retrieved
596	from https://doi.org/10.1111/j.1265.246X.2000.04214.r. doi: 10.1111/j
597	1100111000000000000000000000000000000
598	1.1303-240 $A.2009.04214$ X
599	Roman, D. C., & Cashman, K. V. (2006). The origin of volcano-tectonic earthquake
600	swarms [Journal Article]. Geology, 34(6), 457-460. Retrieved from https://
601	doi.org/10.1130/G22269.1 doi: 10.1130/g22269.1
602	Ross, Z. E., & Cochran, E. S. (2021). Evidence for latent crustal fluid injection tran-
603	sients in southern california from long-duration earthquake swarms [Journal
604	Article]. Geophysical Research Letters, 48(12), e2021GL092465. Retrieved
605	from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
606	2021GL092465 doi: https://doi.org/10.1029/2021GL092465
607	Saccorotti, G., & Lokmer, I. (2021). Chapter 2 - a review of seismic meth-
608	ods for monitoring and understanding active volcanoes [Book Section].
609	In P. Papale (Ed.), Forecasting and planning for volcanic hazards, risks,
610	and disasters (Vol. 2, p. 25-73). Elsevier. Retrieved from https://
611	www.sciencedirect.com/science/article/pii/B9780128180822000020
612	doi: https://doi.org/10.1016/B978-0-12-818082-2.00002-0
613	Schaff, D. P. (2008). Semiempirical statistics of correlation-detector performance
614	[Journal Article]. Bulletin of the Seismological Society of America, $98(3)$,
615	1495-1507.
616	Shelly, D. R., Ellsworth, W. L., & Hill, D. P. (2016). Fluid-faulting evolution in
617	high definition: Connecting fault structure and frequency-magnitude variations
618	during the 2014 long valley caldera, california, earthquake swarm [Journal
619	Article]. Journal of Geophysical Research: Solid Earth, 121(3), 1776-1795.
620	Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
621	10.1002/2015JB012719 doi: https://doi.org/10.1002/2015JB012719
622	Shelly, D. R., Hill, D. P., Massin, F., Farrell, J., Smith, R. B., & Taira, T. (2013).
623	A fluid-driven earthquake swarm on the margin of the yellowstone caldera
624	[Journal Article]. Journal of Geophysical Research: Solid Earth, 118(9), 4872-
625	4886. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
626	10.1002/jgrb.50362 doi: https://doi.org/10.1002/jgrb.50362
627	Syracuse, E. M., Maceira, M., Zhang, H., & Thurber, C. H. (2015). Seismicity
628	and structure of akutan and makushin volcanoes, alaska, using joint body and
629	surface wave tomography [Journal Article]. Journal of Geophysical Research:
630	Solid Earth, 120(2), 1036-1052. doi: 10.1002/2014jb011616
631	Thelen, W. A., Matoza, R. S., & Hotovec-Ellis, A. J. (2022). Trends in volcano
632	seismology: 2010 to 2020 and beyond [Journal Article]. Bulletin of Volcanol-
633	ogy, 84(3), 26. Retrieved from https://doi.org/10.1007/s00445-022-01530
634	-2 doi: 10.1007/s00445-022-01530-2
635	Traversa, P., & Grasso, JR. (2010). How is volcano seismicity different from tec-
636	tonic seismicity? [Journal Article]. Bulletin of the Seismological Society of
637	America, 100(4), 1755-1769. Retrieved from https://doi.org/10.1785/

638	0120090214 doi: 10.1785/0120090214
639	Ukawa, M., & Ohtake, M. (1987). A monochromatic earthquake suggesting deep-
640	seated magmatic activity beneath the izu-ooshima volcano, japan [Journal
641	Article]. Journal of Geophysical Research: Solid Earth, 92(B12), 12649-12663.
642	van Wijk, K., Chamberlain, C. J., Lecocq, T., & Van Noten, K. (2021). Seismic
643	monitoring of the auckland volcanic field during new zealand's covid-19 lock-
644	down [Journal Article]. Solid Earth, 12(2), 363-373. Retrieved from https://
645	se.copernicus.org/articles/12/363/2021/ doi: 10.5194/se-12-363-2021
646	Vidale, J. E., Boyle, K. L., & Shearer, P. M. (2006). Crustal earthquake bursts
647	in california and japan: Their patterns and relation to volcanoes [Journal
648	Article]. Geophysical Research Letters, 33(20). Retrieved from https://
649	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006GL027723 doi:
650	https://doi.org/10.1029/2006GL027723
651	Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake lo-
652	cation algorithm: Method and application to the northern hayward fault,
653	california [Journal Article]. Bulletin of the Seismological Society of America,
654	90(6), 1353-1368. Retrieved from http://pubs.er.usgs.gov/publication/
655	70022170 doi: 10.1785/0120000006
656	Wang, T., DeGrandpre, K., Lu, Z., & Freymueller, J. T. (2018). Complex surface
657	deformation of akutan volcano, alaska revealed from insar time series [Journal
658	Article]. International Journal of Applied Earth Observation and Geoinforma-
659	tion, 64, 171-180. doi: 10.1016/j.jag.2017.09.001
660	Warren-Smith, E., Chamberlain, C. J., Lamb, S., & Townend, J. (2017). High-
661	precision analysis of an aftershock sequence using matched-filter detection:
662	The 4 may 2015 ml 6 wanaka earthquake, southern alps, new zealand [Journal
663	Article]. Seismological Research Letters, 88(4), 1065-1077.
664	Wech, A. G., Thelen, W. A., & Thomas, A. M. (2020). Deep long-period earth-
665	guakes generated by second boiling beneath mauna kee veleane Hour
005	quakes generated by second boning beneath mauna kea voicano [Jour-
666	nal Article]. Science, 368(6492), 775-779. Retrieved from https://
666 667	nal Article]. Science, 368(6492), 775-779. Retrieved from https:// science.sciencemag.org/content/sci/368/6492/775.full.pdf doi:
666 667 668	nal Article]. Science, 368(6492), 775-779. Retrieved from https:// science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798
666 667 668 669	nal Article]. Science, 368(6492), 775-779. Retrieved from https:// science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new
666 667 668 669 670	 nal Article]. Science, 368(6492), 775-779. Retrieved from https://science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions [Journal Ar-
665 667 668 669 670 671	 nal Article]. Science, 368 (6492), 775-779. Retrieved from https:// science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions [Journal Ar- ticle]. Journal of Volcanology and Geothermal Research, 309, 139-155. Re-
665 667 668 669 670 671 672	 nal Article]. Science, 368 (6492), 775-779. Retrieved from https:// science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions [Journal Ar- ticle]. Journal of Volcanology and Geothermal Research, 309, 139-155. Re- trieved from https://www.sciencedirect.com/science/article/pii/
665 667 668 669 670 671 672 673	 nal Article]. Science, 368 (6492), 775-779. Retrieved from https:// science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions [Journal Ar- ticle]. Journal of Volcanology and Geothermal Research, 309, 139-155. Re- trieved from https://www.sciencedirect.com/science/article/pii/ S0377027315003492 doi: https://doi.org/10.1016/j.jvolgeores.2015.10.020
665 667 668 669 670 671 672 673 674	 nal Article]. Science, 368 (6492), 775-779. Retrieved from https:// science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions [Journal Ar- ticle]. Journal of Volcanology and Geothermal Research, 309, 139-155. Re- trieved from https://www.sciencedirect.com/science/article/pii/ S0377027315003492 doi: https://doi.org/10.1016/j.jvolgeores.2015.10.020 White, R. A. (1996). Precursory deep long-period earthquakes at mount pinatubo:
666 667 668 669 670 671 672 673 674 675	 nal Article]. Science, 368 (6492), 775-779. Retrieved from https:// science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions [Journal Ar- ticle]. Journal of Volcanology and Geothermal Research, 309, 139-155. Re- trieved from https://www.sciencedirect.com/science/article/pii/ S0377027315003492 doi: https://doi.org/10.1016/j.jvolgeores.2015.10.020 White, R. A. (1996). Precursory deep long-period earthquakes at mount pinatubo: Spatio-temporal link to a basalt trigger [Journal Article].
666 667 668 669 670 671 672 673 674 675 676	 nal Article]. Science, 368 (6492), 775-779. Retrieved from https:// science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions [Journal Ar- ticle]. Journal of Volcanology and Geothermal Research, 309, 139-155. Re- trieved from https://www.sciencedirect.com/science/article/pii/ S0377027315003492 doi: https://doi.org/10.1016/j.jvolgeores.2015.10.020 White, R. A. (1996). Precursory deep long-period earthquakes at mount pinatubo: Spatio-temporal link to a basalt trigger [Journal Article]. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earth-
666 667 668 669 670 671 672 673 674 675 676 677	 nal Article]. Science, 368 (6492), 775-779. Retrieved from https:// science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions [Journal Ar- ticle]. Journal of Volcanology and Geothermal Research, 309, 139-155. Re- trieved from https://www.sciencedirect.com/science/article/pii/ S0377027315003492 doi: https://doi.org/10.1016/j.jvolgeores.2015.10.020 White, R. A. (1996). Precursory deep long-period earthquakes at mount pinatubo: Spatio-temporal link to a basalt trigger [Journal Article]. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earth- quake catalogs: Examples from alaska, the western united states, and japan
600 666 667 668 669 670 671 672 673 674 675 675 675 677 678	 nal Article]. Science, 368 (6492), 775-779. Retrieved from https:// science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions [Journal Ar- ticle]. Journal of Volcanology and Geothermal Research, 309, 139-155. Re- trieved from https://www.sciencedirect.com/science/article/pii/ S0377027315003492 doi: https://doi.org/10.1016/j.jvolgeores.2015.10.020 White, R. A. (1996). Precursory deep long-period earthquakes at mount pinatubo: Spatio-temporal link to a basalt trigger [Journal Article]. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earth- quake catalogs: Examples from alaska, the western united states, and japan [Journal Article]. Bulletin of the Seismological Society of America, 90(4),
600 666 667 668 669 670 671 672 673 674 675 676 677 678 679	 nal Article]. Science, 368 (6492), 775-779. Retrieved from https:// science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions [Journal Ar- ticle]. Journal of Volcanology and Geothermal Research, 309, 139-155. Re- trieved from https://www.sciencedirect.com/science/article/pii/ S0377027315003492 doi: https://doi.org/10.1016/j.jvolgeores.2015.10.020 White, R. A. (1996). Precursory deep long-period earthquakes at mount pinatubo: Spatio-temporal link to a basalt trigger [Journal Article]. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earth- quake catalogs: Examples from alaska, the western united states, and japan [Journal Article]. Bulletin of the Seismological Society of America, 90(4), 859-869. Retrieved from https://doi.org/10.1785/0119990114 doi:
600 666 667 668 670 671 672 673 674 675 676 677 678 679 680	 nal Article]. Science, 368 (6492), 775-779. Retrieved from https:// science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions [Journal Ar- ticle]. Journal of Volcanology and Geothermal Research, 309, 139-155. Re- trieved from https://www.sciencedirect.com/science/article/pii/ S0377027315003492 doi: https://doi.org/10.1016/j.jvolgeores.2015.10.020 White, R. A. (1996). Precursory deep long-period earthquakes at mount pinatubo: Spatio-temporal link to a basalt trigger [Journal Article]. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earth- quake catalogs: Examples from alaska, the western united states, and japan [Journal Article]. Bulletin of the Seismological Society of America, 90(4), 859-869. Retrieved from https://doi.org/10.1785/0119990114 doi: 10.1785/0119990114
666 667 668 669 670 671 672 673 674 675 674 675 676 677 678 679 680 681	 nal Article]. Science, 368(6492), 775-779. Retrieved from https://science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions [Journal Article]. Journal of Volcanology and Geothermal Research, 309, 139-155. Retrieved from https://www.sciencedirect.com/science/article/pii/S0377027315003492 doi: https://doi.org/10.1016/j.jvolgeores.2015.10.020 White, R. A. (1996). Precursory deep long-period earthquakes at mount pinatubo: Spatio-temporal link to a basalt trigger [Journal Article]. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: Examples from alaska, the western united states, and japan [Journal Article]. Bulletin of the Seismological Society of America, 90(4), 859-869. Retrieved from https://doi.org/10.1785/0119990114 Xue, X., Freymueller, J., & Lu, Z. (2020). Modeling the posteruptive deformation at
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683	 nal Article]. Science, 368(6492), 775-779. Retrieved from https://science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions [Journal Article]. Journal of Volcanology and Geothermal Research, 309, 139-155. Retrieved from https://www.sciencedirect.com/science/article/pii/S0377027315003492 doi: https://doi.org/10.1016/j.jvolgeores.2015.10.020 White, R. A. (1996). Precursory deep long-period earthquakes at mount pinatubo: Spatio-temporal link to a basalt trigger [Journal Article]. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: Examples from alaska, the western united states, and japan [Journal Article]. Bulletin of the Seismological Society of America, 90(4), 859-869. Retrieved from https://doi.org/10.1785/0119990114 Xue, X., Freymueller, J., & Lu, Z. (2020). Modeling the posteruptive deformation at okmok based on the gps and insar time series: Changes in the shallow magma
666 667 666 667 668 669 670 671 672 673 674 675 675 676 677 678 679 680 681 682 683 683	 nal Article]. Science, 368(6492), 775-779. Retrieved from https:// science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions [Journal Ar- ticle]. Journal of Volcanology and Geothermal Research, 309, 139-155. Re- trieved from https://www.sciencedirect.com/science/article/pii/ S0377027315003492 doi: https://doi.org/10.1016/j.jvolgeores.2015.10.020 White, R. A. (1996). Precursory deep long-period earthquakes at mount pinatubo: Spatio-temporal link to a basalt trigger [Journal Article]. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earth- quake catalogs: Examples from alaska, the western united states, and japan [Journal Article]. Bulletin of the Seismological Society of America, 90(4), 859-869. Retrieved from https://doi.org/10.1785/0119990114 doi: 10.1785/0119990114 Xue, X., Freymueller, J., & Lu, Z. (2020). Modeling the posteruptive deformation at okmok based on the gps and insar time series: Changes in the shallow magma storage system [Journal Article]. Journal of Geophysical Research: Solid Earth,
6003 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684	 nal Article]. Science, 368 (6492), 775-779. Retrieved from https:// science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions [Journal Ar- ticle]. Journal of Volcanology and Geothermal Research, 309, 139-155. Re- trieved from https://www.sciencedirect.com/science/article/pii/ S0377027315003492 doi: https://doi.org/10.1016/j.jvolgeores.2015.10.020 White, R. A. (1996). Precursory deep long-period earthquakes at mount pinatubo: Spatio-temporal link to a basalt trigger [Journal Article]. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earth- quake catalogs: Examples from alaska, the western united states, and japan [Journal Article]. Bulletin of the Seismological Society of America, 90(4), 859-869. Retrieved from https://doi.org/10.1785/0119990114 doi: 10.1785/0119990114 Xue, X., Freymueller, J., & Lu, Z. (2020). Modeling the posteruptive deformation at okmok based on the gps and insar time series: Changes in the shallow magma storage system [Journal Article]. Journal of Geophysical Research: Solid Earth, 125(2). doi: 10.1029/2019jb017801
666 667 666 667 668 669 670 671 672 673 674 675 676 677 678 679 681 682 683 684 685 500	 nal Article]. Science, 368 (6492), 775-779. Retrieved from https:// science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions [Journal Ar- ticle]. Journal of Volcanology and Geothermal Research, 309, 139-155. Re- trieved from https://www.sciencedirect.com/science/article/pii/ S0377027315003492 doi: https://doi.org/10.1016/j.jyolgeores.2015.10.020 White, R. A. (1996). Precursory deep long-period earthquakes at mount pinatubo: Spatio-temporal link to a basalt trigger [Journal Article]. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earth- quake catalogs: Examples from alaska, the western united states, and japan [Journal Article]. Bulletin of the Seismological Society of America, 90(4), 859-869. Retrieved from https://doi.org/10.1785/0119990114 doi: 10.1785/0119990114 Xue, X., Freymueller, J., & Lu, Z. (2020). Modeling the posteruptive deformation at okmok based on the gps and insar time series: Changes in the shallow magma storage system [Journal Article]. Journal of Geophysical Research: Solid Earth, 125(2). doi: 10.1029/2019jb017801 Yukutake, Y., Honda, R., Harada, M., Arai, R., & Matsubara, M. (2015). A magma-
666 667 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685	 nal Article]. Science, 368 (6492), 775-779. Retrieved from https:// science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions [Journal Ar- ticle]. Journal of Volcanology and Geothermal Research, 309, 139-155. Re- trieved from https://www.sciencedirect.com/science/article/pii/ S0377027315003492 doi: https://doi.org/10.1016/j.jyolgeores.2015.10.020 White, R. A. (1996). Precursory deep long-period earthquakes at mount pinatubo: Spatio-temporal link to a basalt trigger [Journal Article]. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earth- quake catalogs: Examples from alaska, the western united states, and japan [Journal Article]. Bulletin of the Seismological Society of America, 90(4), 859-869. Retrieved from https://doi.org/10.1785/0119990114 doi: 10.1785/0119990114 Xue, X., Freymueller, J., & Lu, Z. (2020). Modeling the posteruptive deformation at okmok based on the gps and insar time series: Changes in the shallow magma storage system [Journal Article]. Journal of Geophysical Research: Solid Earth, 125(2). doi: 10.1029/2019jb017801 Yukutake, Y., Honda, R., Harada, M., Arai, R., & Matsubara, M. (2015). A magma- hydrothermal system beneath hakone volcano, central japan, revealed by
666 667 666 667 668 669 670 671 672 673 674 675 676 677 678 680 681 682 683 684 685 686 687 687	 quakes generated by second boining beneath matha act volcalo [5001- nal Article]. Science, 368 (6492), 775-779. Retrieved from https:// science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions [Journal Ar- ticle]. Journal of Volcanology and Geothermal Research, 309, 139-155. Re- trieved from https://www.sciencedirect.com/science/article/pii/ S0377027315003492 doi: https://doi.org/10.1016/j.jvolgeores.2015.10.020 White, R. A. (1996). Precursory deep long-period earthquakes at mount pinatubo: Spatio-temporal link to a basalt trigger [Journal Article]. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earth- quake catalogs: Examples from alaska, the western united states, and japan [Journal Article]. Bulletin of the Seismological Society of America, 90(4), 859-869. Retrieved from https://doi.org/10.1785/0119990114 doi: 10.1785/0119990114 Xue, X., Freymueller, J., & Lu, Z. (2020). Modeling the posteruptive deformation at okmok based on the gps and insar time series: Changes in the shallow magma storage system [Journal Article]. Journal of Geophysical Research: Solid Earth, 125 (2). doi: 10.1029/2019jb017801 Yukutake, Y., Honda, R., Harada, M., Arai, R., & Matsubara, M. (2015). A magma- hydrothermal system beneath hakone volcano, central japan, revealed by highly resolved velocity structures [Journal Article]. Journal of Geophys-
6003 666 667 668 669 670 671 672 673 674 675 676 677 678 680 681 682 683 684 685 686 687 688	 quakes generated by second boing beneath mature kea voicable [50m⁻¹] nal Article]. Science, 368(6492), 775-779. Retrieved from https:// science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions [Journal Ar- ticle]. Journal of Volcanology and Geothermal Research, 309, 139-155. Re- trieved from https://www.sciencedirect.com/science/article/pii/ S0377027315003492 doi: https://doi.org/10.1016/j.jvolgeores.2015.10.020 White, R. A. (1996). Precursory deep long-period earthquakes at mount pinatubo: Spatio-temporal link to a basalt trigger [Journal Article]. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earth- quake catalogs: Examples from alaska, the western united states, and japan [Journal Article]. Bulletin of the Seismological Society of America, 90(4), 859-869. Retrieved from https://doi.org/10.1785/0119990114 doi: 10.1785/0119990114 Xue, X., Freymueller, J., & Lu, Z. (2020). Modeling the posteruptive deformation at okmok based on the gps and insar time series: Changes in the shallow magma storage system [Journal Article]. Journal of Geophysical Research: Solid Earth, 125(2). doi: 10.1029/2019jb017801 Yukutake, Y., Honda, R., Harada, M., Arai, R., & Matsubara, M. (2015). A magma- hydrothermal system beneath hakone volcano, central japan, revealed by highly resolved velocity structures [Journal Article]. Journal of Geophys- ical Research: Solid Earth, 120(5), 3293-3308. Retrieved from https://
6003 6666 667 668 6670 671 672 673 674 675 676 677 678 680 681 682 683 684 685 686 687 688 689	 nal Article]. Science, 368(6492), 775-779. Retrieved from https:// science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions [Journal Ar- ticle]. Journal of Volcanology and Geothermal Research, 309, 139-155. Re- trieved from https://www.sciencedirect.com/science/article/pii/ S0377027315003492 doi: https://doi.org/10.1016/j.jvolgeores.2015.10.020 White, R. A. (1996). Precursory deep long-period earthquakes at mount pinatubo: Spatio-temporal link to a basalt trigger [Journal Article]. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earth- quake catalogs: Examples from alaska, the western united states, and japan [Journal Article]. Bulletin of the Seismological Society of America, 90(4), 859-869. Retrieved from https://doi.org/10.1785/0119990114 doi: 10.1785/0119990114 Xue, X., Freymueller, J., & Lu, Z. (2020). Modeling the posteruptive deformation at okmok based on the gps and insar time series: Changes in the shallow magma storage system [Journal Article]. Journal of Geophysical Research: Solid Earth, 125(2). doi: 10.1029/2019jb017801 Yukutake, Y., Honda, R., Harada, M., Arai, R., & Matsubara, M. (2015). A magma- hydrothermal system beneath hakone volcano, central japan, revealed by highly resolved velocity structures [Journal Article]. Journal of Geophys- ical Research: Solid Earth, 120(5), 3293-3308. Retrieved from https:// agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JB011856 doi:
6003 666 667 668 6670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690	 nal Article]. Science, 368 (6492), 775-779. Retrieved from https:// science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions [Journal Ar- ticle]. Journal of Volcanology and Geothermal Research, 309, 139-155. Re- trieved from https://www.sciencedirect.com/science/article/pii/ S0377027315003492 doi: https://doi.org/10.1016/j.jvolgeores.2015.10.020 White, R. A. (1996). Precursory deep long-period earthquakes at mount pinatubo: Spatio-temporal link to a basalt trigger [Journal Article]. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earth- quake catalogs: Examples from alaska, the western united states, and japan [Journal Article]. Bulletin of the Seismological Society of America, 90(4), 859-869. Retrieved from https://doi.org/10.1785/0119990114 doi: 10.1785/0119990114 Xue, X., Freymueller, J., & Lu, Z. (2020). Modeling the posteruptive deformation at okmok based on the gps and insar time series: Changes in the shallow magma storage system [Journal Article]. Journal of Geophysical Research: Solid Earth, 125(2). doi: 10.1029/2019jb017801 Yukutake, Y., Honda, R., Harada, M., Arai, R., & Matsubara, M. (2015). A magma- hydrothermal system beneath hakone volcano, central japan, revealed by highly resolved velocity structures [Journal Article]. Journal of Geophys- ical Research: Solid Earth, 120(5), 3293-3308. Retrieved from https:// agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JB011856
6003 666 667 668 6670 671 672 673 674 675 676 677 678 679 681 682 683 684 685 686 687 688 689 690 691	 nal Article]. Science, 368 (6492), 775-779. Retrieved from https:// science.sciencemag.org/content/sci/368/6492/775.full.pdf doi: 10.1126/science.aba4798 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions [Journal Ar- ticle]. Journal of Volcanology and Geothermal Research, 309, 139-155. Re- trieved from https://www.sciencedirect.com/science/article/pii/ S0377027315003492 doi: https://doi.org/10.1016/j.jvolgeores.2015.10.020 White, R. A. (1996). Precursory deep long-period earthquakes at mount pinatubo: Spatio-temporal link to a basalt trigger [Journal Article]. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earth- quake catalogs: Examples from alaska, the western united states, and japan [Journal Article]. Bulletin of the Seismological Society of America, 90(4), 859-869. Retrieved from https://doi.org/10.1785/0119990114 doi: 10.1785/0119990114 Xue, X., Freymueller, J., & Lu, Z. (2020). Modeling the posteruptive deformation at okmok based on the gps and insar time series: Changes in the shallow magma storage system [Journal Article]. Journal of Geophysical Research: Solid Earth, 125(2). doi: 10.1029/2019jb017801 Yukutake, Y., Honda, R., Harada, M., Arai, R., & Matsubara, M. (2015). A magma- hydrothermal system beneath hakone volcano, central japan, revealed by highly resolved velocity structures [Journal Article]. Journal of Geophys- ical Research: Solid Earth, 120(5), 3293-3308. Retrieved from https:// agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JB011856 Yukutake, Y., Ito, H., Honda, R., Harada, M., Tanada, T., & Yoshida, A. (2011).

- hypocenters and focal mechanisms in the 2009 activity at hakone volcano, 693 japan [Journal Article]. Journal of Geophysical Research: Solid Earth, 694 116(B4). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/ 695 abs/10.1029/2010JB008036 doi: https://doi.org/10.1029/2010JB008036 696 (2022).Yukutake, Y., Yoshida, K., & Honda, R. Interaction between aseismic 697 slip and fluid invasion in earthquake swarms revealed by dense geodetic 698 and seismic observations [Journal Article]. Journal of Geophysical Re-699 search: Solid Earth, 127(4), e2021JB022933. Retrieved from https:// 700
- roi
 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021JB022933
 doi:

 roi
 https://doi.org/10.1029/2021JB022933
 doi:

Figure 1. Map view of Akutan volcano along with earthquake distribution. (a) Topography of Akutan Island with cross section from A to B showing location of panel c. Squares represent seismometers used in this study with yellow ones highlighting sites with two co-located seismometers. The inset shows the location of Akutan Volcano in Alaska. (b) FI distribution for 2002-2017 earthquakes with dashed line indicating the threshold of -1.6 used to separate different earthquake types in our study. Colors represent different labels assigned by analysts, i.e. light grey represents VTs while red represents LPs. (c) P wave velocity anomalies across Akutan Volcano (Syracuse et al., 2015) overlain by relocated seismicity during 2005-2017. Earthquakes are classified as VTs and LPs using FI which are represented by black and purple dots respectively. Green ellipse marks the deformation source estimated by DeGrandpre et al. (2017).

Figure 2. Properties of earthquake swarms at Akutan Volcano from 2005 to 2017. Average occurrence rates (a) and moment release rates (b) of clustered DLPs and VTs during inflation and non-inflation periods. (c) Temporal evolution of earthquake depths. Purple and gray dots represent DLPs and VTs, respectively. Gray curves represent volume changes of deformation source as calculated by Xue et al. (2020). Shaded areas mark inflation episodes. (d) Cumulative moment release of earthquake swarms. Purple and gray dots are DLP and VT swarms, respectively.

Figure 3. FI analysis on deep VT and DLP earthquakes. (a) FI measured at station MTBL for DLPs and deep VTs to the west of the caldera, with their spatial boundaries outlined by blue and yellow boxes in panel b. (b) Seismicity distribution during 2005-2017 are shown by gray dots. VT detections within the DLP source region are highlighted by black stars. Purple, blue, and yellow dots show locations of DLP, deep and shallow VTs in panel c; (c) Representative waveforms of DLP (purple), deep (blue) and shallow (yellow) VTs recorded by the same local station at vertical and radial channels; black vertical lines indicate phase arrivals.

Supporting Information for "How deep long-period and volcano-tectonic earthquakes relate to magmatic processes at Akutan Volcano"

Zilin SONG¹, Yen Joe TAN¹, Diana C. ROMAN²

 $^1\mathrm{Earth}$ and Atmospheric Sciences, the Chinese University of Hong Kong, Hong Kong, China

 $^2\mathrm{Earth}$ and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA

Contents of this file

Figures S1 to S11

Additional Supporting Information (Files uploaded separately)

Tables S1 to S2

Introduction Auxiliary material contains eleven figures and two table files.

Corresponding author: Yen Joe TAN, Earth and Atmospheric Sciences, The Chinese University of Hong Kong, Hong Kong, China (yjtan@cuhk.edu.hk)

Figure S1. Data availability of stations used for matched filter detections. Red and green lines represent short-period and broad-band seismometers respectively.

Figure S2. The scaling between observed amplitude ratio and catalog magnitude difference for earthquake templates.

Figure S3. Comparison of earthquake catalogs. (a) Cumulative number of earthquakes in the AVO catalog (Power et al., 2019) and our catalog with template matching detections. (b) Magnitude-frequency distribution of earthquakes at Akutan during 2005-2017. Dashed lines show catalog Mc estimated by max-curvature method (Wiemer & Wyss, 2000).

Figure S4. Calibrations for frequency bands selection. Purple and gray lines show stacked spectra for 5 largest LP and VT events during 2005-2017, respectively. The upper and lower frequency bands are highlighted by gray and purple zones.

Figure S5. Earthquake distributions at Akutan from 2005-2017. Relocated hypocenters from HypoDD are represented by grey dots. Absolute hypocenters from AVO catalog for earthquakes that were not successfully relocated are depicted by red dots.

Figure S6. Magnitude-time and depth-time evolution of clustered earthquakes classified as swarms. Purple and black dots represent DLP and VT events respectively.

Figure S7. Illustration of three possible path effects: (a) strongly-attenuating region overlying the DLP sources; (b) strongly attenuating region surrounding DLP sources; (c) highly heterogeneous distribution of strongly-attenuating regions around the DLP sources. Solid and dashed lines represent inferred paths with weaker and stronger attenuation effects respectively.

Figure S8. Sample waveforms for earthquakes at Akutan Volcano. (a) Seismicity distributions during 2005-2017 are shown by gray dots. Blue boundaries highlight the DLP source region. Purple, blue, and yellow dots show locations of DLPs, deep and shallow VTs respectively, with corresponding waveforms at station AKMO shown in panel (b), (c), and (d). Black vertical lines in panel (b), (c) and (d) indicate time of manually picked phase arrivals (Power et al., 2019). Numbers listed in panel (b), (c), and (d) show FI of waveforms.

Figure S9. Magnitude-time evolution of clustered seismicity using E_T thresholds of 5 (a), 10 (b), and 15 (c). Black dots represent VTs while purple dots are DLPs. Shaded regions highlight selected inflation episodes. Gray lines show volume changes of deformation source derived by Xue and Freymueller (2020).

Figure S10. Event rates and moment release rates of clustered DLPs (purple) and VTs (grary) during inflation (I) and non-inflation (N) periods using E_T thresholds of 5 (a, d) and 15 (c, f). In comparison, event rates and moment release rates of all the DLPs and VTs above magnitude completeness are also shown in (c) and (f).

Figure S11. (a) Distribution of seismicity at Akutan are shown by gray dots. Colors are coded by different families of repeating VTs. (b) Sample waveforms in a single repeating VT family at the same local station.