In-situ estimation of erosion model parameters using an
advection-diffusion model and Bayesian inversion

William Connellan Edge!, Matthew David Rayson?, Nicole L Jones?, and Gregory N. Ivey?

!The University of Western Australia
2University of Western Australia

December 7, 2022

Abstract

We describe a framework for the simultaneous estimation of model parameters in a partial differential equation using sparse
observations. Monte Carlo Markov Chain (MCMC) sampling is used in a Bayesian framework to estimate posterior probability
distributions for each parameter. We describe the necessary components of this approach and its broad potential for application
in models of unsteady processes. The framework is applied to three case studies, of increasing complexity, from the field
of cohesive sediment transport. We demonstrate that the framework can be used to recover posterior distributions for all
parameters of interest and the results agree well with independent estimates (where available). We also demonstrate how the
framework can be used to compare different model parameterizations and provide information on the covariance between model

parameters.
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Key Points:

« Probabilistic framework to estimate unobserved erosion model parameters using
sparse measurements collected above the seabed.

» General approach can be updated with any model parameterization and quanti-
tatively compared.

« The framework is applicable to many similar data sets with both unsteady or quasi-
steady forcing and response.
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Abstract

We describe a framework for the simultaneous estimation of model parameters in a par-
tial differential equation using sparse observations. Monte Carlo Markov Chain (MCMC)
sampling is used in a Bayesian framework to estimate posterior probability distributions
for each parameter. We describe the necessary components of this approach and its broad
potential for application in models of unsteady processes. The framework is applied to
three case studies, of increasing complexity, from the field of cohesive sediment trans-
port. We demonstrate that the framework can be used to recover posterior distributions
for all parameters of interest and the results agree well with independent estimates (where
available). We also demonstrate how the framework can be used to compare different
model parameterizations and provide information on the covariance between model pa-
rameters.

Plain Language Summary

We describe a framework for the simultaneous estimation of multiple unobserved
parameters by combining observations of a tracer with a numerical model. This frame-
work uses Bayesian inference techniques established in statistical literature to estimate
the unobserved parameters of interest used in the model with uncertainty quantification.
We explain the key components of this framework in simple terms to encourage its use
for analysing other unsteady processes and performing quantitative inference on param-
eters that are difficult or impossible to measure directly. We then demonstrate the frame-
work’s efficacy by applying it to three case studies from the field of cohesive sediment
transport that all use the transport equation (advection-diffusion). Inferred parameter
values show good agreement with independent estimates, where available.

1 Introduction

Numerical solutions to partial differential equations (PDE) are a key tool in mod-
elling complex processes. There is, however, often a natural variation of the key param-
eters required for accurate modelling which presents a challenge in many fields of research
(e.g. boundary layer physics (Souza et al., 2020), pulmonary circulation (Piun et al., 2018),
groundwater flow (Ghouili et al., 2017), population spread (Soubeyrand & Roques, 2014),
and sediment transport (Manning & Schoellhamer, 2013; Valipour et al., 2017). Mea-
surements can provide insight into these complex processes, but in many cases the pa-
rameter of interest is difficult to observe directly (e.g. Linan Baena et al., 2009; Egan
et al., 2021; Maa & Kwon, 2007; Mattsson et al., 2016; Smyth et al., 2021). Furthermore,
the unsteady time- and space-dependent nature of some processes can mean that meth-
ods developed under controlled settings (e.g. steady forcing in a laboratory) are not read-
ily implementable in real world examples.

To overcome this challenge, we describe a framework to estimate PDE parameters
by combining time- and space-dependent observations with a numerical model of a known
PDE to solve the so-called inverse problem. The typical approach when solving the in-
verse problem is to determine the set of model parameters, €, that minimises the resid-
ual, €, between the observations and model outcome. For a time-dependent, 1-dimensional
spatial model this is then written

Cobs(z7t) = f(Z,t; 0) + € (1)

which states that the observations, Cops(2,t) (herein C), can be represented by a cho-

sen model, f(z,t;0), plus the residual, e. We have used z to represent the spatial dimen-
sion and ¢ to represent time. Here we employ a probabilistic framework based on Bayesian
inference to solve the inverse problem (described in Section 2). This allows for the si-
multaneous estimation of probability distributions for all model parameters and the resid-
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ual €, thus providing full uncertainty quantification and parameter covariance informa-
tion.

When modelling environmental processes the required parameters may take a range
of probable values, i.e., a probabilistic description of the parameters is often most suit-
able. Quantifying this range provides more meaningful insights than maximum likelihood
estimation alone, especially when the parameter probability distribution is non-Gaussian
or multi-modal. Bayesian frameworks for solving inverse problems with uncertainty quan-
tification have been described extensively in the statistical literature, but uptake by re-
searchers in many fields has been slow. For this reason, we take a pedagogical approach
when describing the method used in this study. The Bayesian inference framework can
be employed for parameter estimation in a wide range of numerical model applications
that use a known (but potentially complex) state equation that is computationally in-
expensive to solve.

To demonstrate this method we examine a numerical model of the one-dimensional
unsteady advection-diffusion equation (ADE), widely used to model tracer evolution in
fluid flows. This type of process has intrinsic variability and measurements of tracer con-
centration can be noisy. In addition, typical numerical models of the ADE may be ide-
alised, as in this work, and boundary or initial conditions may also contain errors or re-
quire estimation with sub-models. These sub-models may also be idealised or mis-specified,
and can include additional unknown parameters that contribute uncertainty. This makes
a numerical model of the ADE a good example for simultaneous parameter estimation
with uncertainty quantification.

We test this methodology on three different case studies of increasing complexity,
all from the field of cohesive sediment transport. This field is a suitable test for the method-
ology used herein because there are a number of parameters that cannot be directly ob-
served. Recent research in this field continues to identify large differences in all key pa-
rameter estimates depending on site, time, and/or method (see Maa and Kwon (2007)
for an example of particle settling velocity, Valipour et al. (2017) for critical bed strength,
and Egan et al. (2021) for the erosion rate parameter). Similar physics-driven approaches
to parameter estimation using observations have been performed before in cohesive sed-
iment environments (e.g. Brand et al., 2015; Zhang et al., 2021), but not using a Bayesian
framework. Schmelter et al. (2011) assessed bed load transport sediment transport in
a Bayesian framework and provide an excellent summary of the key fundamentals for Bayesian
modelling. Before analysing the case studies we first describe the Bayesian framework
used for parameter estimation in more detail. Then we describe the numerical model used
for the case studies, along with two boundary flux (sub-)models implemented within the
numerical model. Following that we describe the observations, model specifics, and re-
sults of the inference for each case study.

The three case studies are similar in nature so they use the same numerical model,
which limits the repetition of model specifics that are incidental to the general method-
ology. Case Study 1 is from an annular flume erosion experiment conducted in Baltimore
Harbour by Maa et al. (1998) (digitised from Sanford and Maa (2001), Figure 1b). Case
Study 2 is a synthetic data set generated from the numerical model itself, with the in-
puts designed to mimic typical unsteady tidal forcing. Case Study 3 is an application
of the method to a set of complex (unsteady and noisy) real-world observations from Edge
et al. (2021). Our goal is to use these case studies of sediment transport to gradually in-
troduce complexity and demonstrate the efficacy of the method for estimating un-observable,
yet important, parameters used in the prediction of the response of a geophysical sys-
tem.
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2 Parameter inference methods
2.1 General approach

We first describe the general framework used in this study to solve the inverse prob-
lem posed in Equation 1. Bayesian statistical and computational techniques are used to
simultaneously estimate the posterior probability of the model parameters (), given some
observations C, stated p(6|C). The approach is derived from Bayes’ theorem,

p(0|C) o< p(Cl0)p(C). (2)

The posterior probability density (herein the posterior) is proportional to the product
of the likelihood, p(C10), and the prior probability density, p(C'). The prior and poste-
rior are m-dimensional distributions, where m is the number of parameters to sample.
The likelihood is a cost function that evaluates the chosen model and penalises model
outcomes that are further from the observations. Only the likelihood function is max-
imised in a frequentist approach; there is no incorporation of prior beliefs in that frame-
work. One advantage of the Bayesian approach is that the prior on each parameter can
represent information that is already known or expected, such as a plausible range of re-
ported values from literature.

Note that in Equation 2 the parameter vector 6 includes o, which represents the
standard deviation of ¢, the residual from Equation 1. For this work we have assumed
that the distribution of values in ¢ is homoskedastic (invariant with respect to predic-
tor variables) and Gaussian, i.e. ¢ = N(0,0). Differences between the model outcome
and the observations may be the result of natural variation, measurement error, or model
mis-specification, all of which are encapsulated in o. By estimating the magnitude of o,
Bayesian inference is able to partition these sources of uncertainty from the uncertainty
in the parameter estimates. This allows for better parameter estimates while still accu-
rately predicting the plausible range C' may take.

The use of Markov Chain Monte Carlo (MCMC) sampling techniques allow the pos-
terior to be approximated in the proportional form in Equation 2. For each step in a Markov
Chain a new 6 is proposed and Equation 2 is evaluated. By doing this, MCMC sampling
is able to explore the posterior space and move towards regions of proportionally higher
probability until a stationary distribution is found. The specifics of defining priors, com-
puting the likelihood function, and sampling the posterior using MCMC sampling are
described in more detail below.

2.2 Likelihood

The likelihood function quantifies the probability that 8 was used to generate a set
of observations, C'. This allows us to compare the probability of different proposals for
f. At this point we separate 8 into the model parameters, 8,,,q and o for clarity. The
likelihood is assumed to be a Gaussian distribution for a sample of observations, C =
(Ci,...,Cy). For computational reasons the likelihood function is evaluated in log-space
and can be written as

n

n 1
L(y/0moa, 0) = —5In(2r) — nln(0) — 5~ Zl (Ci—wi). (3)
Here y = f(0moa) is the output from our chosen model and n is the number of obser-
vations. Note that each element in 6,,,4 and o are free parameters estimated during MCMC

sampling.

2.3 Priors

The prior distributions on each parameter form the second component to the right-
hand-side of Equation 2. They represent the probability that we assign to each param-
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eter before we have performed the inference. Priors can be informative, weakly informa-
tive, or non-informative (diffuse). If we already have detailed information on a param-
eter, say from well-established physical theory, literature, or independent measurements,
we can use an informative prior to limit the space the posterior can move to. Conversely,
for parameters that potentially could occupy a large range, we can set priors to be dif-
fuse so that MCMC sampling can explore this range without being penalised.

Our aim when defining the prior distributions for this research was to limit the pos-
terior sample space to a reasonable range of values that were supported by physical the-
ory and literature. This increases the efficiency of MCMC sampling and reduces the time
required for individual chains to converge on a stationary distribution (Tarantola, 2004).
When the chosen model is a numerical model, priors can also be used to restrict the pa-
rameter space to regions of model stability. For example, an explicit advection-diffusion
numerical model becomes unstable when the Courant number exceeds one, so any pa-
rameter that may cause this to occur must be restricted.

The specific priors used for each case study are described before the results. All
the priors used in this study were either half-normal (#) or log-normal (In\) distribu-
tions. These were used because all of the parameters in our chosen model could not be
negative, including o. Parameters that could be zero were assigned half-normal priors,
while parameters that could not be zero were assigned log-normal distributions. This study
was focused on the development and testing of the described methodology. Priors were
set to be weakly informative, based on a range of possible values determined from lit-
erature.

2.4 MCMC sampling and evaluation

With the likelihood and prior distribution functions defined we can now use Markov
Chain Monte Carlo (MCMC) sampling to investigate the posterior. The aim of MCMC
sampling is to explore the posterior space until the chain (or chains) converge on a sta-
tionary target distribution. For a thorough explanation of MCMC sampling methods the
reader is referred to Gelman et al. (2013, Part III).

For this work we have used Differential Evolution MCMC sampling (DE-MC) (Ter
Braak, 2006), though we note that the method is independent of the specific MCMC sam-
pling method. DE-MC is a variation of the Metropolis algorithm and uses information
from other chains to improve the sampling efficiency for all chains. The advantage of DE-
MC is it’s speed of convergence, particularly in high dimensional problems. A practical
advantage of the DE-MC sampler is that it does not require the computation of gradi-
ents of the likelihood function with respect to the parameters. Note that the framework
was implemented with a different MCMC method (Dynesty, described in Speagle (2020))
with equivalent results.

Evaluation of convergence between chains was performed using common tests de-
scribed in Gelman et al. (2013). Specifically, we determined convergence was met when
the R statistic was less than 1.05 for each parameter and the auto-correlation for all chains
had dropped to near zero. If satisfactory convergence of the chains was achieved the re-
sults were deemed suitable for analysis and prediction.

3 The numerical model

Here we describe the specific numerical model used in this study, f, noting that
in theory any model may take its place. The numerical model is a finite difference dis-
cretisation of the 1-dimensional unsteady advection-diffusion equation (ADE). The ADE,
described next, can be used to model the transport of any scalar, C, in fluid flows (among
other applications). The model is applied to three case studies from the field of cohe-



sive sediment transport. In this field the fluxes of C' at the boundary (sediment-water
interface) of the ADE model are key drivers of changes in C' and much research has been
undertaken to determine the best parameterizations for this process. In this section, we
describe the chosen sub-models, herein boundary flux models, that we have used and de-
fine the parameters of interest.

3.1 The advection-diffusion equation

The full three dimensional time-space dependent form of the ADE can be written
as
oC
T +V.(u)C =V.(vVC) + S, (4)
where C'is the tracer concentration, u is the three-dimensional velocity vector, v is the
diffusivity, and S is a source or sink term.

In order to simplify this equation to one dimension we have made several assump-
tions. The primary assumption is that the observed process can be adequately represented
in a single (vertical) dimension. First, we have assumed that vertical turbulent diffusion,
denoted ., is the only important component in the diffusivity term. Second, we have
assumed that the horizontal flux divergence components (in V.uC') are small and can
be ignored. Last, we have assumed that the only source and sink terms come from the
model bottom boundary. The two boundary flux models are: a source of sediment to the
water column by erosion, E, and a loss of sediment from the water column by deposi-
tion, D. Both terms are only applied to the lowest grid cell. The one-dimensional-vertical
(1Dv) equation used in this study is thus

8£+8(w—w5)0_ 0 oC
ot 0z 0z

’yzaz> +E-D. (5)

Note that the tracer used for this study is sediment, which is negatively buoyant, and
the tracer settling velocity, wg, is a parameter of interest and is applied to the vertical
direction only (herein defined as positive downward). For this study wy is assumed to
be independent of time, space, and C'.

In order to utilise the ADE we discretised each of the terms using an implicit fi-
nite difference method (2nd-order centred-time centred-space). The model was forced
with observations of vertical current velocity (w) and bottom friction velocity (u., used
to estimate the time-dependent bed shear stress and profile of the vertical turbulent dif-
fusivity v,). The output from the model can then be compared to observations of C. The
parameters of interest that we want to estimate are w, and any parameters required for
the chosen boundary flux model (described next).

3.2 Boundary flux models

In sediment transport studies, the upward fluxes into the water column from ero-
sion and the downward fluxes out of the water column to the bed from deposition are
key processes that control the magnitude of C. Erosion and deposition have been the
subject of considerable investigation over the past six decades and the optimal models
to represent these processes are still the subject of ongoing research.

To demonstrate the method described in this study we compared two erosion mod-
els. Both erosion models translate a known bed stress, 7p.q, into a flux C' that is added
to the lowest grid cell as a source term. The deposition flux was simply calculated as the
product of ws and the concentration in the lowest grid cell, Cy. We note that the method
described in this research could be used for comparison and parameter estimation with
any erosion or deposition boundary flux models, or combinations thereof.
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The first erosion model tested was a variation of the popular Ariathurai-Partheniades
equation, given by
E = M(Tpeq — Ter)?  Where 7o, = Terg (6)

(Ariathurai, 1974), shown here without the denominator. Here 7j.4 is the bed shear stress,
which is known, and 7.9, M, and b are the erosion model parameters to infer. Herein
this boundary flux model is referred to as E1.

The second erosion model tested was another variation of the Ariathurai-Partheniades
equation where the term 7., was allowed to vary in proportion to the total C' in the nu-
merical model, m.,

E = M(Tbed — Ter) where  Tep = Tepg + Tinmlt. (7)

For this erosion model M, 7.0, T, and 7, are the parameters to infer. This erosion model
is an approximation of what is commonly referred to as depth-limited erosion. Accurate
modelling of depth-limited erosion requires a multi-layer bed model (e.g. Sanford, 2008)
which was beyond the scope of this study. We used available literature to set the prior
distributions for the free parameters in each boundary flux model, discussed below, be-
fore presenting the case study results.

3.3 Forcing the numerical model

There are several quantities necessary to force the numerical model which need to
be either measured or estimated before the model can be run. The main observation re-
quired is a time series of the bottom friction velocity, u,, or the bed stress, Tpeq, which
are related to each other by Tycq = pu?, where p is a measured or assumed water den-
sity. For all examples 734 was the input into the erosion models. In addition, if fluid ver-
tical velocities are important at the site of interest, they can be included in the model
(as they have been in Case Study 3).

The eddy diffusivity profile, v,, was generated using a parabolic model for unstrat-
ified flow (Dyer & Soulsby, 1988),

V. = Kz (1 - Bzh) . (8)

In this model « is the von Karman constant, z is the height above the bed, and By, is
the height of the diffusivity profile. Above the boundary layer the diffusivity was set to
a constant value of 107* m? s~!. A single point at the top edge of the boundary layer
was smoothed (quadratic interpolation) to remove the discontinuous transition between
the parabolic model and the area of constant diffusivity. The height B}, was either con-
stant or time-dependent, depending on the case study. Note that any diffusivity profile
could be used with this method. To demonstrate our method we have thus chosen a sim-
ple profile, but the implementation of more sophisticated diffusivity models is a possi-
ble focus for future research. Estimation of the diffusivity profiles is only required one
time before inference is performed, so this would not significantly increase the compu-
tation time.

4 Case studies
4.1 Setting priors

All three case studies chosen for this work come from the field of cohesive sediment
transport and as such, they all exhibit similar behaviour. For this work we used weakly
informative priors determined from the literature and used any independent results for
comparison. Because we used weakly informative priors we were able to specify the same
priors for all three case studies [Table 1].
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Table 1. Specified prior distributions for all case studies, including the 95% credible intervals

(CI) and relevant references.

Parameter Prior 95% CI References

Neville (1986), Cartwright et al. (2013),
Voulgaris and Meyers (2004),
Maa and Kwon (2007),
Manning and Schoellhamer (2013)

ws x 1072 m s~ InN(0.5,0.7)  (0.50, 5.34)

M x 10~

Winterwerp and van Kesteren (2004),
kg m~2 s~ (Pa—?)* H(2O) (44'83)

Maa et al. (1998), Egan et al. (2021)

7.0 x 102 Pa 7‘[(3) (6.72) Egan et al. (2021), Maa et al. (1998),
Edge et al. (2021)
Egan et al. (2021),

b/ InN(0.25,0.5)  (0.48, 3.42) Brand et al. (2015)

T Pa ™ InN(0.5,1.5)  (0.09, 31.05) Sanford and Maa (2001),
Brand et al. (2015)

ox1073 kg m™® H(3) (6.72) -

*M units include the term Pa~? for the boundary flux model E1 but not for E2.

All the priors were defined using distributions that could not be negative based on
physical theory and literature. Each parameter was scaled to be (close to) order one for
MCMC sampling. For parameters where the literature indicated that the underlying value
may span many orders of magnitude, such as M and 7,,,, we used initial (user specified)
testing to narrow down the likely range, and then specified priors to cover a few orders
of magnitude. Our initial uncertainty in these parameters was reflected by the large 95%
credible intervals (CI) of the priors [Table 1. We compare and discuss the priors in light
of the inferred posteriors in the case study results below.

4.2 Case Study 1: annular flume data
4.2.1 Observations

This case study is based on an annular flume experiment conducted in Baltimore
Harbour (described in Maa et al., 1998). Note the data was digitised from the corrected
results of total mass eroded (m.) and bed shear stress (7peq) shown in Sanford and Maa
(2001), Figure 1b, with m, related to the depth-averaged tracer concentration (C) by
the height of the flume. This case study is typical of controlled erosion experiments per-
formed over naturally deposited cohesive sediment beds. It involved a series of stepped
increases to the applied bed stress and regular measurement of C over time |[Figure 1].
In such tests the next step is typically initiated once C stabilises (OC /0t reaches zero).
The relationship between bed strength (7.) and mass eroded (m.) can then be examined
by using the steady state values at the end of each step.

Here, the inference on the model parameters is performed using the entire time se-
ries of data, not just the steady points at the end of each bed stress step. Note that be-
cause this case study only uses the depth-averaged tracer concentration, C, the advection-
diffusion model is superfluous and the problem may be simplified to a boundary condi-
tion (as demonstrated by Zhang et al., 2021). Later case studies use spatially sparse ob-
servations of C'. For brevity we have used the same method for all three case studies.
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Sanford & Maa (2001, Figure 1b)
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Figure 1. Observations from the Maa et al. (1998) (digitised from Sanford and Maa (2001),
Figure 1b) annular flume experiment for site White Rocks showing measured bed stress and

C over a period of 250 minutes. The steady state values (7, and C) used to estimate the bed
strength profile are shown as the larger scatter points. C' has been converted to a mass concen-

tration (from mass per unit of bed area) for comparison with the model output.

4.2.2 Model specification

We digitised the time series of bed stress and C from Sanford and Maa (2001) and
used these to estimate the numerical model parameters. The digitised data was (near-
est neighbour) interpolated onto a time grid with resolution, A, of 60 seconds. The ver-
tical grid was divided into four equal cells and the initial C' was set to the observed con-
centration at ¢t = 0. Deposition was set to zero for the entire simulation, a common as-
sumption for cohesive sediment erosion events, thus 9C /0t = E. Therefore, in this case
study we only estimated the parameters in the boundary flux (erosion) model, E, and
not w,. We still present wy in the results to show that the posterior of wy did not sig-
nificantly change from its prior, because any value proposed for ws gave the same model
outcome). We implemented both erosion models, F1 (Equation 6) and F2 (Equation
7). The priors used for each scenario were unchanged from those specified previously.
The likelihood (Equation 3) was modified to use C by taking the depth-average of the
model output for each time step before evaluation.

4.2.3 Results and discussion

Scenarios F1 and FE2 were both sampled for 25,000 iterations using 12 chains. The

first 5,000 iterations of each chain were discarded as burn-in samples. Chain auto-correlation

and R convergence analysis indicated the chains were suitable for inference (not shown).

The posterior distribution for each parameter was approximated as a kernel den-
sity estimate histogram of all the accepted samples in the 12 chains (240,000 samples)
[Figures 2 and 3]. The median and 95% CI of the posterior were calculated for each pa-
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Figure 2. Posterior distributions (blue) for Case Study 1 - scenario E1. Prior distributions
(gray) are shown over the range of the posterior, except for o, where the range was extended to
show both complete distributions. The median and lower and upper 95% CI (brackets) are shown
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Figure 3. Posterior distributions (blue) for Case Study 1 - scenario E2. Prior distributions
(gray) are shown over the range of the posterior. The median and lower and upper 95% CI

(brackets) are shown in the axis titles and white dots on the posteriors.

rameter. Each prior distribution was sampled the same number of times for compari-

son. For both scenarios (E1 & E2) the posterior distributions were found to be well within
the limits of the prior distributions, except for ¢ in F1, which was much higher than the
prior value. This implied that the erosion model in E1 was a poor choice for modelling

the observed data in this annular flume data.

We randomly selected 10,000 samples of 6 from the posterior and re-ran the nu-
merical model for each 6 to generate the posterior predictive distribution. From this we
estimated the 50%, 80%, and 95% CI of the predictions, and compared them to the ob-
servations for E1 [Figure 4 left] and E2 [Figure 5 left].

In scenario E1 there was significant model mis-specification. The chosen erosion
model was not able to replicate the observed erosion rate decay that occurred rapidly
after each increase in bed stress. Instead the results generally fit "through" the stepped
observations of C' [Figure 4]. This meant that the residuals were larger than expected.
For scenario F2, however, the posterior predictions fit the observations well and the es-
timated o was lower, indicating a reduction in model mis-specification (i.e. E2 is a bet-
ter model than ET1).

—10-
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Figure 4. Left: observations of C (yellow/red) and the posterior predictive distribution of

C based on 10,000 samples of the posterior for scenario F1. The 50%, 80%, and 95% CI of the
posterior predictive distribution are shown as graduated gray shading. Right: Plots of the poste-
rior samples from scenario F1 for correlated parameters only (|r?|>0.3). Black lines are the 50%,
80%, and 95% density contours.

Investigation of the posterior samples in scenario E1 indicated that all the param-
eters used in the erosion model (Equation 6) were correlated (|r?|>0.3) |Figure 4 right].
This resulted in a wide range of parameter choices that would produce a similar erosion
flux. For example, a reduction in the erosion rate M could be compensated for by ei-
ther an increase in 7.9 or a reduction in b, or some combination of both. The posteri-
ors of wy and o were not correlated with any other parameters (not shown).

The posterior samples in scenario E2 indicated that some parameter pairs were cor-
related [Figure 5 right]. While the observed parameter covariance can be sampled by this
method, high correlations can result in decreased efficiency of MCMC sampling. For the
later case studies we still test both erosion models F'1 and E2 because they are commonly
used in sediment transport modelling. We note, however, that future work could inves-
tigate erosion models more suited to inverse method sampling techniques.

For scenario E2 we used the results to show the estimated relationship between the
mass eroded, m,., and the bed strength [Figure 6]. Note that the relationship is not just
a fit of the data points (shown in blue) but of the full time series of steady and unsteady
data. The bed strength estimate agrees well with the data points originally used to es-
timate the parameter values by Sanford and Maa (2001). This demonstrates that the
method used here gave equivalent results for the estimation of the bed strength param-
eters, while also simultaneously estimating the erosion rate parameter, M, and o.

This example demonstrates that the method described here can be successfully em-
ployed to estimate multiple model parameters simultaneously, using unsteady data in
a controlled setting. It is important to note that the full time series of observations from
the experiment has contributed to the inference process, not just the steady-state points
at the end of each step. In the following case studies, the same process will be performed
on data sets where neither the forcing nor the concentration C' reach a steady-state.
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Figure 5. Left: observations of C (yellow/red) and the posterior predictive distribution of
C based on 10,000 samples of the posterior for scenario E2. The 50%, 80%, and 95% CI of the
posterior predictive distribution are shown as graduated gray shading. Right: Plots of the poste-

rior samples from scenario E2 for correlated parameters only (|r%|>0.3). Black lines are the 50%,

80%, and 95% density contours.
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Figure 6. Total mass eroded, m., shown with bed strength, 74 (shown as per Sanford and
Maa (2001) Figure 2a, site White Rocks). The blue dots are the applied stress and measured

C values at the end of each step (as shown by the blue and red markers in Figure 1). The gray
shading is the 50%, 80%, and 95% CI of the posterior predictive distribution for 10,000 samples
from the bed strength parameters in erosion model E2 (Equation 7, Tero, Tm, and 7). Note m. is

related to C using the height of the flume.
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Figure 7. Top: synthetic tidal forcing data for Case Study 2, including the friction velocity,
uy (black, shown multiplied by 10), and the bed stress, 7, (gray). Middle: filled color plot of
synthetic C' using erosion model E1 (Equation 6) for the entire model grid with added Gaussian

noise. Bottom: synthetic observations of C for selected heights above the bottom boundary.

4.3 Case Study 2: synthetic tidally-driven erosion
4.3.1 Observations

For this case study we generated synthetic observations with the numerical model
in order to recover specified model parameters. Forcing variables were chosen to describe
idealised spring tide conditions. Guided by the field observations in Edge et al. (2021),
the friction velocity, u., was modelled as sinusoidal with a 12-hour period, thus approx-
imating the semi-diurnal tide. The range of u, was from 1 to 16 mm s~! [Figure 7] (note
the flow never comes entirely to rest in the field observations). Using the quadratic stress
equation, 7, = pu?, where p was 1025 kg m~3, the bed stress thus varied between 0.001
and 0.262 Pa. The erosion model F1 from Equation 6 was used to calculate the erosion
flux. The underlying parameter values used to generate the synthetic observations were;
wg = 1x103ms™ ', M =3x10*kgm 25! Pa=? 7,0 = 7 x 1072 Pa, and
b=1.1.

The model was run for one tidal cycle as a spin up, with the profile of C' on the fi-
nal time step used as the initial quasi-steady condition for a second run. This second run
was used to generate the synthetic observations of C'. We then added noise to the en-
tire time-height grid of C' in the form of random samples drawn from a Gaussian distri-
bution with a standard deviation of 2 x107% kg m~3 [Figure 7b]. Discrete observations
near the bottom boundary (0.5 m ASB) and near the top of the model domain (8.5 m
ASB) were extracted as the forcing observations [Figure 7 bottom|. The exact under-
lying standard deviation of the noise was calculated as the standard deviation of the resid-

uals between the noisy and noise-free model observations of C' (o = 0.199 x 1073 kg
m~3).

4.3.2 Model specification

The model grid was created with a vertical resolution of 1 m and a time step of 300
s. The grid resolution was chosen to be as coarse as possible while still adequately re-
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Figure 8. Posterior distributions (blue) for Case Study 2, synthetic tidally-driven erosion

- scenario E1. Prior distributions (gray) are shown over the range of the posterior. The me-
dian and lower and upper 95% CI (brackets) are shown in the axis titles and white dots on the
posteriors. The teal vertical line in each subplot was the underlying value used to generate the

observations.

solving the vertical profile of C' and ensuring the majority of the prior parameter space
was in a region of model stability (e.g., the Courant number was generally less than one
during sampling). The implicit model form provided more flexibility in this regard. The
total model height was 16 m and the boundary layer height, required to calculate the
eddy diffusivity profile using Equation 8, was set to a constant value of 15 m ASB. Ver-
tical fluid velocities were set to zero for this case study.

We ran one scenario which used the erosion model E7 in Equation 6. There was
no model mis-specification in this example (the model determined the underlying obser-
vations perfectly), thereby a comparison of multiple numerical model scenarios (such as
using both erosion models) was not warranted (note Case Study 2 was tested using ero-
sion model E2 with similar results, but was not presented for brevity). The priors used
for each scenario were unchanged from those specified previously. For this example, the
observations and modelled C' at 0.5 and 8.5 m ASB were supplied to the likelihood func-
tion (Equation 3) as a 2D array.

The numerical model was specified with a constant deposition rate for this case.
There is ongoing research into the apparent disconnect between deposition behaviour in
laboratory experiments and common numerical modelling practices (see Letter and Mehta
(2011) for a detailed explanation). For this work we simply note that numerical mod-
elling of sediment transport over several tidal cycles is generally performed with a con-
stant deposition flux. This method could be used to compare other more complex de-
position models, such as Krone’s probabilistic model (Winterwerp and van Kesteren (2004),
Equation 5.21), a potential topic for future research.

4.3.3 Results and discussion

The scenario E1 was sampled for 25,000 iterations using 12 chains. The first 5,000
samples were discarded as burn-in samples. Chain auto-correlation and R convergence
analysis indicated the chains were suitable for inference (not shown). The priors and pos-
teriors were compared as per Case Study 1 [Figure 8|. The approximate form and 95%
CI of the posterior was calculated for each parameter [see Figure 8 axis titles].

The inference method was able to accurately capture the underlying parameter val-
ues, with the mode and median of the posterior close to the true value [Figure 8]. The
posterior distribution of ws was narrow and the posterior samples were not correlated
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Figure 9. Top: observations of C' (lines) for Case Study 2 from the two selected heights above
the sea bed (ASB) and posterior predictive distributions of C at each height based on 10,000
samples of the parameter posteriors for E1, showing 50%, 80%, and 95% CI as graduated gray
and blue shading. Bottom: Plots of posterior distribution samples of E1 for correlated parame-
ters only (|r?|>0.3). Maroon dots are the specified (true) parameter values. Black lines are the
50%, 80%, and 95% density contours.

with any other parameter. The posterior distributions for all of the erosion model pa-
rameters (M, 7.0, b) were wide in comparison to their median value.

We randomly selected 10,000 samples of 6 from the posterior and re-ran the nu-
merical model for each 0 to generate the posterior predictive distribution. From this we
estimated the 50%, 80%, and 95% CI of the predictions at the two observation heights
and compared them to the noisy synthetic observations [Figure 9]. All of the erosion model
parameters were correlated [Figure 9]. When estimating the posterior predictive distri-
bution of C, however, the majority of the distribution width came from o. This suggested
that the resulting erosion flux was similar for all samples from the posterior, despite the
wide posteriors.

This case study demonstrated that the method can recover the underlying spec-
ified values of the numerical model parameters even when using noisy observations. In
general, the underlying parameter value was at or close to the posterior distribution me-
dian, and the erosion model posterior distributions were wide and correlated. The width
of the erosion model posteriors was surprising, given the lack of model mis-specification.
Testing indicated that these posteriors were more narrow and less correlated when the
exponent b (Equation 6) was further from one and the erosion flux response was less lin-
ear (not shown). In cases where b is known to be approximately one this parameter could
be removed from the model, thus increasing the inference efficiency. In addition, the ero-
sion model itself could be re-parameterised to reduce parameter covariance.
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4.4 Case Study 3: Continental shelf bottom boundary observations
4.4.1 Observations

In this case study we attempt to estimate unobserved parameters using 2017 field
observations from the Northwest Shelf of Australia (Zulberti et al., 2022; Edge et al., 2021).
These studies presented data over 15 days from 2 to 16 April 2017. As it was too com-
putationally expensive to include the entire period in the numerical model using this method,
we selected a period of 3 consecutive tidal cycles (about 37.6 hours) [Figure 10]. This
period was chosen because it captured a range of forcing conditions and sediment response,
and because no large amplitude nonlinear internal waves (NLIW) propagated past the
site at this time; NLIW introduce strong vertical fluid velocities and are likely to cre-
ate horizontal gradients of C, hence creating horizontal advective effects that violate the
assumptions of our model. To evaluate the method, we generated predictions using in-
ferred posterior distributions of model parameters and compared these with independent
observations not used in the parameter estimation (noting that the primary purpose of
the method is parameter estimation and not prediction of C).

The friction velocity and bed stress were derived from high frequency current mea-
surements collected at 0.49 m ASB. Zulberti et al. (2018) showed that use of the quadratic
drag law with C'p = 0.00185 was an accurate proxy for measured Reynolds stress (uge =
0.99u.cq + 0.00, 72 = 0.92) within the log-layer (typically 1 m thick) at this site and
provided a more complete record. Eddy diffusivity profiles, 7., were calculated as per
Equation 8 with the time-varying bottom boundary layer height (BBL) (typically 10 m
thick) estimated using backscatter from an acoustic Doppler current profiler (ADCP),
as per Zulberti et al. (2022) [Figure 11]. Direct estimates of eddy diffusivity at 1.4 m ASB
were typically three times greater than modelled estimates using Equation 8 (the model
is highly idealised). Zulberti et al. (2022) analysed backscatter, current profiles and tem-
perature profiles, and determined that backscatter could be used as a suitable proxy to
estimate the BBL height. Fluid vertical velocities were supplied by the ADCP. Points
close to the sea bed where the ADCP returned poor vertical velocity data were linearly
extrapolated to zero at the bed. Both the BBL height and vertical velocities were low-
pass filtered.

The observations of C, taken from Edge et al. (2021), were chosen at two discrete
heights, 1.4 m and 9.5 m ASB [Figure 10, bottom|. In addition, we performed the in-
ference with a single point measurement (at 1.4 m ASB) in order to test the method sen-
sitivity and applicability to cases where only a single observation height was available.

Closer examination of the forcing data and observations highlights the complex be-
haviour of the continental shelf boundary layer during this period with both barotropic
and (out-of-phase) baroclinic tides influencing the currents and hence the bottom stress
[Figure 11]. The bed stress is not a simple sinusoid: on odd-numbered half-tides the stress
was intensified by internal tides that generate an additional near-bed current. For even-
numbered tides the opposite was true, with internal tides generating an adverse near-
bed current, reducing the estimated bed stress and u,. The near-bed C exhibited var-
ied responses to similar magnitudes of bed stress and there was a time-lag in the response
at different observation heights. Note that the periods where C was greater at the higher
observation point were likely the result of calibration uncertainty and not a negative sed-
iment gradient [Figure 11, bottom]| (calibration uncertainty was not included in this work,
but is a topic of future research).

4.4.2 Model specification

The model grid was similar to Case Study 2, with a vertical resolution of 1 m and
a time step of 300 s. The total model height was 24 m with the maximum BBL height
remaining under 20 m. We ran two different numerical model scenarios for this case study,
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Figure 10. 15 days of oceanographic data from Zulberti et al. (2022) and Edge et al. (2021).
The top panel shows the estimated bed shear stress, Tpeq, and friction velocity, u., from high
frequency current measurements at 0.49 m ASB. The middle panel shows a compilation of C
observations, primarily from the ADCP over the bottom 23 m ASB. The bottom panel shows the
two observed time series of C' used for Case Study 3. The gray shaded area shows the three tidal
cycle periods used in Case Study 3.
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Figure 11. Forcing data and observations of C' for Case Study 3. The top panel shows the
measured bed stress and friction velocity at the bed. The middle panel shows the eddy diffusivity
and the low-pass filtered BBL height (white line). The bottom panel shows the observations of C

used for this case study.
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Figure 13. Posterior distribution samples for Case Study 3 - scenario E1 for the correlated

parameters only (]r?|>0.3). Black lines are the 50%, 80%, and 95% density contours.

E1 using the erosion model in Equation 6, and E2 using the erosion model in Equation
7. The priors used for each scenario were unchanged from those specified previously. In
addition, a modified scenario was also assessed based on scenario E2 that only used ob-
servations from a single height at 1.4 m ASB, rather than two heights (denoted E2-10bs).
Note the numerical model output was interpolated (quadratic) to estimate C at 1.4 m,
as the grid points were spaced at 1 m intervals starting at 0.5 m.

4.5 Results and discussion

All three scenarios (E1, E2, and E2-10bs) were sampled for 25,000 iterations us-
ing 12 chains. The first 5,000 iterations of each chain were discarded as burn-in samples.
Chain auto-correlation and R convergence analysis indicated the chains were suitable for
inference (not shown). Kernel density estimates were used to visually compare the prior
and posterior distributions for scenario E1 [Figure 12|. Parameters M, 7.9, and b were
correlated (|r?|>0.3) in scenario E1 [Figure 13], similar to the previous case studies. Pa-
rameter estimates from the £2 and F2-10bs scenario variations were compared visually
using kernel density estimates [Figure 14| and several of the parameters were positively
correlated (r2>0.3) |Figure 15].

Scenarios F1 and E2 provided similar estimates for comparable parameters (ws,

M, Tero, and o). The settling velocity, ws, was estimated to be around 0.16 x 10~% m
I slower in E2 compared to E1. Mean particle size and effective density measurements

from Edge et al. (2021) gave an estimated mean wg of 0.6 x 107% m s~! using Stokes’
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law. Posterior distributions of the initial bed strength (critical shear stress), 7..o, could
be approximated by a half-normal distribution shape in both scenarios. The observations
do not contain significant time periods where 7.4 was in the range of 7.9 and so the like-
lihood function was insensitive to changes in 7.9 at small values. The posterior predic-
tions were narrower for scenario F2, compared to F1 [Figure 16|, indicating a better fit
using the E2 erosion model.

The two variations of scenario F2 (E2 and E2-10bs) provided interesting insight
into how much data was needed to infer the parameters and how changing the input ob-
servations affected o [Figure 14]. Notably, the inferred parameters were both in a sim-
ilar range, which suggested the method was (relatively) insensitive to the chosen height
of measurements of C. Using observations from only a single height in scenario E2-10bs
also shifted the posterior distribution for some parameters [Figure 14].

We did not expect the results for scenarios F2 and E2-10bs to be similar as the
use of observations at a single point could in theory be matched with many values of w;
(and hence profiles of C'). It appeared, however, that the information contained within
the time series of C at a single point was sufficient to infer the model parameters, not-
ing that the prior distributions help inform the estimate. In addition, using less obser-
vations reduced o, indicating that the erosion model in scenario E2 — 20bs could bet-
ter represent the time series of C close to the bottom boundary (compared to C further
from the bed). Note that the distributions of o for scenarios F2 and E2-10obs were not
directly comparable as the observation data sets were different (Scenario E2-10bs used
less data points).

We compared the observations to posterior predictive distributions of C' using 10,000
randomly selected samples from 6. The 50%, 80%, and 95% CI of the predictions were
calculated at the two observation heights above the sea bed (1.4 m and 9.5 m). The re-
sults were similar for all three scenarios, so only predictions for scenarios F1 and E2 are
presented [Figure 16 top and bottom, respectively].

To demonstrate the ability of the model to make predictions beyond the chosen in-
ference period, we extended the model run. We supplied the forcing data; bed stress, bot-
tom friction velocity, vertical velocity, and BBL height, to the model for the extended
period. We then generated posterior predictive samples for this period using the scenario
E2-10bs and calculated the 50%, 80%, and 95% CI at 1.4 m and 9.5 m ASB [Figure 17].
While this scenario did not use any observations of C' at 9.5 m for the inference, it still
made good predictions at this height for the original model period. Beyond the origi-
nal model period the predictions and observations diverged at both heights.

It is clear from the results with the Case Study 3 field observations, that in addi-
tion to natural variation and measurement errors, in both erosion model scenarios there
is missing physics, as reflected in . The primary sources of model mis-specification are
likely to come from simplification of the ADE and the boundary flux models used (i.e.
the erosion and deposition models). Simplification of the ADE for this model may have
discounted potentially important horizontal advection processes, such as horizontal sed-
iment gradients induced by the internal tide. Improvement of the boundary flux mod-
els is a common aim for sediment transport studies and this method shows promise in
quantifying relative model performance. Future work could also include the implemen-
tation of a multi-layer bed model with consolidation and multiple sediment size classes.

5 Conclusions

We have demonstrated that MCMC sampling can be used in conjunction with a
simple 1D advection-diffusion numerical model (including its boundary model) to esti-
mate parameters of interest with uncertainty quantification. The numerical model itself
used a well known discretisation method and has the potential for inclusion of any bound-
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Figure 16. Top plots: Case Study 3 observations of C (solid lines) and the 50%, 80%, and
95% CI of the posterior predictive distributions of C' from Scenario E1 (graduated shading) at
1.4 m above the sea bed (ASB) (gray) and 9.5 m ASB (blue). Bottom plots: as per the top plots

for Scenario E2.
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Figure 17. Top: Case Study 3 - scenario E2-10bs extended observations of C (solid line) at
1.4 m above the sea bed (ASB) and 50%, 80%, and 95% CI of the posterior predictive distribu-
tions of C' (graduated gray shading). Bottom: as per top panel but for C' at 9.5 m ASB (blue line
and shading). The original model period is shown as light gray shading in both plots.

ary model (in this case erosion or deposition). This allows for a quantitative compari-
son of the performance of any model selected from literature as applied to a given data
set of observations.

We have applied this method to three case studies from the field of cohesive sed-
iment transport. Case Study 1 was an example of a common erosion test conducted us-
ing an in-situ annular flume. In this scenario, the depth-averaged C' was supplied which
simplified the analysis. We demonstrated that the entire time series of bed stress and
C could be used to infer model parameters, where previously only steady state periods
have been used. This indicates that the method should be suitable to apply to similar
investigations with unsteady forcing, such as channel or estuary flows. In-situ param-
eter estimation in cohesive sediment environments such as these is a difficult task, with
conflicting results between methods (e.g. Maa & Kwon, 2007), and state-of-the-art mea-
surement techniques giving a wide range of (potentially noisy) estimates (e.g. Egan et
al., 2021).

We then applied the method to Case studies 2 and 3, synthetic and real examples
of complex BBL forcing and response on the continental shelf. These observations mo-
tivated this work due to the difficulty of measuring the inferred parameters directly in
deep environments (the development and testing of new in-situ measurement techniques
is better suited to shallow environments such as channels and estuaries). Using the method
described in this paper we were able to infer quantitative information on difficult to ob-
serve parameters using measurements that are simple to collect (current velocity and sus-
pended sediment concentration from acoustic backscatter). We note that this simple coarse
resolution model still required computation time of around 2 days (Intel(R) Core(TM)
i7-7700 CPU @ 3.60GHz), so the method may be too computationally costly to apply
to 2- and 3-dimensional numerical models (note there is much literature available on other
methods for larger models (e.g. Bui-Thanh et al., 2012)).

The key output from this method was the posterior distributions of each param-
eter, with predictions being a secondary outcome. Nevertheless, posterior predictions of
C were in agreement with observations (as they must be to achieve good results) but ex-
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tended predictions diverged from observations outside the original inference period. This
was likely due to the simplified representation of baroclinic tides in the model, which,

in reality, were not phase-locked with the barotropic tide. The divergence in predictions
may also be due to changes in the key parameters with time or some other aspect of model
mis-specification.

In summary, the method described here was able to infer key model parameters with
uncertainty. The method inherently partitions uncertainty from the parameters and the
model mis-specification and the measurement error term (o). A more sophisticated model
(e.g., a discretized bed model or a more realistic diffusivity model) could readily be im-
plemented to potentially improve the results. Furthermore, we expect this method would
perform even better if applied to a less complex system, such as a shallow tidal chan-
nel.

6 Open Research

Forcing and fitting data used for Case Study 3 are archived on two UWA library
research data repositories (Zulberti et al., 2020; Edge, 2021). No proprietary software
has been used for this research. All analysis was conducted using Python 3 with the ex-
ception of exporting raw instrument data using manufacturer’s software. Specific pack-
ages utilised frequently for this work (although not specifically required) include Pymc3
(Salvatier et al., 2016), Seaborn (Waskom, 2021), Xarray (Hoyer & Hamman, 2017),
and any packages they depend on. Jupyter Notebooks can be supplied upon request.
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