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Abstract

We describe a framework for the simultaneous estimation of model parameters in a partial differential equation using sparse

observations. Monte Carlo Markov Chain (MCMC) sampling is used in a Bayesian framework to estimate posterior probability

distributions for each parameter. We describe the necessary components of this approach and its broad potential for application

in models of unsteady processes. The framework is applied to three case studies, of increasing complexity, from the field

of cohesive sediment transport. We demonstrate that the framework can be used to recover posterior distributions for all

parameters of interest and the results agree well with independent estimates (where available). We also demonstrate how the

framework can be used to compare different model parameterizations and provide information on the covariance between model

parameters.
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Key Points:6
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Abstract13

We describe a framework for the simultaneous estimation of model parameters in a par-14

tial differential equation using sparse observations. Monte Carlo Markov Chain (MCMC)15

sampling is used in a Bayesian framework to estimate posterior probability distributions16

for each parameter. We describe the necessary components of this approach and its broad17

potential for application in models of unsteady processes. The framework is applied to18

three case studies, of increasing complexity, from the field of cohesive sediment trans-19

port. We demonstrate that the framework can be used to recover posterior distributions20

for all parameters of interest and the results agree well with independent estimates (where21

available). We also demonstrate how the framework can be used to compare different22

model parameterizations and provide information on the covariance between model pa-23

rameters.24

Plain Language Summary25

We describe a framework for the simultaneous estimation of multiple unobserved26

parameters by combining observations of a tracer with a numerical model. This frame-27

work uses Bayesian inference techniques established in statistical literature to estimate28

the unobserved parameters of interest used in the model with uncertainty quantification.29

We explain the key components of this framework in simple terms to encourage its use30

for analysing other unsteady processes and performing quantitative inference on param-31

eters that are difficult or impossible to measure directly. We then demonstrate the frame-32

work’s efficacy by applying it to three case studies from the field of cohesive sediment33

transport that all use the transport equation (advection-diffusion). Inferred parameter34

values show good agreement with independent estimates, where available.35

1 Introduction36

Numerical solutions to partial differential equations (PDE) are a key tool in mod-37

elling complex processes. There is, however, often a natural variation of the key param-38

eters required for accurate modelling which presents a challenge in many fields of research39

(e.g. boundary layer physics (Souza et al., 2020), pulmonary circulation (Păun et al., 2018),40

groundwater flow (Ghouili et al., 2017), population spread (Soubeyrand & Roques, 2014),41

and sediment transport (Manning & Schoellhamer, 2013; Valipour et al., 2017). Mea-42

surements can provide insight into these complex processes, but in many cases the pa-43

rameter of interest is difficult to observe directly (e.g. Liñán Baena et al., 2009; Egan44

et al., 2021; Maa & Kwon, 2007; Mattsson et al., 2016; Smyth et al., 2021). Furthermore,45

the unsteady time- and space-dependent nature of some processes can mean that meth-46

ods developed under controlled settings (e.g. steady forcing in a laboratory) are not read-47

ily implementable in real world examples.48

To overcome this challenge, we describe a framework to estimate PDE parameters49

by combining time- and space-dependent observations with a numerical model of a known50

PDE to solve the so-called inverse problem. The typical approach when solving the in-51

verse problem is to determine the set of model parameters, θ, that minimises the resid-52

ual, ϵ, between the observations and model outcome. For a time-dependent, 1-dimensional53

spatial model this is then written54

Cobs(z, t) = f(z, t; θ) + ϵ, (1)55

which states that the observations, Cobs(z, t) (herein C), can be represented by a cho-56

sen model, f(z, t; θ), plus the residual, ϵ. We have used z to represent the spatial dimen-57

sion and t to represent time. Here we employ a probabilistic framework based on Bayesian58

inference to solve the inverse problem (described in Section 2). This allows for the si-59

multaneous estimation of probability distributions for all model parameters and the resid-60
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ual ϵ, thus providing full uncertainty quantification and parameter covariance informa-61

tion.62

When modelling environmental processes the required parameters may take a range63

of probable values, i.e., a probabilistic description of the parameters is often most suit-64

able. Quantifying this range provides more meaningful insights than maximum likelihood65

estimation alone, especially when the parameter probability distribution is non-Gaussian66

or multi-modal. Bayesian frameworks for solving inverse problems with uncertainty quan-67

tification have been described extensively in the statistical literature, but uptake by re-68

searchers in many fields has been slow. For this reason, we take a pedagogical approach69

when describing the method used in this study. The Bayesian inference framework can70

be employed for parameter estimation in a wide range of numerical model applications71

that use a known (but potentially complex) state equation that is computationally in-72

expensive to solve.73

To demonstrate this method we examine a numerical model of the one-dimensional74

unsteady advection-diffusion equation (ADE), widely used to model tracer evolution in75

fluid flows. This type of process has intrinsic variability and measurements of tracer con-76

centration can be noisy. In addition, typical numerical models of the ADE may be ide-77

alised, as in this work, and boundary or initial conditions may also contain errors or re-78

quire estimation with sub-models. These sub-models may also be idealised or mis-specified,79

and can include additional unknown parameters that contribute uncertainty. This makes80

a numerical model of the ADE a good example for simultaneous parameter estimation81

with uncertainty quantification.82

We test this methodology on three different case studies of increasing complexity,83

all from the field of cohesive sediment transport. This field is a suitable test for the method-84

ology used herein because there are a number of parameters that cannot be directly ob-85

served. Recent research in this field continues to identify large differences in all key pa-86

rameter estimates depending on site, time, and/or method (see Maa and Kwon (2007)87

for an example of particle settling velocity, Valipour et al. (2017) for critical bed strength,88

and Egan et al. (2021) for the erosion rate parameter). Similar physics-driven approaches89

to parameter estimation using observations have been performed before in cohesive sed-90

iment environments (e.g. Brand et al., 2015; Zhang et al., 2021), but not using a Bayesian91

framework. Schmelter et al. (2011) assessed bed load transport sediment transport in92

a Bayesian framework and provide an excellent summary of the key fundamentals for Bayesian93

modelling. Before analysing the case studies we first describe the Bayesian framework94

used for parameter estimation in more detail. Then we describe the numerical model used95

for the case studies, along with two boundary flux (sub-)models implemented within the96

numerical model. Following that we describe the observations, model specifics, and re-97

sults of the inference for each case study.98

The three case studies are similar in nature so they use the same numerical model,99

which limits the repetition of model specifics that are incidental to the general method-100

ology. Case Study 1 is from an annular flume erosion experiment conducted in Baltimore101

Harbour by Maa et al. (1998) (digitised from Sanford and Maa (2001), Figure 1b). Case102

Study 2 is a synthetic data set generated from the numerical model itself, with the in-103

puts designed to mimic typical unsteady tidal forcing. Case Study 3 is an application104

of the method to a set of complex (unsteady and noisy) real-world observations from Edge105

et al. (2021). Our goal is to use these case studies of sediment transport to gradually in-106

troduce complexity and demonstrate the efficacy of the method for estimating un-observable,107

yet important, parameters used in the prediction of the response of a geophysical sys-108

tem.109
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2 Parameter inference methods110

2.1 General approach111

We first describe the general framework used in this study to solve the inverse prob-112

lem posed in Equation 1. Bayesian statistical and computational techniques are used to113

simultaneously estimate the posterior probability of the model parameters (θ), given some114

observations C, stated p(θ|C). The approach is derived from Bayes’ theorem,115

p(θ|C) ∝ p(C|θ)p(C). (2)116

The posterior probability density (herein the posterior) is proportional to the product117

of the likelihood, p(C|θ), and the prior probability density, p(C). The prior and poste-118

rior are m-dimensional distributions, where m is the number of parameters to sample.119

The likelihood is a cost function that evaluates the chosen model and penalises model120

outcomes that are further from the observations. Only the likelihood function is max-121

imised in a frequentist approach; there is no incorporation of prior beliefs in that frame-122

work. One advantage of the Bayesian approach is that the prior on each parameter can123

represent information that is already known or expected, such as a plausible range of re-124

ported values from literature.125

Note that in Equation 2 the parameter vector θ includes σ, which represents the126

standard deviation of ϵ, the residual from Equation 1. For this work we have assumed127

that the distribution of values in ϵ is homoskedastic (invariant with respect to predic-128

tor variables) and Gaussian, i.e. ϵ = N (0, σ). Differences between the model outcome129

and the observations may be the result of natural variation, measurement error, or model130

mis-specification, all of which are encapsulated in σ. By estimating the magnitude of σ,131

Bayesian inference is able to partition these sources of uncertainty from the uncertainty132

in the parameter estimates. This allows for better parameter estimates while still accu-133

rately predicting the plausible range C may take.134

The use of Markov Chain Monte Carlo (MCMC) sampling techniques allow the pos-135

terior to be approximated in the proportional form in Equation 2. For each step in a Markov136

Chain a new θ is proposed and Equation 2 is evaluated. By doing this, MCMC sampling137

is able to explore the posterior space and move towards regions of proportionally higher138

probability until a stationary distribution is found. The specifics of defining priors, com-139

puting the likelihood function, and sampling the posterior using MCMC sampling are140

described in more detail below.141

2.2 Likelihood142

The likelihood function quantifies the probability that θ was used to generate a set143

of observations, C. This allows us to compare the probability of different proposals for144

θ. At this point we separate θ into the model parameters, θmod and σ for clarity. The145

likelihood is assumed to be a Gaussian distribution for a sample of observations, C =146

(Ci, ..., Cn). For computational reasons the likelihood function is evaluated in log-space147

and can be written as148

L(y|θmod, σ) = −n

2
ln(2π)− nln(σ)− 1

2σ

n∑
i=1

(Ci − yi)
2
. (3)149

Here y = f(θmod) is the output from our chosen model and n is the number of obser-150

vations. Note that each element in θmod and σ are free parameters estimated during MCMC151

sampling.152

2.3 Priors153

The prior distributions on each parameter form the second component to the right-154

hand-side of Equation 2. They represent the probability that we assign to each param-155
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eter before we have performed the inference. Priors can be informative, weakly informa-156

tive, or non-informative (diffuse). If we already have detailed information on a param-157

eter, say from well-established physical theory, literature, or independent measurements,158

we can use an informative prior to limit the space the posterior can move to. Conversely,159

for parameters that potentially could occupy a large range, we can set priors to be dif-160

fuse so that MCMC sampling can explore this range without being penalised.161

Our aim when defining the prior distributions for this research was to limit the pos-162

terior sample space to a reasonable range of values that were supported by physical the-163

ory and literature. This increases the efficiency of MCMC sampling and reduces the time164

required for individual chains to converge on a stationary distribution (Tarantola, 2004).165

When the chosen model is a numerical model, priors can also be used to restrict the pa-166

rameter space to regions of model stability. For example, an explicit advection-diffusion167

numerical model becomes unstable when the Courant number exceeds one, so any pa-168

rameter that may cause this to occur must be restricted.169

The specific priors used for each case study are described before the results. All170

the priors used in this study were either half-normal (H) or log-normal (lnN ) distribu-171

tions. These were used because all of the parameters in our chosen model could not be172

negative, including σ. Parameters that could be zero were assigned half-normal priors,173

while parameters that could not be zero were assigned log-normal distributions. This study174

was focused on the development and testing of the described methodology. Priors were175

set to be weakly informative, based on a range of possible values determined from lit-176

erature.177

2.4 MCMC sampling and evaluation178

With the likelihood and prior distribution functions defined we can now use Markov179

Chain Monte Carlo (MCMC) sampling to investigate the posterior. The aim of MCMC180

sampling is to explore the posterior space until the chain (or chains) converge on a sta-181

tionary target distribution. For a thorough explanation of MCMC sampling methods the182

reader is referred to Gelman et al. (2013, Part III).183

For this work we have used Differential Evolution MCMC sampling (DE-MC) (Ter184

Braak, 2006), though we note that the method is independent of the specific MCMC sam-185

pling method. DE-MC is a variation of the Metropolis algorithm and uses information186

from other chains to improve the sampling efficiency for all chains. The advantage of DE-187

MC is it’s speed of convergence, particularly in high dimensional problems. A practical188

advantage of the DE-MC sampler is that it does not require the computation of gradi-189

ents of the likelihood function with respect to the parameters. Note that the framework190

was implemented with a different MCMC method (Dynesty, described in Speagle (2020))191

with equivalent results.192

Evaluation of convergence between chains was performed using common tests de-193

scribed in Gelman et al. (2013). Specifically, we determined convergence was met when194

the R̂ statistic was less than 1.05 for each parameter and the auto-correlation for all chains195

had dropped to near zero. If satisfactory convergence of the chains was achieved the re-196

sults were deemed suitable for analysis and prediction.197

3 The numerical model198

Here we describe the specific numerical model used in this study, f , noting that199

in theory any model may take its place. The numerical model is a finite difference dis-200

cretisation of the 1-dimensional unsteady advection-diffusion equation (ADE). The ADE,201

described next, can be used to model the transport of any scalar, C, in fluid flows (among202

other applications). The model is applied to three case studies from the field of cohe-203
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sive sediment transport. In this field the fluxes of C at the boundary (sediment-water204

interface) of the ADE model are key drivers of changes in C and much research has been205

undertaken to determine the best parameterizations for this process. In this section, we206

describe the chosen sub-models, herein boundary flux models, that we have used and de-207

fine the parameters of interest.208

3.1 The advection-diffusion equation209

The full three dimensional time-space dependent form of the ADE can be written210

as211

∂C

∂t
+∇.(u)C = ∇.(γ∇C) + S, (4)212

where C is the tracer concentration, u is the three-dimensional velocity vector, γ is the213

diffusivity, and S is a source or sink term.214

In order to simplify this equation to one dimension we have made several assump-215

tions. The primary assumption is that the observed process can be adequately represented216

in a single (vertical) dimension. First, we have assumed that vertical turbulent diffusion,217

denoted γz, is the only important component in the diffusivity term. Second, we have218

assumed that the horizontal flux divergence components (in ∇.uC) are small and can219

be ignored. Last, we have assumed that the only source and sink terms come from the220

model bottom boundary. The two boundary flux models are: a source of sediment to the221

water column by erosion, E, and a loss of sediment from the water column by deposi-222

tion, D. Both terms are only applied to the lowest grid cell. The one-dimensional-vertical223

(1Dv) equation used in this study is thus224

∂C

∂t
+

∂(w − ws)C

∂z
=

∂

∂z

(
γz

∂C

∂z

)
+ E −D. (5)225

Note that the tracer used for this study is sediment, which is negatively buoyant, and226

the tracer settling velocity, ws, is a parameter of interest and is applied to the vertical227

direction only (herein defined as positive downward). For this study ws is assumed to228

be independent of time, space, and C.229

In order to utilise the ADE we discretised each of the terms using an implicit fi-230

nite difference method (2nd-order centred-time centred-space). The model was forced231

with observations of vertical current velocity (w) and bottom friction velocity (u∗, used232

to estimate the time-dependent bed shear stress and profile of the vertical turbulent dif-233

fusivity γz). The output from the model can then be compared to observations of C. The234

parameters of interest that we want to estimate are ws and any parameters required for235

the chosen boundary flux model (described next).236

3.2 Boundary flux models237

In sediment transport studies, the upward fluxes into the water column from ero-238

sion and the downward fluxes out of the water column to the bed from deposition are239

key processes that control the magnitude of C. Erosion and deposition have been the240

subject of considerable investigation over the past six decades and the optimal models241

to represent these processes are still the subject of ongoing research.242

To demonstrate the method described in this study we compared two erosion mod-243

els. Both erosion models translate a known bed stress, τbed, into a flux C that is added244

to the lowest grid cell as a source term. The deposition flux was simply calculated as the245

product of ws and the concentration in the lowest grid cell, C0. We note that the method246

described in this research could be used for comparison and parameter estimation with247

any erosion or deposition boundary flux models, or combinations thereof.248
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The first erosion model tested was a variation of the popular Ariathurai-Partheniades249

equation, given by250

E = M(τbed − τcr)
b where τcr = τcr0 (6)251

(Ariathurai, 1974), shown here without the denominator. Here τbed is the bed shear stress,252

which is known, and τcr0, M , and b are the erosion model parameters to infer. Herein253

this boundary flux model is referred to as E1.254

The second erosion model tested was another variation of the Ariathurai-Partheniades255

equation where the term τcr was allowed to vary in proportion to the total C in the nu-256

merical model, mc,257

E = M(τbed − τcr) where τcr = τcr0 + τmmτb
c . (7)258

For this erosion model M , τcr0, τm, and τb are the parameters to infer. This erosion model259

is an approximation of what is commonly referred to as depth-limited erosion. Accurate260

modelling of depth-limited erosion requires a multi-layer bed model (e.g. Sanford, 2008)261

which was beyond the scope of this study. We used available literature to set the prior262

distributions for the free parameters in each boundary flux model, discussed below, be-263

fore presenting the case study results.264

3.3 Forcing the numerical model265

There are several quantities necessary to force the numerical model which need to266

be either measured or estimated before the model can be run. The main observation re-267

quired is a time series of the bottom friction velocity, u∗, or the bed stress, τbed, which268

are related to each other by τbed = ρu2
∗, where ρ is a measured or assumed water den-269

sity. For all examples τbed was the input into the erosion models. In addition, if fluid ver-270

tical velocities are important at the site of interest, they can be included in the model271

(as they have been in Case Study 3).272

The eddy diffusivity profile, γz, was generated using a parabolic model for unstrat-273

ified flow (Dyer & Soulsby, 1988),274

γz = κu∗z

(
1− z

Bh

)
. (8)275

In this model κ is the von Karman constant, z is the height above the bed, and Bh is276

the height of the diffusivity profile. Above the boundary layer the diffusivity was set to277

a constant value of 10−4 m2 s−1. A single point at the top edge of the boundary layer278

was smoothed (quadratic interpolation) to remove the discontinuous transition between279

the parabolic model and the area of constant diffusivity. The height Bh was either con-280

stant or time-dependent, depending on the case study. Note that any diffusivity profile281

could be used with this method. To demonstrate our method we have thus chosen a sim-282

ple profile, but the implementation of more sophisticated diffusivity models is a possi-283

ble focus for future research. Estimation of the diffusivity profiles is only required one284

time before inference is performed, so this would not significantly increase the compu-285

tation time.286

4 Case studies287

4.1 Setting priors288

All three case studies chosen for this work come from the field of cohesive sediment289

transport and as such, they all exhibit similar behaviour. For this work we used weakly290

informative priors determined from the literature and used any independent results for291

comparison. Because we used weakly informative priors we were able to specify the same292

priors for all three case studies [Table 1].293
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Table 1. Specified prior distributions for all case studies, including the 95% credible intervals
(CI) and relevant references.

Parameter Prior 95% CI References

ws × 10−3 m s−1 lnN (0.5, 0.7) (0.50, 5.34)

Neville (1986), Cartwright et al. (2013),
Voulgaris and Meyers (2004),

Maa and Kwon (2007),
Manning and Schoellhamer (2013)

M × 10−4

kg m−2 s−1 (Pa−b)*
H(20) (44.83) Winterwerp and van Kesteren (2004),

Maa et al. (1998), Egan et al. (2021)

τcr0 × 10−2 Pa H(3) (6.72) Egan et al. (2021), Maa et al. (1998),
Edge et al. (2021)

b / τb lnN (0.25, 0.5) (0.48, 3.42) Egan et al. (2021),
Brand et al. (2015)

τm Pa m−τb
c lnN (0.5, 1.5) (0.09, 31.05) Sanford and Maa (2001),

Brand et al. (2015)

σ × 10−3 kg m−3 H(3) (6.72) -

*M units include the term Pa−b for the boundary flux model E1 but not for E2.

All the priors were defined using distributions that could not be negative based on294

physical theory and literature. Each parameter was scaled to be (close to) order one for295

MCMC sampling. For parameters where the literature indicated that the underlying value296

may span many orders of magnitude, such as M and τm, we used initial (user specified)297

testing to narrow down the likely range, and then specified priors to cover a few orders298

of magnitude. Our initial uncertainty in these parameters was reflected by the large 95%299

credible intervals (CI) of the priors [Table 1]. We compare and discuss the priors in light300

of the inferred posteriors in the case study results below.301

4.2 Case Study 1: annular flume data302

4.2.1 Observations303

This case study is based on an annular flume experiment conducted in Baltimore304

Harbour (described in Maa et al., 1998). Note the data was digitised from the corrected305

results of total mass eroded (mc) and bed shear stress (τbed) shown in Sanford and Maa306

(2001), Figure 1b, with mc related to the depth-averaged tracer concentration (C) by307

the height of the flume. This case study is typical of controlled erosion experiments per-308

formed over naturally deposited cohesive sediment beds. It involved a series of stepped309

increases to the applied bed stress and regular measurement of C over time [Figure 1].310

In such tests the next step is typically initiated once C stabilises (∂C/∂t reaches zero).311

The relationship between bed strength (τc) and mass eroded (mc) can then be examined312

by using the steady state values at the end of each step.313

Here, the inference on the model parameters is performed using the entire time se-314

ries of data, not just the steady points at the end of each bed stress step. Note that be-315

cause this case study only uses the depth-averaged tracer concentration, C, the advection-316

diffusion model is superfluous and the problem may be simplified to a boundary condi-317

tion (as demonstrated by Zhang et al., 2021). Later case studies use spatially sparse ob-318

servations of C. For brevity we have used the same method for all three case studies.319

–8–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 1. Observations from the Maa et al. (1998) (digitised from Sanford and Maa (2001),
Figure 1b) annular flume experiment for site White Rocks showing measured bed stress and
C over a period of 250 minutes. The steady state values (τ̂b and Ĉ) used to estimate the bed
strength profile are shown as the larger scatter points. C has been converted to a mass concen-
tration (from mass per unit of bed area) for comparison with the model output.

4.2.2 Model specification320

We digitised the time series of bed stress and C from Sanford and Maa (2001) and321

used these to estimate the numerical model parameters. The digitised data was (near-322

est neighbour) interpolated onto a time grid with resolution, ∆z, of 60 seconds. The ver-323

tical grid was divided into four equal cells and the initial C was set to the observed con-324

centration at t = 0. Deposition was set to zero for the entire simulation, a common as-325

sumption for cohesive sediment erosion events, thus ∂C/∂t = E. Therefore, in this case326

study we only estimated the parameters in the boundary flux (erosion) model, E, and327

not ws. We still present ws in the results to show that the posterior of ws did not sig-328

nificantly change from its prior, because any value proposed for ws gave the same model329

outcome). We implemented both erosion models, E1 (Equation 6) and E2 (Equation330

7). The priors used for each scenario were unchanged from those specified previously.331

The likelihood (Equation 3) was modified to use C by taking the depth-average of the332

model output for each time step before evaluation.333

4.2.3 Results and discussion334

Scenarios E1 and E2 were both sampled for 25,000 iterations using 12 chains. The335

first 5,000 iterations of each chain were discarded as burn-in samples. Chain auto-correlation336

and R̂ convergence analysis indicated the chains were suitable for inference (not shown).337

The posterior distribution for each parameter was approximated as a kernel den-338

sity estimate histogram of all the accepted samples in the 12 chains (240,000 samples)339

[Figures 2 and 3]. The median and 95% CI of the posterior were calculated for each pa-340
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Figure 2. Posterior distributions (blue) for Case Study 1 - scenario E1. Prior distributions
(gray) are shown over the range of the posterior, except for σ, where the range was extended to
show both complete distributions. The median and lower and upper 95% CI (brackets) are shown
in the axis titles and white dots on the posteriors. Note the prior distribution density may be
difficult to see (close to zero) when the posterior is much more narrow than the prior.

Figure 3. Posterior distributions (blue) for Case Study 1 - scenario E2. Prior distributions
(gray) are shown over the range of the posterior. The median and lower and upper 95% CI
(brackets) are shown in the axis titles and white dots on the posteriors.

rameter. Each prior distribution was sampled the same number of times for compari-341

son. For both scenarios (E1 & E2) the posterior distributions were found to be well within342

the limits of the prior distributions, except for σ in E1, which was much higher than the343

prior value. This implied that the erosion model in E1 was a poor choice for modelling344

the observed data in this annular flume data.345

We randomly selected 10,000 samples of θ from the posterior and re-ran the nu-346

merical model for each θ to generate the posterior predictive distribution. From this we347

estimated the 50%, 80%, and 95% CI of the predictions, and compared them to the ob-348

servations for E1 [Figure 4 left] and E2 [Figure 5 left].349

In scenario E1 there was significant model mis-specification. The chosen erosion350

model was not able to replicate the observed erosion rate decay that occurred rapidly351

after each increase in bed stress. Instead the results generally fit "through" the stepped352

observations of C [Figure 4]. This meant that the residuals were larger than expected.353

For scenario E2, however, the posterior predictions fit the observations well and the es-354

timated σ was lower, indicating a reduction in model mis-specification (i.e. E2 is a bet-355

ter model than E1 ).356
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Figure 4. Left: observations of C (yellow/red) and the posterior predictive distribution of
C based on 10,000 samples of the posterior for scenario E1. The 50%, 80%, and 95% CI of the
posterior predictive distribution are shown as graduated gray shading. Right: Plots of the poste-
rior samples from scenario E1 for correlated parameters only (|r2|>0.3). Black lines are the 50%,
80%, and 95% density contours.

Investigation of the posterior samples in scenario E1 indicated that all the param-357

eters used in the erosion model (Equation 6) were correlated (|r2|>0.3) [Figure 4 right].358

This resulted in a wide range of parameter choices that would produce a similar erosion359

flux. For example, a reduction in the erosion rate M could be compensated for by ei-360

ther an increase in τcr0 or a reduction in b, or some combination of both. The posteri-361

ors of ws and σ were not correlated with any other parameters (not shown).362

The posterior samples in scenario E2 indicated that some parameter pairs were cor-363

related [Figure 5 right]. While the observed parameter covariance can be sampled by this364

method, high correlations can result in decreased efficiency of MCMC sampling. For the365

later case studies we still test both erosion models E1 and E2 because they are commonly366

used in sediment transport modelling. We note, however, that future work could inves-367

tigate erosion models more suited to inverse method sampling techniques.368

For scenario E2 we used the results to show the estimated relationship between the369

mass eroded, mc, and the bed strength [Figure 6]. Note that the relationship is not just370

a fit of the data points (shown in blue) but of the full time series of steady and unsteady371

data. The bed strength estimate agrees well with the data points originally used to es-372

timate the parameter values by Sanford and Maa (2001). This demonstrates that the373

method used here gave equivalent results for the estimation of the bed strength param-374

eters, while also simultaneously estimating the erosion rate parameter, M , and σ.375

This example demonstrates that the method described here can be successfully em-376

ployed to estimate multiple model parameters simultaneously, using unsteady data in377

a controlled setting. It is important to note that the full time series of observations from378

the experiment has contributed to the inference process, not just the steady-state points379

at the end of each step. In the following case studies, the same process will be performed380

on data sets where neither the forcing nor the concentration C reach a steady-state.381
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Figure 5. Left: observations of C (yellow/red) and the posterior predictive distribution of
C based on 10,000 samples of the posterior for scenario E2. The 50%, 80%, and 95% CI of the
posterior predictive distribution are shown as graduated gray shading. Right: Plots of the poste-
rior samples from scenario E2 for correlated parameters only (|r2|>0.3). Black lines are the 50%,
80%, and 95% density contours.

Figure 6. Total mass eroded, mc, shown with bed strength, τbed (shown as per Sanford and
Maa (2001) Figure 2a, site White Rocks). The blue dots are the applied stress and measured
C values at the end of each step (as shown by the blue and red markers in Figure 1). The gray
shading is the 50%, 80%, and 95% CI of the posterior predictive distribution for 10,000 samples
from the bed strength parameters in erosion model E2 (Equation 7, τcr0, τm, and τb). Note mc is
related to C using the height of the flume.
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Figure 7. Top: synthetic tidal forcing data for Case Study 2, including the friction velocity,
u∗ (black, shown multiplied by 10), and the bed stress, τb (gray). Middle: filled color plot of
synthetic C using erosion model E1 (Equation 6) for the entire model grid with added Gaussian
noise. Bottom: synthetic observations of C for selected heights above the bottom boundary.

4.3 Case Study 2: synthetic tidally-driven erosion382

4.3.1 Observations383

For this case study we generated synthetic observations with the numerical model384

in order to recover specified model parameters. Forcing variables were chosen to describe385

idealised spring tide conditions. Guided by the field observations in Edge et al. (2021),386

the friction velocity, u∗, was modelled as sinusoidal with a 12-hour period, thus approx-387

imating the semi-diurnal tide. The range of u∗ was from 1 to 16 mm s−1 [Figure 7] (note388

the flow never comes entirely to rest in the field observations). Using the quadratic stress389

equation, τb = ρu2
∗, where ρ was 1025 kg m−3, the bed stress thus varied between 0.001390

and 0.262 Pa. The erosion model E1 from Equation 6 was used to calculate the erosion391

flux. The underlying parameter values used to generate the synthetic observations were;392

ws = 1 × 10−3 m s−1, M = 3 × 10−4 kg m−2 s−1 Pa−b, τcr0 = 7 × 10−2 Pa, and393

b = 1.1.394

The model was run for one tidal cycle as a spin up, with the profile of C on the fi-395

nal time step used as the initial quasi-steady condition for a second run. This second run396

was used to generate the synthetic observations of C. We then added noise to the en-397

tire time-height grid of C in the form of random samples drawn from a Gaussian distri-398

bution with a standard deviation of 2 ×10−3 kg m−3 [Figure 7b]. Discrete observations399

near the bottom boundary (0.5 m ASB) and near the top of the model domain (8.5 m400

ASB) were extracted as the forcing observations [Figure 7 bottom]. The exact under-401

lying standard deviation of the noise was calculated as the standard deviation of the resid-402

uals between the noisy and noise-free model observations of C (σ = 0.199 × 10−3 kg403

m−3).404

4.3.2 Model specification405

The model grid was created with a vertical resolution of 1 m and a time step of 300406

s. The grid resolution was chosen to be as coarse as possible while still adequately re-407
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Figure 8. Posterior distributions (blue) for Case Study 2, synthetic tidally-driven erosion
- scenario E1. Prior distributions (gray) are shown over the range of the posterior. The me-
dian and lower and upper 95% CI (brackets) are shown in the axis titles and white dots on the
posteriors. The teal vertical line in each subplot was the underlying value used to generate the
observations.

solving the vertical profile of C and ensuring the majority of the prior parameter space408

was in a region of model stability (e.g., the Courant number was generally less than one409

during sampling). The implicit model form provided more flexibility in this regard. The410

total model height was 16 m and the boundary layer height, required to calculate the411

eddy diffusivity profile using Equation 8, was set to a constant value of 15 m ASB. Ver-412

tical fluid velocities were set to zero for this case study.413

We ran one scenario which used the erosion model E1 in Equation 6. There was414

no model mis-specification in this example (the model determined the underlying obser-415

vations perfectly), thereby a comparison of multiple numerical model scenarios (such as416

using both erosion models) was not warranted (note Case Study 2 was tested using ero-417

sion model E2 with similar results, but was not presented for brevity). The priors used418

for each scenario were unchanged from those specified previously. For this example, the419

observations and modelled C at 0.5 and 8.5 m ASB were supplied to the likelihood func-420

tion (Equation 3) as a 2D array.421

The numerical model was specified with a constant deposition rate for this case.422

There is ongoing research into the apparent disconnect between deposition behaviour in423

laboratory experiments and common numerical modelling practices (see Letter and Mehta424

(2011) for a detailed explanation). For this work we simply note that numerical mod-425

elling of sediment transport over several tidal cycles is generally performed with a con-426

stant deposition flux. This method could be used to compare other more complex de-427

position models, such as Krone’s probabilistic model (Winterwerp and van Kesteren (2004),428

Equation 5.21), a potential topic for future research.429

4.3.3 Results and discussion430

The scenario E1 was sampled for 25,000 iterations using 12 chains. The first 5,000431

samples were discarded as burn-in samples. Chain auto-correlation and R̂ convergence432

analysis indicated the chains were suitable for inference (not shown). The priors and pos-433

teriors were compared as per Case Study 1 [Figure 8]. The approximate form and 95%434

CI of the posterior was calculated for each parameter [see Figure 8 axis titles].435

The inference method was able to accurately capture the underlying parameter val-436

ues, with the mode and median of the posterior close to the true value [Figure 8]. The437

posterior distribution of ws was narrow and the posterior samples were not correlated438
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Figure 9. Top: observations of C (lines) for Case Study 2 from the two selected heights above
the sea bed (ASB) and posterior predictive distributions of C at each height based on 10,000
samples of the parameter posteriors for E1, showing 50%, 80%, and 95% CI as graduated gray
and blue shading. Bottom: Plots of posterior distribution samples of E1 for correlated parame-
ters only (|r2|>0.3). Maroon dots are the specified (true) parameter values. Black lines are the
50%, 80%, and 95% density contours.

with any other parameter. The posterior distributions for all of the erosion model pa-439

rameters (M , τcr0, b) were wide in comparison to their median value.440

We randomly selected 10,000 samples of θ from the posterior and re-ran the nu-441

merical model for each θ to generate the posterior predictive distribution. From this we442

estimated the 50%, 80%, and 95% CI of the predictions at the two observation heights443

and compared them to the noisy synthetic observations [Figure 9]. All of the erosion model444

parameters were correlated [Figure 9]. When estimating the posterior predictive distri-445

bution of C, however, the majority of the distribution width came from σ. This suggested446

that the resulting erosion flux was similar for all samples from the posterior, despite the447

wide posteriors.448

This case study demonstrated that the method can recover the underlying spec-449

ified values of the numerical model parameters even when using noisy observations. In450

general, the underlying parameter value was at or close to the posterior distribution me-451

dian, and the erosion model posterior distributions were wide and correlated. The width452

of the erosion model posteriors was surprising, given the lack of model mis-specification.453

Testing indicated that these posteriors were more narrow and less correlated when the454

exponent b (Equation 6) was further from one and the erosion flux response was less lin-455

ear (not shown). In cases where b is known to be approximately one this parameter could456

be removed from the model, thus increasing the inference efficiency. In addition, the ero-457

sion model itself could be re-parameterised to reduce parameter covariance.458

–15–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

4.4 Case Study 3: Continental shelf bottom boundary observations459

4.4.1 Observations460

In this case study we attempt to estimate unobserved parameters using 2017 field461

observations from the Northwest Shelf of Australia (Zulberti et al., 2022; Edge et al., 2021).462

These studies presented data over 15 days from 2 to 16 April 2017. As it was too com-463

putationally expensive to include the entire period in the numerical model using this method,464

we selected a period of 3 consecutive tidal cycles (about 37.6 hours) [Figure 10]. This465

period was chosen because it captured a range of forcing conditions and sediment response,466

and because no large amplitude nonlinear internal waves (NLIW) propagated past the467

site at this time; NLIW introduce strong vertical fluid velocities and are likely to cre-468

ate horizontal gradients of C, hence creating horizontal advective effects that violate the469

assumptions of our model. To evaluate the method, we generated predictions using in-470

ferred posterior distributions of model parameters and compared these with independent471

observations not used in the parameter estimation (noting that the primary purpose of472

the method is parameter estimation and not prediction of C).473

The friction velocity and bed stress were derived from high frequency current mea-474

surements collected at 0.49 m ASB. Zulberti et al. (2018) showed that use of the quadratic475

drag law with CD = 0.00185 was an accurate proxy for measured Reynolds stress (u∗Re =476

0.99u∗Cd + 0.00, r2 = 0.92) within the log-layer (typically 1 m thick) at this site and477

provided a more complete record. Eddy diffusivity profiles, γz, were calculated as per478

Equation 8 with the time-varying bottom boundary layer height (BBL) (typically 10 m479

thick) estimated using backscatter from an acoustic Doppler current profiler (ADCP),480

as per Zulberti et al. (2022) [Figure 11]. Direct estimates of eddy diffusivity at 1.4 m ASB481

were typically three times greater than modelled estimates using Equation 8 (the model482

is highly idealised). Zulberti et al. (2022) analysed backscatter, current profiles and tem-483

perature profiles, and determined that backscatter could be used as a suitable proxy to484

estimate the BBL height. Fluid vertical velocities were supplied by the ADCP. Points485

close to the sea bed where the ADCP returned poor vertical velocity data were linearly486

extrapolated to zero at the bed. Both the BBL height and vertical velocities were low-487

pass filtered.488

The observations of C, taken from Edge et al. (2021), were chosen at two discrete489

heights, 1.4 m and 9.5 m ASB [Figure 10, bottom]. In addition, we performed the in-490

ference with a single point measurement (at 1.4 m ASB) in order to test the method sen-491

sitivity and applicability to cases where only a single observation height was available.492

Closer examination of the forcing data and observations highlights the complex be-493

haviour of the continental shelf boundary layer during this period with both barotropic494

and (out-of-phase) baroclinic tides influencing the currents and hence the bottom stress495

[Figure 11]. The bed stress is not a simple sinusoid: on odd-numbered half-tides the stress496

was intensified by internal tides that generate an additional near-bed current. For even-497

numbered tides the opposite was true, with internal tides generating an adverse near-498

bed current, reducing the estimated bed stress and u∗. The near-bed C exhibited var-499

ied responses to similar magnitudes of bed stress and there was a time-lag in the response500

at different observation heights. Note that the periods where C was greater at the higher501

observation point were likely the result of calibration uncertainty and not a negative sed-502

iment gradient [Figure 11, bottom] (calibration uncertainty was not included in this work,503

but is a topic of future research).504

4.4.2 Model specification505

The model grid was similar to Case Study 2, with a vertical resolution of 1 m and506

a time step of 300 s. The total model height was 24 m with the maximum BBL height507

remaining under 20 m. We ran two different numerical model scenarios for this case study,508
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Figure 10. 15 days of oceanographic data from Zulberti et al. (2022) and Edge et al. (2021).
The top panel shows the estimated bed shear stress, τbed, and friction velocity, u∗, from high
frequency current measurements at 0.49 m ASB. The middle panel shows a compilation of C
observations, primarily from the ADCP over the bottom 23 m ASB. The bottom panel shows the
two observed time series of C used for Case Study 3. The gray shaded area shows the three tidal
cycle periods used in Case Study 3.

Figure 11. Forcing data and observations of C for Case Study 3. The top panel shows the
measured bed stress and friction velocity at the bed. The middle panel shows the eddy diffusivity
and the low-pass filtered BBL height (white line). The bottom panel shows the observations of C
used for this case study.
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Figure 12. Posterior distributions (blue) for Case Study 3 - scenario E1. Prior distribu-
tions (gray) are shown over the range of the posterior. The median and lower and upper 95% CI
(brackets) are shown in the axis titles and white dots on the posteriors.

Figure 13. Posterior distribution samples for Case Study 3 - scenario E1 for the correlated
parameters only (|r2|>0.3). Black lines are the 50%, 80%, and 95% density contours.

E1 using the erosion model in Equation 6, and E2 using the erosion model in Equation509

7. The priors used for each scenario were unchanged from those specified previously. In510

addition, a modified scenario was also assessed based on scenario E2 that only used ob-511

servations from a single height at 1.4 m ASB, rather than two heights (denoted E2-1obs).512

Note the numerical model output was interpolated (quadratic) to estimate C at 1.4 m,513

as the grid points were spaced at 1 m intervals starting at 0.5 m.514

4.5 Results and discussion515

All three scenarios (E1, E2, and E2-1obs) were sampled for 25,000 iterations us-516

ing 12 chains. The first 5,000 iterations of each chain were discarded as burn-in samples.517

Chain auto-correlation and R̂ convergence analysis indicated the chains were suitable for518

inference (not shown). Kernel density estimates were used to visually compare the prior519

and posterior distributions for scenario E1 [Figure 12]. Parameters M , τcr0, and b were520

correlated (|r2|>0.3) in scenario E1 [Figure 13], similar to the previous case studies. Pa-521

rameter estimates from the E2 and E2-1obs scenario variations were compared visually522

using kernel density estimates [Figure 14] and several of the parameters were positively523

correlated (r2>0.3) [Figure 15].524

Scenarios E1 and E2 provided similar estimates for comparable parameters (ws,525

M , τcr0, and σ). The settling velocity, ws, was estimated to be around 0.16 × 10−4 m526

s−1 slower in E2 compared to E1. Mean particle size and effective density measurements527

from Edge et al. (2021) gave an estimated mean ws of 0.6 × 10−4 m s−1 using Stokes’528
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Figure 14. Posterior distributions for Case Study 3 - scenario E2 (blue) and scenario E2-1obs
(orange). Prior distributions (gray) are shown over the range of the posteriors. The median and
lower and upper 95% CI (brackets) are shown for only scenario E2 in the axis titles and white
dots on the posteriors.

Figure 15. Posterior distribution samples for Case Study 3 - scenario E2 (blue) and sce-
nario E2-1obs (orange) for the correlated parameters only (|r2|>0.3, shown without contours for
clarity).
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law. Posterior distributions of the initial bed strength (critical shear stress), τcr0, could529

be approximated by a half-normal distribution shape in both scenarios. The observations530

do not contain significant time periods where τbed was in the range of τcr0 and so the like-531

lihood function was insensitive to changes in τcr0 at small values. The posterior predic-532

tions were narrower for scenario E2, compared to E1 [Figure 16], indicating a better fit533

using the E2 erosion model.534

The two variations of scenario E2 (E2 and E2-1obs) provided interesting insight535

into how much data was needed to infer the parameters and how changing the input ob-536

servations affected σ [Figure 14]. Notably, the inferred parameters were both in a sim-537

ilar range, which suggested the method was (relatively) insensitive to the chosen height538

of measurements of C. Using observations from only a single height in scenario E2-1obs539

also shifted the posterior distribution for some parameters [Figure 14].540

We did not expect the results for scenarios E2 and E2-1obs to be similar as the541

use of observations at a single point could in theory be matched with many values of ws542

(and hence profiles of C). It appeared, however, that the information contained within543

the time series of C at a single point was sufficient to infer the model parameters, not-544

ing that the prior distributions help inform the estimate. In addition, using less obser-545

vations reduced σ, indicating that the erosion model in scenario E2− 2obs could bet-546

ter represent the time series of C close to the bottom boundary (compared to C further547

from the bed). Note that the distributions of σ for scenarios E2 and E2-1obs were not548

directly comparable as the observation data sets were different (Scenario E2-1obs used549

less data points).550

We compared the observations to posterior predictive distributions of C using 10,000551

randomly selected samples from θ. The 50%, 80%, and 95% CI of the predictions were552

calculated at the two observation heights above the sea bed (1.4 m and 9.5 m). The re-553

sults were similar for all three scenarios, so only predictions for scenarios E1 and E2 are554

presented [Figure 16 top and bottom, respectively].555

To demonstrate the ability of the model to make predictions beyond the chosen in-556

ference period, we extended the model run. We supplied the forcing data; bed stress, bot-557

tom friction velocity, vertical velocity, and BBL height, to the model for the extended558

period. We then generated posterior predictive samples for this period using the scenario559

E2-1obs and calculated the 50%, 80%, and 95% CI at 1.4 m and 9.5 m ASB [Figure 17].560

While this scenario did not use any observations of C at 9.5 m for the inference, it still561

made good predictions at this height for the original model period. Beyond the origi-562

nal model period the predictions and observations diverged at both heights.563

It is clear from the results with the Case Study 3 field observations, that in addi-564

tion to natural variation and measurement errors, in both erosion model scenarios there565

is missing physics, as reflected in σ. The primary sources of model mis-specification are566

likely to come from simplification of the ADE and the boundary flux models used (i.e.567

the erosion and deposition models). Simplification of the ADE for this model may have568

discounted potentially important horizontal advection processes, such as horizontal sed-569

iment gradients induced by the internal tide. Improvement of the boundary flux mod-570

els is a common aim for sediment transport studies and this method shows promise in571

quantifying relative model performance. Future work could also include the implemen-572

tation of a multi-layer bed model with consolidation and multiple sediment size classes.573

5 Conclusions574

We have demonstrated that MCMC sampling can be used in conjunction with a575

simple 1D advection-diffusion numerical model (including its boundary model) to esti-576

mate parameters of interest with uncertainty quantification. The numerical model itself577

used a well known discretisation method and has the potential for inclusion of any bound-578
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Figure 16. Top plots: Case Study 3 observations of C (solid lines) and the 50%, 80%, and
95% CI of the posterior predictive distributions of C from Scenario E1 (graduated shading) at
1.4 m above the sea bed (ASB) (gray) and 9.5 m ASB (blue). Bottom plots: as per the top plots
for Scenario E2.
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Figure 17. Top: Case Study 3 - scenario E2-1obs extended observations of C (solid line) at
1.4 m above the sea bed (ASB) and 50%, 80%, and 95% CI of the posterior predictive distribu-
tions of C (graduated gray shading). Bottom: as per top panel but for C at 9.5 m ASB (blue line
and shading). The original model period is shown as light gray shading in both plots.

ary model (in this case erosion or deposition). This allows for a quantitative compari-579

son of the performance of any model selected from literature as applied to a given data580

set of observations.581

We have applied this method to three case studies from the field of cohesive sed-582

iment transport. Case Study 1 was an example of a common erosion test conducted us-583

ing an in-situ annular flume. In this scenario, the depth-averaged C was supplied which584

simplified the analysis. We demonstrated that the entire time series of bed stress and585

C could be used to infer model parameters, where previously only steady state periods586

have been used. This indicates that the method should be suitable to apply to similar587

investigations with unsteady forcing, such as channel or estuary flows. In-situ param-588

eter estimation in cohesive sediment environments such as these is a difficult task, with589

conflicting results between methods (e.g. Maa & Kwon, 2007), and state-of-the-art mea-590

surement techniques giving a wide range of (potentially noisy) estimates (e.g. Egan et591

al., 2021).592

We then applied the method to Case studies 2 and 3, synthetic and real examples593

of complex BBL forcing and response on the continental shelf. These observations mo-594

tivated this work due to the difficulty of measuring the inferred parameters directly in595

deep environments (the development and testing of new in-situ measurement techniques596

is better suited to shallow environments such as channels and estuaries). Using the method597

described in this paper we were able to infer quantitative information on difficult to ob-598

serve parameters using measurements that are simple to collect (current velocity and sus-599

pended sediment concentration from acoustic backscatter). We note that this simple coarse600

resolution model still required computation time of around 2 days (Intel(R) Core(TM)601

i7-7700 CPU @ 3.60GHz), so the method may be too computationally costly to apply602

to 2- and 3-dimensional numerical models (note there is much literature available on other603

methods for larger models (e.g. Bui-Thanh et al., 2012)).604

The key output from this method was the posterior distributions of each param-605

eter, with predictions being a secondary outcome. Nevertheless, posterior predictions of606

C were in agreement with observations (as they must be to achieve good results) but ex-607
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tended predictions diverged from observations outside the original inference period. This608

was likely due to the simplified representation of baroclinic tides in the model, which,609

in reality, were not phase-locked with the barotropic tide. The divergence in predictions610

may also be due to changes in the key parameters with time or some other aspect of model611

mis-specification.612

In summary, the method described here was able to infer key model parameters with613

uncertainty. The method inherently partitions uncertainty from the parameters and the614

model mis-specification and the measurement error term (σ). A more sophisticated model615

(e.g., a discretized bed model or a more realistic diffusivity model) could readily be im-616

plemented to potentially improve the results. Furthermore, we expect this method would617

perform even better if applied to a less complex system, such as a shallow tidal chan-618

nel.619

6 Open Research620

Forcing and fitting data used for Case Study 3 are archived on two UWA library621

research data repositories (Zulberti et al., 2020; Edge, 2021). No proprietary software622

has been used for this research. All analysis was conducted using Python 3 with the ex-623

ception of exporting raw instrument data using manufacturer’s software. Specific pack-624

ages utilised frequently for this work (although not specifically required) include Pymc3625

(Salvatier et al., 2016), Seaborn (Waskom, 2021), Xarray (Hoyer & Hamman, 2017),626

and any packages they depend on. Jupyter Notebooks can be supplied upon request.627
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