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Abstract

Surface water nutrient pollution, the primary cause of eutrophication, remains a major environmental concern in Western Lake

Erie despite intergovernmental efforts to regulate nutrient sources. The Maumee River Basin has been the largest nutrient

contributor. The two primary nutrients sources are inorganic fertilizer and livestock manure applied to croplands, which are

later carried to the streams via runoff and soil erosion. Prior studies on nutrient source attribution have focused on large

watersheds or counties at long time scales. Source attribution at finer spatiotemporal scales, which enables more effective

nutrient management, remains a substantial challenge. This study aims to address this challenge by developing a portable

network model framework for phosphorus source attribution at the subwatershed (HUC-12) scale. Since phosphorus release is

uncertain, we combine excess phosphorus derived from manure and fertilizer application and crop uptake data, flow dynamics

simulated by the SWAT model, and in-stream water quality measurements into a probabilistic framework and apply Approxi-

mate Bayesian Computation to attribute phosphorus contributions from subwatersheds. Our results show significant variability

in subwatershed-scale phosphorus release that is lost in coarse-scale attribution. Phosphorus contributions attributed to the

subwatersheds are on average lower than the excess phosphorus estimated by the nutrient balance approach adopted by environ-

mental agencies. Phosphorus release is higher during spring planting than the growing period, with manure contributing more

than inorganic fertilizer. By enabling source attribution at high spatiotemporal resolution, our lightweight and portable model

framework is suitable for broad applications in environmental regulation and enforcement for other regions and pollutants.
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Abstract20

Surface water nutrient pollution, the primary cause of eutrophication, remains a major21

environmental concern in Western Lake Erie despite intergovernmental efforts to regu-22

late nutrient sources. The Maumee River Basin has been the largest nutrient contrib-23

utor. The two primary nutrients sources are inorganic fertilizer and livestock manure ap-24

plied to croplands, which are later carried to the streams via runoff and soil erosion. Prior25

studies on nutrient source attribution have focused on large watersheds or counties at26

long time scales. Source attribution at finer spatiotemporal scales, which enables more27

effective nutrient management, remains a substantial challenge. This study aims to ad-28

dress this challenge by developing a portable network model framework for phosphorus29

source attribution at the subwatershed (HUC-12) scale. Since phosphorus release is un-30

certain, we combine excess phosphorus derived from manure and fertilizer application31

and crop uptake data, flow dynamics simulated by the SWAT model, and in-stream wa-32

ter quality measurements into a probabilistic framework and apply Approximate Bayesian33

Computation to attribute phosphorus contributions from subwatersheds. Our results show34

significant variability in subwatershed-scale phosphorus release that is lost in coarse-scale35

attribution. Phosphorus contributions attributed to the subwatersheds are on average36

lower than the excess phosphorus estimated by the nutrient balance approach adopted37

by environmental agencies. Phosphorus release is higher during spring planting than the38

growing period, with manure contributing more than inorganic fertilizer. By enabling39

source attribution at high spatiotemporal resolution, our lightweight and portable model40

framework is suitable for broad applications in environmental regulation and enforce-41

ment for other regions and pollutants.42

Plain Language Summary43

Nutrient pollution and severe algal blooms remain major problems in western Lake44

Erie despite intergovernmental efforts to regulate sources in the U.S. and Canada. The45

Maumee River Basin has been the largest nutrient contributor to western Lake Erie. His-46

torically, distributed agricultural areas dominated the nutrient contributions to the rivers,47

where sources include animal waste and inorganic fertilizer. Prior studies of nutrient source48

attribution have focused on large watersheds or counties at long time scales; source at-49

tribution at finer spatiotemporal scales, which can enable more effective nutrient man-50

agement, remains a substantial challenge. Our study addresses this challenge by attribut-51

ing phosphorus release at the subwatershed scale using a lightweight network model frame-52

work. Since phosphorus release is uncertain, we integrated water-quality measurements,53

excess phosphorus availability over land, and flow dynamics into a probabilistic frame-54

work to attribute phosphorus release to different sources. Our model reveals significant55

spatial and temporal variability in phosphorus release, which is averaged out in the coarse-56

scale attribution calculated using sparsely deployed water-quality monitors. Being able57

to identify such variability can greatly benefit targeted enforcement by enabling prior-58

itization of regions, time periods, and source types with higher pollutant release.59

1 Introduction60

Despite tremendous expenditures and efforts devoted to cleanup and mitigation in61

recent decades, surface water pollution remains a major environmental concern (Howarth62

et al., 2000; Keiser & Shapiro, 2019; Downing et al., 2021). While pollution in urban ar-63

eas has decreased alongside upgrades to wastewater treatment systems (Stets et al., 2020),64

water quality has hardly improved and even continues to degrade in agricultural areas65

(Stoddard et al., 2016; Stets et al., 2020). Because urban and rural water pollution come66

from fundamentally different sources, interventions to improve water quality in one set-67

ting are often ineffective in the other.68
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Pollution sources in urban areas are mainly point sources, such as wastewater treat-69

ment plants and factories, which release treated effluent to natural water bodies. These70

point sources are regulated by the National Pollutant Discharge Elimination System (NPDES)71

as part of the Clean Water Act since 1972 (USEPA, 2003). In contrast, pollution in agri-72

cultural areas comes primarily from unregulated nonpoint sources, namely the runoff from73

extensive agricultural lands (Baker, 1992; Parry, 1998; Carpenter et al., 1998; Ongley74

et al., 2010; Shen et al., 2012). The pollutants loaded in runoff, which are mainly nu-75

trients including various forms of phosphorus and nitrogen for optimizing agricultural76

yields, originate from inorganic fertilizer sold commercially and manure collected from77

concentrated animal feeding operations (CAFOs) (Baker, 1992; Kumar et al., 2013).78

Excessive application of manure and inorganic fertilizer can result in high nutri-79

ent loss in runoff from agricultural land (Higgs et al., 2000; Weil & Brady, 2017), lead-80

ing to eutrophication followed by harmful algal blooms (EWG, 2022). Such nutrient losses81

in runoff are likely to worsen with more extreme storms and floods due to climate change,82

which intensify runoff and soil erosion (Ramos & Mart́ınez-Casasnovas, 2006; Whitehead83

et al., 2009; Weil & Brady, 2017). While controlling the application rate to reduce nu-84

trient loss is the obvious solution, it is only practicable by first identifying the relative85

contributions of inorganic fertilizer and manure, because agricultural nutrient manage-86

ment requires optimization rather than minimization as done for point sources. How-87

ever, as both inorganic fertilizer and manure provide similar nutrients needed by crops88

(Culman et al., 2020; EWG, 2021), quantifying their relative contributions presents a89

further challenge in addition to difficulties associated with spatial attribution of nonpoint90

sources.91

Detailed spatial attribution of nonpoint sources remains a highly underdetermined92

problem due to the lack of water-quality data with both high spatial and temporal res-93

olutions (OC Interagency WQI Workgroup, 2017). Information about concentrated an-94

imal feeding operation (CAFO) manure production and inorganic fertilizer application95

can help constrain the overall contributions of various source types (Falcone, 2021) and96

locations (ELPC, 2014) but does not directly measure pollutants release into waterways.97

Release can vary due to runoff volume, amount of pollutant available on the surface, and98

soil properties (Sharpley, 1995, 1997; Hart et al., 2004). More frequent and spatially dense99

measurements of pollutant concentrations in waterways would certainly improve our abil-100

ity to detect pollution, but better detection does not necessarily solve the attribution101

problem.102

There is a fundamental difference between pollutant detection and attribution. De-103

tection is the physical measurement of pollutants, identifying whether pollutants are present104

and, if so, in what amount. In contrast, attribution refers to the process of determin-105

ing the sources of emerging pollutants and the relative contributions of sources. Attribut-106

ing pollution to specific sources is more challenging than merely detecting it, because at-107

tribution requires not only pollutant concentration data, but also modeling of physical108

processes of surface water pollutant transport, as well as a framework that establishes109

the possible connection between sources and pollutants.110

The goal of this paper is to advance the ability to attribute phosphorus release to111

different sources at the subwatershed scale by integrating water-quality observations, phos-112

phorus input information, and hydrological modeling into a portable network model frame-113

work. Our subwatersheds are comparable to USGS HUC-12 (12-digit Hydrologic Unit114

Code) watersheds. Our lightweight and portable network model estimates how much phos-115

phorus is released from different subwatersheds. The network model integrates available116

waterway phosphorus measurements with simulated flow dynamics in the stream net-117

work from the commonly used Soil and Water Assessment Tool (SWAT) hydrologic model118

(Arnold et al., 2012; Kast et al., 2019). Since the phosphorus release is uncertain, we com-119

bine the data and model outputs into a probabilistic framework and apply statistically120

robust Approximate Bayesian Computation (ABC) (Beaumont et al., 2002; Sunn̊aker121
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et al., 2013) to estimate ranges of phosphorus release from subwatersheds. Through cross122

validation, we also quantify the information gain from different water quality monitors,123

which can potentially help planning for additional monitor locations for improved at-124

tribution in the future.125

Most prior attempts to attribute phosphorus to nonpoint sources adopt determin-126

istic hydrologic models, where the phosphorus release from a watershed is a function of127

flow dynamics, soil properties, land use, and phosphorus availability (Kast et al., 2019;128

Easton et al., 2007). Such models include SWAT (Arnold et al., 2012; Kast et al., 2019),129

USGS SPARROW (Schwarz et al., 2006), EPA Storm Water Management Model (SWMM)130

(Gironás et al., 2010), EPA Hydrologic Simulation Program-Fortran (HSPF) (Bicknell131

et al., 1993), and Dynamic Watershed Simulation Model (DWSM) (Borah et al., 2002).132

These models use climatic, physiographic (e.g., elevation, land use, soil), and manure or133

inorganic fertilizer application data to model the intensity and phosphorus concentra-134

tion of runoff and phosphorus transport using a series of physics-based governing equa-135

tions (Yang et al., 2016; Liu et al., 2020).136

The model parameters, which control the simulated regional phosphorus contribu-137

tions together with the input data, are calibrated against flow and water-quality mea-138

surements. Calibrated models can quantify the contribution of a certain source type, such139

as manure, by switching off its input and calculating the changes in the simulated phos-140

phorus load. While using hydrologic models to simulate the flow dynamics is efficient,141

which we incorporate into our model framework, these models become significantly more142

computationally expensive and involve larger number of tuned parameters when involv-143

ing multiple nutrient sources and transport processes. They are also cumbersome to de-144

ploy at the basin scale and require continuous updating as new water-quality measure-145

ments become available. The heavy reliance on a great variety of input data also makes146

these hydrologic models unsuitable for areas with limited data availability.147

Instead, existing government assessments utilize simpler, data-driven approaches.148

It is valuable to distinguish between output- and input-based approaches, which differ149

primarily in the data they rely on for source attribution and can lead to substantially150

different results. Output-based approaches rely on existing water-quality measurements151

from waterways (e.g., Ohio EPA, 2016). The phosphorus contributions of a region bounded152

by the corresponding water-quality monitors can be derived using the measurements. How-153

ever, in a given watershed, water-quality monitors with continuous observations tend to154

be sparse and non-uniformly distributed, leading to large and inconsistently sized attri-155

bution regions. Consequently, output-based approaches are inevitably limited in their156

ability to identify spatial variability in pollution.157

Input-based approaches (e.g., ELPC, 2014; EWG, 2021) estimate excess phospho-158

rus using a nutrient mass balance formula that subtracts crop uptake from phosphorus159

inputs. The phosphorus inputs and uptake by crops are constrained by data on manure160

production, fertilizer application, land use, and crop yield. Excess phosphorus estimates161

are generally available at annual intervals and are used as a proxy for a region’s phos-162

phorus contribution to the waterways (ELPC, 2014; EWG, 2021). As both the applica-163

tion of fertilizer or manure and the transport of excess nutrients during phases of high164

precipitation are seasonal, there can be significant deviations between the annual mean165

contributions and peaks within shorter time periods. In addition, input-based approaches166

implicitly assume that manure is applied to provide nutrients for cropland. In reality,167

however, there may exist illegal direct disposal of manure to waterway or spill of manure168

ponds, which should be prioritized in environmental enforcement but can be overlooked169

by input-based approaches.170

To avoid specific assumptions about the level of fertilizer and manure application,171

we adopt a probabilistic model framework using ABC. Like other Bayesian approaches,172

ABC requires the inputs to have probability distributions (priors) from which inputs are173
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sampled to identify distributions of outputs (posteriors) consistent with observations (Beaumont174

et al., 2002). The priors are constructed following the input-based approaches of excess175

phosphorus using manure production data, fertilizer application data, crop phosphorus176

uptake information, and flow dynamics in each subwatershed. Then we update the pri-177

ors with water-quality measurements via ABC. The synergy of these data sources en-178

ables us to achieve improved spatiotemporal resolutions, accuracy, and efficiency over179

existing approaches. In this study, we develop the model framework for part of West-180

ern Lake Erie as a proof of concept, but our proposed method of combining data, hy-181

drological modeling, and ABC can easily be implemented in other regions.182

We focus on Lake Erie, as it has been experiencing recurring eutrophication and183

harmful algal blooms throughout recent decades, threatening the water supply for more184

than 12 million people in the U.S. and Canada (Michalak et al., 2013). The 1978 Great185

Lakes Water Quality Agreement (International Joint Commission, 1978) and subsequent186

regulation of point sources in the past led to a decline in algal blooms in Lake Erie by187

the 1980s (Kane et al., 2014). However, eutrophication and subsequent toxic algal blooms188

returned in the 1990s due to increased agricultural phosphorus runoff (Scavia et al., 2014),189

leading to low oxygen availability for fish and secretion of toxic material (Bridgeman et190

al., 2012). To address this crisis, the U.S. and Canadian governments agreed to reduce191

nutrient release by 40% by 2025 (Botts & Muldoon, 2005; Mohamed et al., 2019). Among192

several watersheds contributing nutrients to western Lake Erie, the Maumee River Basin193

has been identified as the largest contributor (Scavia et al., 2014; Bingham et al., 2015).194

The Maumee River Basin (referred to as Maumee hereafter for simplicity) is the195

largest basin (16460 km2) draining to Lake Erie, covering parts of Ohio, Michigan, and196

Indiana. The Lower Maumee River near the city of Toledo is its outlet. The Maumee197

River has five major tributaries: the St. Joseph, St. Marys, Auglaize, Blanchard, and198

Tiffin Rivers (Figure 1). Maumee has a hot-summer and humid continental climate, with199

most rainfall in March through July and snowfall in December through March. More than200

two-thirds of Maumee is cropland dominated by corn and soybean with sparsely distributed201

urban areas, pasture land, and forests. The soil in the region, composed primarily of silt,202

clay, and fine sand, has poor drainage capacity with high runoff potential (Myers et al.,203

2000). However, widespread tile drainage increases the drainage capacity of much of the204

cropland.205

Maumee has seen a proliferation of permitted and unpermitted CAFOs over the206

last 30 years: Only 5% of the current (2019) CAFOs were constructed prior to 1990, with207

43%, 35% and 17% built during each of the subsequent three decades (EWG, 2019). Maumee208

mainly contains swine, dairy, poultry, and cattle CAFOs, which generate vast quanti-209

ties of liquid and solid manure. Manure and inorganic fertilizer applied to agricultural210

lands are major sources of phosphorus in the rivers of Maumee, which is the limiting nu-211

trient for the formation of algal blooms in Western Lake Erie.212

At the moment, several attribution attempts adopt purely data-driven approaches213

without accounting for pollutant transport. For example, one leading report estimates214

excess phosphorus in Maumee (ELPC, 2014) by comparing phosphorus input and up-215

take by crops (Stackpoole et al., 2019). We improve on such approaches by integrating216

flow dynamics that enable us to account for seasonal and spatial variability at the sub-217

watershed scale. This framework, integrating data with nutrient transport, is poised to218

evolve and improve as more data and detailed physics for nutrient transport become avail-219

able. While continued development is needed, the model is useful for permitting and tar-220

geted enforcement aimed at ensuring better compliance with existing regulations for sur-221

face water quality.222
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Michigan
Indiana

Ohio

Tiffin

Upper 
Maumee

St. Mary's
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Blanchard

Lower 
Maumee

St. Joseph

Lake Erie

Figure 1. The Maumee River Basin. Seven HUC-8 watersheds are shown with white bound-

ary lines. The watershed outlet is at Lake Erie on the eastern side. The basin is part of three

states: Ohio, Michigan and Indiana. The USGS water-quality measurement locations are shown

with black triangles.

2 Methodology223

We use network modeling, hydrologic modeling, and Bayesian techniques to quan-224

tify the nutrient mass from different subwatersheds at high temporal resolution. In this225

study, we focus on the two forms of phosphorus, the organic or particulate form called226

unreactive phosphorus (UP) and the soluble inorganic form called soluble reactive phos-227

phorus (SRP). We then estimate the relative contributions of manure, fertilizer, and soil228

to total SRP and UP. Figure 2 illustrates the architecture of our model. Table 1 defines229

key variables and parameters.230

2.1 Data231

Table 2 shows all data used in this study. We draw upon three broad categories232

of data—hydrologic, physiographic, and agricultural management data. Hydrologic data233

includes river discharge, stream network, and climate data. Physiographic data includes234

land use and soil type maps. Agricultural-management-related data includes fertilizer235

application rates; information about CAFO animal type, size, and count (used for ma-236

nure estimation), and crop yield data. All these data were directly or indirectly used to237

general the network model or its inputs. We choose to prototype our model for the year238

2019, one of the years for which the phosphorus data from the water quality monitor sta-239

tions is the most complete.240
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Figure 2. Model architecture. The central component is the model framework comprising

the network model, which takes prior distributions and flow dynamics as inputs for the forward-

modeling of nutrient transport, and ABC, which generates posterior distributions. Prior distribu-

tions are constructed using data on CAFOs, fertilizer application, and crop type, area, and yield.

2.2 Network Model241

In discrete mathematics, a network or graph is a structure consisting of a set of points242

called nodes where each pair of nodes that share a given relationship is connected by a243

line, called an edge. These edges can be directed (e.g., river flowing from an upstream244

to a downstream node) or undirected (e.g., road connecting two cities). These simple build-245

ing blocks can be used to construct network models representing interconnected systems246

in the extensive fields of social, natural, and engineering sciences (Khuller & Raghavachari,247

1996; Chinowsky et al., 2008; Pokorádi, 2018). For a inland river system unaffected by248

tidal force, we choose to abstractly represent it as a directed acyclic network model, where249

water flows along directed edges and connects at junction nodes, but cannot flow back250

to a point upstream.251

In this study, we represent the surface water system of Maumee using a network252

model where the subwatersheds are represented by source nodes, water quality monitors253

by monitor nodes, river confluences by junction nodes, and rivers by edges. Figure 3 shows254

a schematic of the network model. Each source node receives incoming nutrient load and255

adds its nutrient contribution. We assume the conservation of mass, thus the nutrient256

contributions of source nodes are non-negative. The monitor nodes provide locations for257

comparing simulated nutrient load with water quality measurements without modifica-258

tion. The junction nodes combine incoming nutrient load from upstream branches.259

To construct the network model, we first simplify the stream network (USEPA &260

USGS, 2012) and divide branch bounded by confluences or monitors into segments, such261

that the area of land draining to the outlet of each segment is approximately at the HUC-262

12 scale (see supplementary information for details). The corresponding drainage area263

of each segment outlet forms a subwatershed in our model. Then we insert monitor nodes264

and junction nodes into the simplified stream network at the locations of water quality265

monitor station and river confluences, respectively. We place a source node at the out-266
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Table 1. Definitions and units of key variables and parameters.

Name Definition Unit

Network model

S Set of source nodes

Q Set of monitor nodes

Dq() Forward modeling function mapping sources S to monitor node q

Do
q Observed nutrient mass at monitor node q

Approximate Bayesian Computation (ABC)

ps Prior distribution of nutrient concentration

Ws,t Water yield from source node s at time t m3

θ An individual sample: a |S|×T matrix where each entry θs,t contains the mass

at source node s at time t

g

t Time index days

T Total simulation time period days

N Number of samples drawn in ABC

n Number of samples accepted in ABC

dq Relative ℓ1 distance between modeled and observed mass at monitor q

w Length of simulation window days

Prior distribution

m Excess nutrient mass g

C Set of all CAFOs

Relative contributions of manure, fertilizer, and baseline soil

U Mass of UP contribution of a subwatershed g

R Mass of SRP contribution of a subwatershed g

let of each subwatershed, wherein the nutrient contribution of each source node is at-267

tributable to the corresponding subwatershed. As a result of this division, part of the268

subwatershed outlets and the locations of their corresponding source nodes overlap with269

monitor and junction nodes. The node relationships and resultant network model struc-270

ture are illustrated in Figure 3. The length of the edge connecting each node is defined271

to be the length of the adjoining channel. We note that the network model facilitates272

a useful abstraction: It represents each subwatershed, which is a nonpoint source, as a273

single node in the network.274

The network model domain considered in this study precludes the downstream lower275

Maumee river watershed represented as the empty portion in Figure 3, where algae con-276

sume significant quantities of nutrients for growth and form most algal blooms at Maumee277

(EWG, 2022). In 2019, the measured phosphorus load at the outlet of the lower Maumee278

River watershed was lower than its incoming nutrient load. To ensure conservation of279

mass remains a valid assumption, we choose to exclude the lower Maumee River water-280

shed from our model domain. Therefore, the network outlet is the monitor node just up-281

stream of the lower Maumee River (Figure 3).282

The complete network model of Maumee comprises 489 edges and 490 nodes with283

328 source nodes, 142 junction nodes and 20 monitor nodes (see Figure 3). We let S de-284
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Table 2. Types and sources of data used in the current study. Sources listed in the table in-

clude the National Center for Water Quality Research (NCWQR), National Hydrography Dataset

(NHD), United States Geological Survey (USGS), Environmental Working Group (EWG), Na-

tional Agricultural Statistics Service (NASS), Soil Survey Geographic database (SSURGO),

Oregon State University (OSU), and Oak Ridge National Laboratory (ORNL).

Type Source Spatial Temporal Reference

Network model setup

Water quality NCWQR, USGS 26 stations Daily (NCWQR, 2022)

River discharge USGS 58 stations Daily (USGS, 2016)

Stream network NHDPlusV2 HUC-12 Present (USEPA & USGS, 2012)

Inputs to prior formulation

CAFO EWG Point 1988-Present (EWG, 2019)

Fertilizer rate USGS County level 2002-2017 (Falcone, 2021)

Land use and crop USDA-NASS 30-m 2002-2021 (Boryan et al., 2011)

Crop yield USDA-NASS State level 2006-2021 (USDA-NASS, 2021)

Climate data

DAYMET climate ORNL 1km 1980-Present (Thornton et al., 2016)

note the set of source nodes and Q denote the set of monitor nodes in the network. For285

the network model of Maumee, |S| = 328 and |Q| = 20.286

We route nutrients through the network via advection. Here, we use the edge lengths287

l (m) and hourly channel velocity time series v(t) (m/s) along each edge, which are in-288

terpolated from daily SWAT velocity estimates. We compute the time l/v for nutrients289

departing each upstream node at a given hour to arrive at each downstream node, where290

we assume that nutrients move at the same velocity as the water in the channel. With291

these travel times, we construct the forward-modeling function Dq(), which maps the in-292

put nutrient mass departing each source node s ∈ S to compute the total mass arriv-293

ing at each monitor node q ∈ Q over each time step t ∈ T . We compute the observed294

mass at the monitor node by multiplying the observed daily concentration (g/m3) and295

daily discharge (m3/s) and scaling by 24 × 3600 to obtain the total daily observed nu-296

trient mass. We denote the time series of daily observed nutrient mass at monitor node297

q as Do
q .298

2.3 Approximate Bayesian Computation299

Approximate Bayesian Computation (ABC) is a rejection-based computational method300

for calculating posterior distributions of unknown model parameters (Beaumont et al.,301

2002; Csilléry et al., 2010; Sunn̊aker et al., 2013). In our implementation of ABC, sam-302

ples of source nutrient contributions are accepted/rejected based on the difference be-303

tween simulated and observed nutrient loads. ABC is mathematically simple but robust,304

without relying upon more complex likelihood functions like fully Bayesian methods (Sunn̊aker305

et al., 2013). Using ABC, we can extensively test possible values in the prior distribu-306

tions of inputs without falling into local minima. ABC is particularly suitable for our307

study because (1) the rapid forward modeling of nutrient transport through the network308

makes possible the large number of samples and simulations required due to the large309

number of sources; (2) the method is robust for both uninformative, poorly constrained310
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Figure 3. Network model representation of the stream network at Maumee, with monitor,

source, and junction nodes shown with green, yellow and purple points respectively, and edges

shown with black arrows. (a): Overview of the entire network model, subwatersheds, and major

channels (blue lines). For readability, the source nodes overlapping with junction and monitor

nodes are not shown. The empty portion on the right depicts the lower Maumee river watershed.

(b): Illustration of node relationships present in the network model. The number on each node

represents the number of its incoming edges. Arrows represent edges. Solid arrows represent

channels, while dashed arrows represent node connection with zero physical length. All nodes

have 1 outgoing edge except that the basin-outlet monitor node has none. Upstream-most source

nodes have 0 incoming edge, while the others have 1. All monitor and junction nodes have 1

and ≥2 incoming zero-length edges from upstream source nodes, respectively (hidden in Figure

3a). Upstream-most monitor nodes only receive nutrient contribution from its associated source

nodes and have 1 incoming edge, while the others also receive upstream nutrient load and have 2

incoming edges.

(e.g., uniform) and informative, well constrained (e.g., data-driven) priors; and (3) the311

generated posterior distribution naturally enables uncertainty quantification.312

We use ABC to sample nutrients contributed by each source node. Note that ABC313

is performed independently for each nutrient, so we describe the process for a single nu-314

trient. For each source node s ∈ S, we define a distinct prior distribution ps over the315

nutrient concentration. The derivation for ps is described in detail in Section 2.5. We316

generate an input mass sample at source s and daily time step t by sampling a concen-317

tration from ps, and multiplying by the daily water yield Ws,t. The water yield is an out-318

put from the SWAT model, and is representative of the total outflow from a subwater-319

shed.320

However, as nutrients from different source nodes are aggregated across time and321

space in the simulation, an independent ABC sample does not merely consist of a sam-322

pled mass at a given day and source. Rather, a sample θ ∈ R|S|×T is a matrix, where323

a given entry θs,t is the mass sampled for a particular source s and day t, and T is the324

–10–



manuscript submitted to Water Resources Research

number of daily time steps in the simulation. We generate N samples from the prior dis-325

tributions and run the forward modeling process Dq with each sample θ, generating N326

sets of outputs for each monitor q ∈ Q. Each output of size RT represents time series327

of the simulated nutrient load at a given monitor. At each monitor node q, we compare328

the sample output, Dq(θ) ∈ RT , and observations, Do
q ∈ RT , by computing the rela-329

tive ℓ1 distance dq:330

dq =

T∑
t=1

|Dq,t(θ)−Do
q,t|

P99(Do
q)

, (1)331

where P99(D
o
q) denotes 99

th percentile of the observed daily time series, which we divide332

by to normalize the distances at each monitor node, thus weighting each monitor node333

equally. We use the 99th percentile to trim outliers. We note that when a observed value334

Do
q,t is missing, the given term is ignored in the summation. We accept the n samples335

resulting in the smallest average distance over all monitors. The accepted samples gen-336

erate the posterior distributions of the nutrient input of each source node at each daily337

time step.338

To increase computational efficiency and decrease the size of each ABC sample θ,339

we divide the full simulation period T = 365 into smaller portions. We fix a target sim-340

ulation window of w time steps over the observed monitors, and determine the source341

days such that nutrients departing these sources would arrive at a downstream moni-342

tor within the observed simulation window. Thus, we run T/w independent simulations,343

retaining only accepted samples for relevant source days. Note that this means that each344

source day posteriors are comprised of accepted samples from multiple simulation win-345

dows. In this study, we choose N = 105, n = 10, and w = 1. Higher N slows down346

the model without significantly increasing the model performance.347

2.4 Hydrologic Model348

The network model requires subwatershed-scale flow dynamics as an input to cal-349

culate nutrient load. Here we used the Soil and Water Assessment Tool (SWAT), a phys-350

ically based, semi-distributed hydrologic modeling software (Arnold et al., 1998) to sim-351

ulate the flow dynamics. The SWAT model uses climate forcing data and physiographic352

data (e.g., soil and land use), and it solves the water balance equation to estimate hy-353

drologic components like surface and subsurface flow, which is then used to estimate stream-354

flow. Note that our model framework only requires running SWAT once, where we cal-355

ibrate and validate the model for the years 2015-2020 at Maumee and simulate the flow356

dynamics. We then use the pre-computed subwatershed-level water yield and channel357

velocity as inputs to the network model. Details about the SWAT model are included358

in the supporting information.359

2.5 Prior estimation360

The network model uses an informative prior in ABC for source nodes, where each361

node s represents a subwatershed. For each subwatershed s, we select a beta prime prior362

distribution centered at its estimated excess phosphorus. In the following sections we de-363

scribe the methods to estimate excess phosphorus and the parameterization of the prior364

distribution.365

2.5.1 Excess phosphorus estimation366

We estimate excess phosphorus at the subwatershed scale by solving phosphorus367

mass balance over land. The source term in the phosphorus mass balance formula are368

the phosphorus input from manure and fertilizer application, whereas the sink term is369

the uptake of phosphorus by crops. We first estimate the annual excess phosphorus mass370

in subwatersheds and then divide it by the annual water yield from the SWAT model371
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to calculate the concentration. We construct priors separately for UP and SRP. We as-372

sume that manure contributes to both UP and SRP, inorganic fertilizer contributes to373

only SRP, and plants consume only SRP. Therefore, we estimate excess UP of subwa-374

tershed s, Us, based on the manure application to the agricultural land,375

Us = Um
s , (2)376

where Us
m is the total mass of UP from applied manure in subwatershed s. On the other377

hand, we estimate excess SRP of subwatershed s, Rs, based on inorganic fertilizer ap-378

plication, manure application and plant uptake,379

Rs = Rm
s +Rf

s −Rk
s , (3)380

where total mass of SRP in subwatershed s are input as applied manure, Rm
s , and ap-381

plied fertilizer, Rf
s , and output as crop uptake Rk

s .382

Specifically, we estimate the manure phosphorus (UP or SRP) from each CAFO383

by the product of animal population, manure produced per animal, and manure phos-384

phorus content. We follow EWG (2019) and EWG (2021) and set different manure pro-385

duction rates and phosphorus contents for each major CAFO animal type at Maumee:386

dairy, cattle, swine, and poultry. Then, assuming the manure is evenly applied to cul-387

tivated cropland and pasture within a 5-mile buffer around each CAFO, we calculate the388

manure phosphorus of a subwatershed by aggregating the intersecting proportions of all389

CAFO buffers with this subwatershed. The assumed 5-mile application range is supported390

by previous studies showing that most manure is applied within short distance around391

CAFOs (Long et al., 2018; Kast et al., 2019). Without existing analysis on different ap-392

plication range of different manure types, we utilize a constant radius for all CAFOs for393

simplicity. We calculate the cropland area using the 30-m Cropland Data Layer from the394

United States Department of Agriculture (Boryan et al., 2011). Mathematically,395

Pm
s =

∑
c∈C

acsγ
c
P , (4)396

where P denotes either UP or SRP, C is the set of all CAFOs, acs is the area of subwa-397

tershed s where the cultivated cropland and pasture intersect the manure application398

buffer of a CAFO c, and γc
P is the spatial density of UP or SRP for c ∈ C, defined as:399

γc
P =

mcϕc
P∑

s∈S acs + ace
, (5)400

where mc is the manure mass from c, ϕc
P is the weight percentage of UP or SRP in the401

manure type of CAFO c, and ace is the area of cultivated cropland and pasture outside402

Maumee that intersects the manure application buffer of CAFO c. We calculate ϕc
P fol-403

lowing EWG (2021) based on the manure composition data by Barnett (1994) and EWG404

(2019).405

We estimate SRP from inorganic fertilizer for subwatershed s by multiplying the406

application rate by cultivated cropland area, assuming inorganic fertilizer provides only407

SRP (Kleinman et al., 2002; Culman et al., 2020). We use county-level inorganic fertil-408

izer application rates over the conterminous U.S. provided by USGS (Falcone, 2021). Math-409

ematically,410

Rf
s = asγs,R, (6)411

where as is the cultivated cropland area in s, and γs,R is the spatial density of fertilizer412

SRP application in s.413

We estimate subwatershed-scale crop SRP uptake based on the yields (USDA-NASS,414

2021), areas (Boryan et al., 2011), and phosphorus uptake rates (Watters, 2021) of dif-415

ferent crop types. Mathematically, the SRP uptake in subwatershed s is416

Rk
s =

∑
i∈I

aisy
i
sk

i, (7)417
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where I is the set of crop types, and ais and yis are the area and yield in s of crop type418

i respectively, and ki is uptake rate of crop type i. In this study, I contains corn, soy-419

bean, wheat, alfalfa, and other hay.420

2.5.2 Prior Distribution421

We assign each subwatershed source node s with data-driven prior distributions422

of nutrient concentration. Specifically, we sample nutrient concentrations and multiply423

them with subwatershed-scale water yield time series to acquire the nutrient mass in-424

puts time series, which are then transported in the network. We use the beta prime dis-425

tribution as the prior distribution ps of the nutrient concentrations for source s. The prob-426

ability density function is defined as:427

ps(x) =
xα−1(1 + x)−α−βs

B(α, βs)
, (8)428

where x > 0 is the nutrient concentration, B is the beta function, and α and βs are the429

two parameters of the distribution, where α is a chosen hyperparameter and βs varies430

by subwatershed.431

We center the prior distribution ps for each nutrient at the estimated excess phos-432

phorus concentration for subwatershed s derived in Section 2.5.1. Then we solve for the433

parameter βs using the expectation of nutrient concentration over the subwatershed prior434

E(x) = α
βs−1 (if β > 1), yielding435

βs =
α
∑T

t W t
s

Us
+ 1 (9)436

for βs for UP. This calculation is defined identically for SRP. We fix α = 0.8 for UP437

and α = 0.5 for SRP, where these parameters are chosen to encourage a large mass near438

0 (particularly for the smaller valued SRP), while still allowing for a reasonable prob-439

ability of sampling larger values.440

2.6 Relative contributions of manure, fertilizer, and baseline soil441

To determine the relationship of UP and SRP to manure, inorganic fertilizer, and442

baseline soil phosphorus, we develop a procedure illustrated in this section, leveraging443

previous experimental results (Sharpley, 1997; Kleinman et al., 2002).444

About half of phosphorus in both liquid and solid manure is UP in organic or par-445

ticulate forms (Fordham & Schwertmann, 1977; Barnett, 1994; Kleinman et al., 2002;446

J. C. Hansen et al., 2004). In contrast, the dominant form of phosphorus in inorganic447

fertilizer, such as monoammonium and diammonium phosphate (Culman et al., 2020),448

is phosphate (e.g., Kleinman et al., 2002)—i.e., SRP. According to the runoff experiments449

by Kleinman et al. (2002) and Bertol et al. (2010), UP concentrations in runoff with and450

without application of inorganic fertilizer are similar, while UP concentrations in runoff451

with manure application is significantly higher than the control and fertilizer groups by452

a factor of 2. Therefore, in this study where we consider the short-term (weeks to months)453

effect of fertilizer and manure application on nutrient loss, we assume that no phospho-454

rus from inorganic fertilizer becomes UP and thus only manure application increases UP455

concentration in runoff (i.e. Uf = 0), yielding the following relationship:456

U = Um + U l, (10)457

where Um and U l denote the contributions of UP mass by manure and soil respectively.458

The contribution of soil is a function of the baseline soil phosphorus level, which depends459
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on soil type, the long-term application intensity of manure and fertilizer, and the rate460

of phosphorus removal via crop uptake or runoff.461

To calculate Um from the UP obtained from the network model, we first estimate462

UP from soil, Ul. Kleinman et al. (2002) conducted controlled experiments with high-463

P and low-P soils and found that UP concentration in runoff is sensitive to soil phospho-464

rus level. Although we lack data for constructing quantitative relationship between soil465

phosphorus level and the concentration of UP in runoff, the measured Mehlich-3 P of466

the soil samples used in Sharpley (1997) is similar to the county level median Mehlich-467

3 P at Maumee in 2015 (Dayton et al., 2020). For example, the median Mehlich-3 P lev-468

els of Auglaize County in Ohio in 2015 and the soils used in Sharpley (1997) are 33 mg/kg469

and 25 mg/kg, respectively. However, according to Dayton et al. (2020), the Mehlich-470

3 P of samples within counties are highly varied. We acknowledge our estimation is first-471

order, with the uncertainty associated with the spatially coarse and temporally sparse472

soil phosphorus data and the lack of direct measurements for runoff phosphorus concen-473

tration at Maumee. For each subwatershed s at time step t,474

U l
s,t = min(Ws,t[U ]l, Us,t), (11)475

where [U ]l is the mean UP concentration reported in the control experiments of Sharpley476

(1997), and Us,t is the UP mass estimated by the network model. We then calculate Um
477

using Eq. (10) and U l acquired in the first step.478

After calculating the UP contribution of manure for each source and time step, Um
s,t,479

we calculate the SRP contributions by soil and manure. We first calculate the SRP con-480

tribution of soil, Rl
s,t, in the same way as UP using Eq. (11). Then we calculate the SRP481

contribution of manure, Rm
s,t, based on manure compositions. The forms of phosphorus482

in manure vary with manure forms and animal types. We use the mass ratio SRP/UP =483

λ = 0.98 based on the mean value of the data reported in Barnett (1994) to calculate484

the SRP contribution by manure485

Rm
s,t = min(λUm

s,t, Rs,t −Rl
s,t). (12)486

Therefore, the SRP contribution by inorganic fertilizer is487

Rf
s,t = Rs,t −Rm

s,t −Rl
s,t. (13)488

3 Results489

3.1 Improving spatial and temporal inferences in phosphorus release490

Existing methods that mostly rely on data for quantifying the phosphorus released491

from different regions in a given watershed are spatially and temporally coarse (e.g., ELPC,492

2014; EWG, 2021). As discussed in the introduction section, input-oriented methods like493

ELPC (2014) and EWG (2021) provide estimates at a relatively fine spatial scale but494

only on an annual basis. Output-oriented methods (e.g., Ohio EPA, 2016) relying pri-495

marily on water-quality measurements allow for high temporal variability but at a rel-496

atively coarse spatial scale. Recognizing the complementary nature of these two exist-497

ing approaches, our model combines both data sources to improve our ability to draw498

spatial and temporal inferences.499

Figure 4 compares the spatial variability in estimated unreactive phosphorus (UP)500

and soluble reactive phosphorus (SRP) density over 2019 using three different approaches.501

We focus on the year 2019 as a proof of concept, because it has more data available than502

earlier years and is not yet confounded by the onset of the COVID-19 pandemic. The503

left column (Figures 4a and 4d) mimics an output-oriented approach as used by Ohio504

EPA (2016) with our estimation using only spatially sparse water quality time-series. The505
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Figure 4. Spatial distribution of UP and SRP release. (a,d) Coarse scale output-based at-

tribution using only water quality observations with watersheds delimited by monitors (black

circles). (b,e) Fine scale attribution leveraging CAFO (white points), fertilizer, and crop data to

compute annual excess phosphorus. (c,f) Fine subwatershed scale attribution using the network

model and ABC, which integrates the two approaches.

middle column (Figures 4b and 4e) represents an input-oriented approach as employed506

by ELPC (2014) using spatially granular estimates of excess phosphorus on the annual507

scale. The right column (Figures 4c and 4f) shows the network model output that in-508

corporates both water quality time-series and excess phosphorus data used in the output-509

and input-based estimates shown in the first two columns of Figure 4, respectively.510

The differing spatial resolution of output- and input-based approaches is evident511

from the degree of variability in estimated phosphorus release in Figures 4a and 4d as512

compared to Figures 4b and 4e. In Figures 4a and 4d the watersheds are defined based513

on the location of water-quality monitors, yielding 23 regions bounded by the 23 mon-514

itor locations (USGS, 2016; NCWQR, 2022) depicted as black circles in Figure 4a. Due515

to the long distance between monitor nodes, most of the output-based watersheds are516

large. In contrast, the input-based watersheds in Figures 4b and 4e are subwatersheds.517

In size, these subwatersheds are comparable to USGS HUC12 scale watersheds. Our model518

(Figures 4c and 4f) maintains this subwatershed-scale resolution by using highly vari-519

able excess phosphorus estimates as a prior, but additionally leverages existing measure-520

ments of water quality over time to update the prior, primarily in regions where estimated521

excess phosphorus mismatches the observed phosphorus load.522

In Figures 4a and 4d, we first estimate the annual phosphorus load from daily time523

series at the inlet and outlet monitor nodes of each watershed. Then we divide the dif-524

ference by the area of the watershed to estimate annual phosphorus release density. A525

striking feature of the resulting output-based UP estimates (Figure 4a), is a homogeneously526

high UP release density in the lower half of the domain, primarily in the watersheds of527
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St. Marys and Auglaize (for the exact boundaries of these watersheds, see Figure 1). How-528

ever, the highest UP release density (>280 kg/year/km2) is attributed to the two small-529

est watersheds in upper Maumee with areas less than 50km2. The estimated SRP re-530

lease density in these two watersheds is also about twice as high as in the surrounding531

areas, but attains its maximum value in upper St. Marys (see panel d).532

Figures 4b and 4e show input-based estimates of excess phosphorus release den-533

sity, where the finer scale attribution is facilitated by the high spatial resolution of the534

input land use and CAFO data (see Table 2). We estimate excess phosphorus mass us-535

ing cropland, CAFOs, and county-level fertilizer application data by subtracting crop536

uptake from manure and inorganic fertilizer inputs. Then we divide the excess phospho-537

rus mass by the area of subwatershed to calculate the subwatershed-scale phosphorus538

density estimates. Higher excess UP indicates higher availability of organic and partic-539

ulate which are primarily sourced from CAFO manure, while higher SRP is more indica-540

tive of higher inorganic fertilizer application. Although fertilizer directly contributes to541

SRP, about half of manure P is also SRP (Barnett, 1994). Therefore, high CAFO ma-542

nure production and high inorganic fertilizer application can both lead to high SRP con-543

tribution.544

The input-based approach entails great spatial variability in excess phosphorus es-545

timates, even for neighboring watersheds. Figure 4b shows high excess UP (> 300 kg/year/km2)546

availability in St. Marys, Upper Maumee, upper St. Joseph and Tiffin, and pockets of547

Auglaize—all areas with particularly high CAFO density as evident in Figure 4b where548

CAFOs are represented as white dots. In contrast, Figure 4e suggests that several large549

regions including southern St. Joseph’s and western Blanchard release very low SRP, while550

very high excess SRP is found throughout Tiffin, along the southwestern border of St.551

Marys, upper St. Joseph, and northern Auglaize. The spatial contrast in estimated phos-552

phorus levels between neighboring subwatersheds is higher for SRP than for UP and tends553

to occur between neighboring subwatersheds with differences as high as 1700 kg/year/km2.554

The spatial contrast also coincides with vertical county boundaries at some regions, such555

as upper St. Joseph and Auglaize, as a result of using the county-level fertilizer appli-556

cation rates (Falcone, 2021).557

Finally, Figures 4c and 4f show the fine subwatershed-scale attribution using our558

model, in which we draw phosphorus samples from a prior distribution of excess phos-559

phorus and route these through the stream network using the simulated flow informa-560

tion from the SWAT model, but only retain samples that match the observed water qual-561

ity measurements. Our model maintains a similar spatial resolution as the input-based562

approach (Figure 4b) and pinpoints possible regions of peak contribution more specif-563

ically than the output-based approach. The model estimates are broadly consistent with564

the output- and input-based approaches in the sense that portions of the upper Maumee565

and St. Marys watersheds are expected to contribute the highest UP levels (Figure 4c),566

but rather different in the details. In particular, our model reduces the spatial contrasts567

in the UP and SRP contributions between neighboring subwatersheds, especially in the568

vicinity of high-contribution subwatersheds.569

The differences between our model estimates (Figures 4c and 4f) and the other two570

approaches begs the question why the estimates differ. Comparing our model to the output-571

based approach first, one issue is that the monitor-delimited watersheds in Figures 4a572

and 4d differ by more than two orders of magnitude in size, spanning areas from 10km2
573

to 1560km2. The two watersheds attributed with the highest UP release density are among574

the smallest watersheds (<50km2), suggesting that the heterogeneous sizes of the wa-575

tersheds may bias estimates: There are potentially other small high-density regions within576

larger low-density regions, but when aggregated over a large area, the contributions of577

small regions are smoothed out.578
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The highly heterogeneous attribution suggested by the input-based approach sup-579

ports the previous argument that the output-based approach is smoothing out extreme580

values. However, some of these high values and discontinuities may be the result of the581

assumptions required to convert input data at various spatial resolutions to the subwa-582

tershed scale. While CAFO locations are points, cropland data is available in a 30-m res-583

olution, and fertilizer application is estimated at the county level. Potential evidence of584

this issue is that the highest UP value of over 2000 kg/year/km2 in Upper Maumee oc-585

curs at the intersection of overlapping manure application areas, each with an assumed586

average 5 mile radius. Similarly, sharply contrasting estimates sometimes correlate with587

county boundaries that are unlikely to cause drastically different farming practices such588

as the low-density western third of the basin, and the high-density eastern boundary of589

Blanchard in Figure 4e.590

Our model attempts to strike a balance between these two prior approaches. It re-591

tains much of the spatial heterogeneity suggested by the prior. The additional informa-592

tion on phosphorus inputs allows the model to disaggregate the often large drainage area593

between two monitors into subwatersheds with high and low levels of expected phospho-594

rus release. For example, the two monitor-delimited watersheds constituting St. Marys595

have an estimated UP density of 210 and 224 kg/year/km2 in Figure 4a. Our model con-596

sidering 74 different subwatersheds within St. Marys estimates UP density ranging from597

32 to 324 kg/yr/km2. Meanwhile, our model reduces inconsistencies between estimated598

phosphorus inputs and measured phosphorus in the streams, leading to a spatially smoother599

attribution. For example, large excess UP estimates in Upper Maumee and outlying ex-600

cess SRP estimates on the western border of Blanchard decrease on average by over 50%.601

The differential updating of expected phosphorus contributions flowing to differ-602

ent monitors suggests that our model is able to learn from the available water-quality603

data. In addition to providing a spatially more nuanced assessment of likely phospho-604

rus release, our model resolves one fundamental disconnect between the two prior mod-605

els, namely that the input-based model entails significantly higher levels of total phos-606

phorus release than the output-based model. Overall, we find that the excess phospho-607

rus estimated by the input-based model exceeds that of the output-based model by 29%608

and 156% for UP and SRP, respectively. By integrating the water quality observations609

into our model, this overestimation drops to 9% and 53%, respectively. A partial discon-610

nection between excess phosphorus and phosphorus transport in streams is not neces-611

sarily unexpected, because processes such as manure storage, application approaches, phos-612

phorus storage in the soil, soil erosion and land-use management alter how much phos-613

phorus is applied and how it is redistributed after application.614

To better understand the updates needed to improve the consistency with water-615

quality data, we compare the discrepancy between the prior (represented by Figures 4b616

and 4e) and the posterior (represented by Figures 4c and 4f) for all subwatersheds in Fig-617

ure 5. We plot the mean of the posterior, representing the point estimate from our model,618

against the mean of the prior, representing the estimated excess phosphorus input, for619

each subwatershed at the annual scale. The points are colored by the immediate down-620

stream monitor, and points falling below (above) the dotted black line represent water-621

sheds in which the updated estimate is lower (higher). The majority of subwatersheds622

falls well below the no-update line, implying that the prior overestimates phosphorus con-623

tributions, particularly for SRP and subwatersheds with high contributions. The only624

area where the prior underestimated phosphorus release is Auglaize watershed for UP625

(Figure 5a). While the ABC decreases the prior UP and SRP estimates on average, the626

updates differ at different locations in the network, reflecting specific signals from the627

water-quality measurements.628

Excess phosphorus estimates are generally limited to annual scale by data avail-629

ability (e.g., ELPC, 2014), and thus any higher temporal dynamics in UP or SRP mass630

estimates are entirely reliant on flow patterns. From a practical point of view, it is un-631
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Figure 5. Annual excess phosphorus estimates (prior) vs. phosphorus attribution by the net-

work model (posterior mean) of (a) UP and (b) SRP. Each point represents the annual release

from a subwatershed, colored by the immediate downstream monitor as depicted by the map

legend on the left. The dotted black line represents no updating, in that the the expectation of

the prior and the posterior are equal.

realistic to assume the nutrient concentration remains same throughout the year, par-632

ticularly in agricultural areas where seasonal farming patterns influence phosphorus re-633

lease. Incorporating the water-quality measurement time series not only ensures that our634

model estimates are more consistent with the measurements, but also allows for fine-grained635

temporal attribution.636

In Figure 6 we compare the daily time series of phosphorus load forward-modeled637

to monitor nodes as predicted by the network model posteriors against the input-based638

estimates. In the input-based estimates, the daily nutrient mass is proportional to the639

daily water yield, assuming constant nutrient concentrations throughout the year.640

For concision, we only show estimates for two monitor nodes, with SRP shown for641

a low-flow monitor in Figure 6a and UP shown at a higher-flow monitor in Figure 6b.642

As we have already noted the overall upward bias in the input-based estimates in an-643

nual scale analysis, we choose to display time-series that exemplify the limitations of the644

brittle assumption of constant concentration: the inability to differentiate daily flow dy-645

namics from pollution trends and the insufficiency to account for important seasonal crop-646

ping patterns. We note that the inferior fit by the prior shown in these two plots exem-647

plifies the prior error. The average relative ℓ1 error (see Eq. (1)) between the median of648

the prior and observed over all monitors is about 44%, and 26% of that of the phospho-649

rus estimate for UP and SRP respectively.650

Figure 6a demonstrates two key ways in which the network-model estimates out-651

perform the input-based estimates in capturing SRP temporal dynamics. First, when652

SRP spikes at several points during the relatively lower flow winter time, the network-653

model estimates generally include the the peaks, although underestimating the actual654

contribution. The input-based estimates on the other hand, fail to capture these spikes,655

and significantly overestimates SRP load during January to June. Second, the recession656

pattern after the peak events are relatively slow in the input-based estimates, following657

the recession pattern of the flow. Such slow recession limb is not present in the obser-658

vations or the network-model estimates.659
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Figure 6. Time series of phosphorus mass for (a) SRP at a relatively low-flow monitor in

Auglaize and (b) UP at a relatively high-flow monitor node in Tiffin. The network model 90%

credible interval and median are depicted with a blue shaded region and solid blue line, respec-

tively. input-based estimates are shown with a dotted blue line. The observed mass at monitor

nodes is shown with a solid black line.

While the input-based and network-model estimates are much more closely aligned660

for UP at monitor USGS–04185000 as shown in Figure 6b, the network-model estimates661

still outperform the input-based estimates. Although the network model slightly over-662

estimates UP load during lower flow periods (November-December), the 90% credibil-663

ity interval of the posterior generally include the observation during high flow periods.664

In contrast, the input-based approach overestimates UP load during low flow periods in665

October and November specifically when there is a peak event, whereas it underestimates666

UP load during spring and summer peaks. These mismatches further indicate the miss-667

ing temporal dynamics in the input-based estimates.668

Although our model posterior is more consistent with the water quality observa-669

tions than the excess phosphorus, it still overestimates the overall contributions. The high670

temporal variability in measured phosphorus loads shown in Figure 6 reveals the lim-671

itation of our model assumption and sampling approach that lead to the overestimation.672

As illustrated in section 2.3, we assume a constant daily input at each source node, which673

can affect the phosphorus loads of multiple days at downstream monitor nodes. When674

the water-quality measurements show sharp temporal variations, this assumption hin-675

ders the ability of our model to fully match the data. Moreover, the high dimensions of676

independent samples, each of which contains contributions of all subwatersheds, also add677

to the overestimation. At days with low phosphorus loads, among the computational vi-678

able number of samples, even the smallest sample can still be too high, especially with679

temporally constant prior distributions that significantly overestimate subwatershed con-680

tributions.681

Overall, the above analysis underscores the significant limitations in the use of an-682

nual scale excess phosphorus to attribute phosphorus at high temporal frequency. The683

temporal analysis reveals that the issue with the excess phosphorus estimates is not merely684

overestimation that can be easily remedied by applying a scaling factor, but an overall685

lack of robustness in capturing temporal dynamics. This examination of the time-series686

posteriors also highlights the advantages of establishing a posterior distribution at each687

time step rather than a single time-series in capturing highly variable daily and seasonal688

trends.689
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Figure 7. (a-c): Spatial attribution of 2019 surface water phosphorus sourced from (a) ma-

nure (b) fertilizer and (c) baseline phosphorus, which includes comprises the soil phosphorus from

fertilizer, manure, plant residual accumulated over the years. Each circle represent a fraction of

the total annual total phosphorus in the surface water in the given area, where the size is pro-

portional to the contribution. (d): Subwatershed-scale plot of manure production (EWG, 2019).

(e): Subwatershed-scale plot of fertilizer phosphorus application (Falcone, 2021) subtracted by

crop uptake (Boryan et al., 2011; USDA-NASS, 2021; Watters, 2021) in spatial density.

3.2 Manure contributes more phosphorus than fertilizer690

Besides the fine spatial and temporal resolutions, identifying specific source types691

is a necessary component of phosphorus attribution intended for an actionable nutrient692

management plan. Most phosphorus entering the streams via rainfall or snow melt runoff693

is from manure and fertilizer widely applied throughout the basin. Part of this phospho-694

rus is from newly applied manure and inorganic fertilizer on land surface before they are695

absorbed by soil, and the rest is from phosphorus accumulated in the soil from histor-696

ical applications. We refer to the part of phosphorus from soil as “baseline phosphorus”,697

which is present in runoff regardless of (Sharpley, 1997; Kleinman et al., 2002) and con-698

tinuously replenished by (Nair et al., 1995) recent applications.699

Figures 7a–c shows the spatial distribution of relative contributions of manure, fer-700

tilizer and baseline phosphorus as a fraction of total annual phosphorus release at Maumee.701

For each subwatershed, we first calculate the baseline UP and SRP by multiplying wa-702

ter yield with measured concentrations from runoff experiments with similar soil phos-703

phorus level as Maumee (Sharpley, 1997; Dayton et al., 2020). Then we subtract the base-704
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line phosphorus from the modeled UP and SRP illustrated in section 3.1 to compute the705

contribution of manure and fertilizer. Assuming fertilizer only contribute to SRP, we es-706

timate manure UP as the remaining UP and calculate manure SRP using manure com-707

positions. By subtracting the calculated manure SRP from the total remaining SRP, we708

then obtain fertilizer SRP (See section 2.6 for details). Note that the source type attri-709

bution is based on the modeled phosphorus entering the streams for 2019, and the es-710

timates for manure and fertilizer shown in Figures 7a and 7b represent the contributions711

from application over 2019. The contribution of baseline phosphorus shown in Figure712

7c, however, can include phosphorus accumulated from manure, fertilizer and plant residues713

from past years.714

Figure 7a shows substantial spatial heterogeneity in the contributions of manure.715

Comparison between Figures 7a and 7d shows that the spatial pattern of phosphorus con-716

tribution by manure is highly consistent with that of manure production, indicating the717

high impact of the CAFOs to the total phosphorus release. However, the relative phos-718

phorus contributions of subwatersheds, which is the attribution result of our network model,719

significantly differ from the relative magnitude of manure phosphorus production, sug-720

gesting that phosphorus contribution by manure depends on multiple factors, rather than721

just manure production.722

Figure 7b shows that the contribution of fertilizer is also spatially heterogeneous723

but in a different way from manure. In some regions, such as St. Marys and upper Maumee,724

both manure and fertilizer show high contributions with locally similar spatial pattern725

(Figures 7a and 7b). According to Figures 7d and 7e, this pattern is likely a result of726

fertilizer application along with excessive manure application that results in loss of sur-727

plus phosphorus from both sources. In contrast, some other regions such as part of Tif-728

fin and St. Joseph show high fertilizer but little manure contribution. These regions co-729

incide with the regions with surplus phosphorus in Figure 7e and relatively low manure730

application rates in Figure 7d. Therefore, this high-fertilizer and low-manure spatial pat-731

tern may indicate excessive fertilizer application in regions without significant manure732

application.733

Figure 7c shows the significant and relatively homogeneous baseline phosphorus734

contribution throughout Maumee. It indicates that the baseline phosphorus contribu-735

tion, which is a result of long-term accumulation of phosphorus from different sources,736

is also an important contributor of total phosphorus at Maumee. The homogeneity of737

the inferred baseline phosphorus stem from the our assumption of constant baseline UP738

and SRP concentrations based on experimental data (Sharpley, 1997). In regions where739

the contributions of both manure and fertilizer are low, such as Blanchard, lower St. Joseph,740

and upper Auglaize, the baseline phosphorus is the major contributor. According to Fig-741

ures 7d and 7e, these regions have relatively low manure production and their fertilizer742

application rate is below the crop uptake rate.743

Table 3 enumerates the phosphorus release mass by source type in 2019, totalling744

4,057 tons of total phosphorus, with 46%, 26% and 29% from manure, fertilizer and base-745

line phosphorus, respectively. Overall, the manure contribution is higher than the fer-746

tilizer and baseline contributions in the basin, but the contributions vary substantially747

between different regions potentially due to differences in agricultural practices and ma-748

nure production.749

3.3 Phosphorus release peaks during spring planting period750

Phosphorus transport from land to streams is driven by runoff, slope, soil condi-751

tion, snow accumulation and crops (N. C. Hansen et al., 2000; Vadas et al., 2011; Zhang752

et al., 2019). Increased runoff accelerates phosphorus transport, and the transport can753

potentially increase many-fold if soil is loose and crop roots are short (Blanco-Canqui754

et al., 2004; Aronsson et al., 2016). Soil particles are generally agitated by precipitation755
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Table 3. Attribution of phosphorus to manure, fertilizer and base phosphorus. The attribution

represents the outputs for the year 2019

Watershed Area Total P Manure P Fertilizer P Manure Fertilizer Baseline P
Name km2 tons tons tons % % %

Auglaize 4,316 1,612 721 363 45 23 33
St. Marys 2,054 1,199 660 211 55 18 27
St. Joseph 2,830 1,077 498 276 46 26 28
Tiffin 2,014 842 294 346 35 41 24
Upper Maumee 1,003 827 463 189 56 23 21
Blanchard 1,999 506 152 173 30 34 36

Maumee 13,969 4,057 1,847 1,037 46 26 29

Figure 8. Daily total phosphorus mass in the streams at Maumee attributed to manure

(purple) and fertilizer (green). Precipitation and snow melt time series, smoothed with a 3-days

rolling mean, are shown with the light gray shaded area in the top panel and darker gray his-

togram in the bottom panel. Planting and growing periods for corn and soybeans as well as the

planting period for winter wheat are depicted with with gray shaded rectangles. Note that the

contribution from baseline phosphorus is not shown.

events, with intense precipitation making the land particularly vulnerable to erosion (Sharpley756

et al., 2008). However, soil agitation, and therefore phosphorus transport, is also a func-757

tion of crop type and growing stage (Gao et al., 2009; Guo et al., 2019). Crops with larger758

canopy and widespread root distribution have the ability to reduce soil agitation and hold759

the soil particles, reducing phosphorus movement compared to non-vegetative area (Reubens760

et al., 2007; Zuazo & Pleguezuelo, 2009).761

Figure 8 shows the manure and fertilizer release time series at Maumee along with762

the precipitation, snow melt, as well as crop planting and growing periods. We have ex-763

tracted the precipitation and snow melt data from DAYMET (Thornton et al., 2016) and764

display the 3-day rolling mean of these time-series. We estimate snow melt by comput-765

ing the first-order difference in snow water equivalent between consecutive time steps.766

We highlight the difference between different crop stages by shading the planting and767

growing periods of important crops in Ohio and Indiana. The spring planting period for768

corn and soybean is April 24–June 10 (USDA Statistical Reporting Service, 1984). The769

growing periods of corn and soybean is July to October (USDA Statistical Reporting Ser-770

vice, 1984; Kast, 2018). The winter wheat planting period is October 1 to November 1771

(USDA Statistical Reporting Service, 1984).772
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Figure 8 demonstrates that manure and fertilizer phosphorus transport are high-773

est during the spring planting season. This finding can be attributed to three factors.774

First, frequent and high precipitation increases flow and soil agitation that enhances phos-775

phorus mobility. Second, fertilizer and manure application during the spring planting776

time means that plenty of phosphorus is available for transport. Third, the underdevel-777

oped roots of newly planted crops have limited ability of retaining soil, resulting in rel-778

atively high mobility of soil particles, especially without cover crops. Overall, our model779

results suggest that manure phosphorus release during the spring planting period is around780

one-third of the annual manure phosphorus. Figure 8 also shows total phosphorus is lower781

during the growing season (July–Oct). While precipitation events during growing time782

tend to be similar to those during the planting period, phosphorus availability is lower783

later in the year because of increased soil retention by developed root systems. Addi-784

tionally, phosphorus availability near the surface has decreased due to crop uptake and785

movement to relatively deeper soil layers.786

Snow accumulation and melt control phosphorus transport during the winter months,787

December through March. At Maumee, most precipitation during this period falls as snow788

that accumulates over the soil, with several rainfall events leading to melt (Figure 8).789

During the winter months, the overall phosphorus release is relatively low, with manure790

and fertilizer phosphorus applied during antecedent wheat planting and earlier time cov-791

ered by snow. Several high phosphorus release events coincide with the snow melt events792

during February to April (Figure 8). Snow melt events expose covered phosphorus from793

earlier fertilizer and manure application and convey it into the stream, possibly along794

with manure that might have been applied illegally over snow during the antecedent win-795

ter (Lewis & Makarewicz, 2009).796

3.4 Additional upstream water quality monitoring reduces ambiguity797

in source attribution798

In practice, it requires significant cost and effort to deploy water quality monitors799

in a watershed for pollution source attribution or to add new stations to an existing mon-800

itor network. Therefore, to maximize the useful information we can acquire from the lim-801

ited monitors, we must be strategic about their placement locations. In this section, we802

use a leave-one-out cross validation analysis to first quantitatively demonstrate the re-803

duced ambiguity in source attribution by incorporating the current water quality mea-804

surements and benefit of additional monitors. Then we gain insights about optimal lo-805

cations of additional monitors by comparing information gain from each monitor.806

In the leave-one-out cross validation, we test how well estimates at a particular mon-807

itor node align with the ground truth observations when the model does not have ac-808

cess to these observations during the fitting procedure. Given a set of monitor nodes Q809

in a network, we run a set of |Q| simulations such that for simulation q ∈ Q, monitor810

node q is not included as a target in the ABC algorithm. In the analysis, we compare811

the priors, the posteriors of the leave-one-out simulations, the posterior estimates of the812

full simulations, and the observations. As discussed previously, even when the model does813

have full access to the data from all nodes, the error between the simulated mass and814

the target mass is nonzero. Therefore, we analyze outputs from the full model as well815

for comparison.816

By comparing the posteriors of the leave-one-out simulations, the posterior esti-817

mates of the full simulations, and the observations, we demonstrate the reduced ambi-818

guity with additional monitors. By comparing the posteriors of the leave-one-out sim-819

ulations with the priors, we demonstrate that the model is learning important general-820

izable information about the system dynamics from the data for regions without mon-821

itors too, instead of merely memorizing the target time series. Then we study the sen-822

sitivity of attribution results to particular nodes to quantify the relative importance of823

–23–



manuscript submitted to Water Resources Research

Figure 9. Evaluation of posteriors in validation study area (St. Marys and St. Joseph ad-

joined by outlet): Percentage of days where observed measurement falls within the X-% credi-

bility interval plotted against the size of the credibility interval for (a) UP and (b) SRP. Each

line represents the performance for a particular monitor node when the model has full access to

all node data (solid line) and where the given node is held out (dashed). The color of the line

corresponds to the monitor node in the map legend in the right panel, where the node size is pro-

portional to mean ∆ Full for UP and SRP listed in Table 4 representing information gain from

the monitors.

each monitor node location, shedding light on the areas where additional monitors may824

be most beneficial.825

Figure 9 visualizes the quality of the posteriors, in particular, the frequency with826

which the posteriors at a given monitor include the observed value. Each line depicts the827

proportion of days in which the observation falls within a given size credible interval as828

we vary the size of the interval (e.g., the .6 credible interval is the domain between the829

.2 and .8 quantiles). Each colored line corresponds to the posterior coverage at a par-830

ticular monitor, with simulations when the given node is held out and included shown831

by the dotted and solid lines respectively. The thin dotted black line represents perfect832

coverage, that is, size of the credibility interval and coverage proportion are equal. Due833

to computational constraints, we only validate the model in a the western portion of the834

basin, shown in the validation area map in Figure 9. The validation area includes St. Marys835

and St. Joseph connected by the immediate downstream node draining to the Maumee836

River and the rest of the network.837

Table 4 summarises the posterior coverage and provides point estimate errors for838

each held out node. We summarize the overall coverage of the posteriors by multiply-839

ing the total area under each curve in Figure 9 by 2; a coverage of 1 thus represents per-840

fect coverage. The error is the same relative ℓ1 distance used in ABC to compare the sim-841

ulated and target mass (see Eq. (1)), where an error of 1 represents 100% difference in842

the estimate relative to the observed value. We also provide the error reduced or the cov-843

erage gained when the model has access to the data at the given monitor, which give an844

approximation of the relative importance of each monitor. The difference in the error845

of the leave-one-out run compared to the prior estimate (∆ Prior) represents performance846

gain at regions without monitor nodes from integrating real time water quality data into847

the model.848

The posterior evaluation in Figure 9 and the summary in Table 4 reveal that the849

network model shows significant improvement over the prior, with the errors reduced by850
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Table 4. Validation metrics enumerated for the six monitors in the validation area, as depicted

in the right panel of Figure 9. Error refers to the relative ℓ1 error (see Eq. (1)) between the esti-

mated and observed time series at the held out node, and Coverage is the sum of the area under

the credible interval curves (multiplied by 2) shown in Figure 9. For each metric, we provide

the value for each leave-one-out run (LOO), as well as the difference in each metric when the

model has access to the observations at the given monitor node (∆ Full), and the difference in

the metric compared to the prior estimate (∆ Prior). Positive difference means the metric for the

leave-one-out run is lower. Note that we only provide the difference with the prior for the error

metric, as the excess phosphorus method provides only a point estimate so that the coverage

cannot be computed.

Monitor Error Coverage

LOO ∆ Full ∆ Prior LOO ∆ Full

UP

1 0.182 -0.158 0.627 0.095 0.441
2 0.057 -0.042 0.047 0.847 0.278
3 0.072 -0.021 0.364 0.340 0.135
4 0.085 -0.042 -0.005 0.162 0.164
5 0.089 -0.003 0.030 0.161 0.027
6 0.070 0.009 0.072 0.241 -0.016
All 0.093 -0.043 0.189 0.308 0.172

SRP

1 0.316 -0.289 0.031 0.116 0.603
2 0.108 -0.023 -0.054 0.611 0.032
3 0.183 -0.119 -0.027 0.322 0.299
4 0.085 -0.044 0.003 0.378 0.216
5 0.082 -0.021 0.047 0.388 0.041
6 0.057 0.004 0.076 0.602 0.002
All 0.139 -0.082 0.013 0.403 0.199

82% and 63% on average for UP and SRP respectively from the priors to the posteri-851

ors of the full runs. It is notable that in the leave-one-out runs, the errors at the held852

out nodes still significantly decrease compared with the priors, with a mean reduction853

of 67% and 9% for UP and SRP, respectively. The improvements in the two comparisons854

demonstrate that learning from water quality measurements results in more accurate at-855

tribution throughout the stream network, rather than just at locations with monitors.856

However, the importance of monitors, as measured by the change in error and cov-857

erage, varies significantly between monitors. The information gained by monitor 1 is par-858

ticularly noticeable in the slope increase between the dashed and solid purple lines in Fig-859

ure 9, with an mean coverage gain of 0.522 and error decrease of 0.223 across UP and860

SRP. We note that this particular monitor also demonstrates high relative updates, as861

shown by the dark red points well below the dotted line in Figure 5. On the other hand,862

the downstream-most monitor appears to provide no useful additional information. In863

general, the estimates are significantly more sensitive to the loss of data upstream than864

downstream, indicating that expanding monitoring upstream may be more beneficial for865

disambiguating sources of phosphorus pollution.866

Note that even given the target monitor data during the prior update, the model867

estimates often deviate significantly from the ground truth. In fact, only the UP esti-868

mate at node 2 achieve near zero error (0.015) and perfect coverage (see dark blue solid869

line in Figure 9a), with other estimates falling well below this mark, averaging 0.487 cov-870

erage and 0.057 error for both forms of phosphorus. The high performance at monitor871
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2 is likely due to the fact very few subwatersheds lie above this monitor node and their872

priors generally have small updates, thus allowing the model to fit the observed data al-873

most perfectly.874

4 Discussion875

Attributing sources of phosphorus has been a longstanding challenge at Maumee.876

High-resolution land use data (Boryan et al., 2011) and detailed data on manure pro-877

duction from CAFOs (EWG, 2019) have enabled public agencies like Environmental Work-878

ing Group (EWG) and Environmental Law and Policy Center (ELPC) to map excess879

phosphorus over watersheds using a nutrient balance approach (ELPC, 2014; EWG, 2021).880

The resultant excess phosphorus estimation with high spatial resolution substantially ad-881

vances identification of high-pollution areas and draws public attention to the problem882

of excessive agricultural phosphorus input. However, as shown in Figures 5 and 6, we883

found that equating such estimates with phosphorus losses to surface water can be in-884

consistent with water quality measurements (USGS, 2016; NCWQR, 2022).885

While data of greater quality and quantity, such as detailed manure application ranges886

and finer fertilizer application data, can improve this nutrient balance approach, its fun-887

damental limitation is the missing process connecting phosphorus input and loss. This888

process integrates factors like the spatiotemporal variations in runoff intensity, specific889

agricultural practices, and the biogeochemical evolution of phosphorus forms that are890

beyond the scope of a simple nutrient balance. Resolving these complexities in the style891

of modern hydrological models (Bicknell et al., 1993; Borah et al., 2002; Schwarz et al.,892

2006; Gironás et al., 2010; Arnold et al., 2012; Kast et al., 2019) would make source at-893

tribution expensive and inefficient. However, the resultant phosphorus loss, after being894

transported throughout the watershed, is recorded by water-quality measurements (USGS,895

2016; NCWQR, 2022), which provide opportunities for effective and efficient attribution.896

By integrating basic hydrological routing, our network model achieves greater ac-897

curacy than existing, data-based estimates of excess phosphorus (e.g., Figure 6). It lever-898

ages excess phosphorus estimates as a prior, integrates flow dynamics, and updates the899

prior by learning from water quality measurements. This updating process removes some900

of the bias of excess phosphorus in representing phosphorus loss, perhaps most impor-901

tantly the tendency to overestimate pollution (Figure 5). Compared with the annual-902

scale estimates of excess phosphorus, our results reveal the temporal variation in phos-903

phorus contribution, such as the immense contribution during spring planting and sig-904

nificant loss associated with snow melt (Figure 8).905

Furthermore, using Approximate Bayesian Computation (ABC) without the need906

to define and evaluate likelihood functions (Beaumont et al., 2002; Csilléry et al., 2010;907

Sunn̊aker et al., 2013), our model is more lightweight with fewer parameters, as well as908

easier to set up and faster to run, than hydrologic models. Fine-scale source attribution909

with sparse monitors is an underdetermined problem. Using a probabilistic approach like910

ABC that generates posterior distributions has great advantage over deterministic ap-911

proaches by covering possible scenarios and thus reducing the result bias. Although we912

use a beta prime distribution constructed based on excess phosphorus, the prior distri-913

bution for our model framework is flexible based on data availability and specific pur-914

poses, making our model framework suitable for application in other watersheds. In the915

ABC step of this study, we use the simple random sampling scheme, of which the required916

amount of samples quickly increases with the number of sources. Future work on imple-917

menting more advanced sampling scheme can potentially increase the efficiency and scal-918

ability of the model framework.919

Our model framework may prove useful for policymakers and regulatory agencies920

seeking to make decisions about which pollutant sources to regulate, as well as how to921
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write the rules governing these contributors. Given the limited resources of public agen-922

cies responsible for enforcement, like the U.S. Environmental Protection Agency (EPA),923

as well as the dearth of high-cadence water quality monitors, our model framework can924

also augment permitting and enforcement capacity by enabling agencies to focus scarce925

resources on facilities posing the highest risk. Our model enables spatial, temporal, and926

source-specific targeting of the most significant contributors without having to purchase927

and manage large computational resources or conduct labor-intensive monitoring. The928

model inferences, such as the high contribution of manure from upper St. Marys dur-929

ing spring planting, can enable evidence-based decisions regarding efficient resource al-930

location for pollution control. However, application in streams with significant phospho-931

rus decay, such as the Lower Maumee River with its significant algal blooms, requires932

future work on modeling phosphorus sinks to release the current assumption on mass con-933

servation.934

Because adding new monitors to a stream network is costly, it requires evaluation935

of potential locations to maximize the benefit of additional monitors in attributing pol-936

lution to sources. Our model can help narrow down potential locations by quantifying937

the information gain from different monitors, as illustrated in 3.4. For Maumee, our re-938

sults show that adding monitors to the upstream portion of watersheds, such as the up-939

per St. Marys and upper St. Joseph, is the most beneficial for reducing ambiguity in source940

attribution (Figure 9, Table 4), because the further downstream the measurement, the941

larger the aggregated contribution from upstream regions reflected in it. The downstream942

region of the basin is often an area of concern, because the aggregated pollution from943

upstream leads to serious eutrophication, but our analysis suggests that the focus of water-944

quality monitoring needs to include, or even focus on, the upstream portion of the wa-945

tershed.946

At Maumee, the Clean Water Act efforts during the past years have resulted in im-947

proved nutrient management and decreases in the excessive soil phosphorus levels in some948

counties (Dayton et al., 2020). However, our results suggest baseline soil phosphorus re-949

mains a large contributor (Figure 7). These estimates remain highly uncertain, as we as-950

sume the baseline concentrations to be constant values, taken from runoff experiments951

(Sharpley, 1997). More accurate estimation requires relaxing this assumption by incor-952

porating nutrient concentrations of runoff from cropland without recent fertilizer and ma-953

nure application. Nonetheless, a high contribution from baseline soil phosphorus may954

still be expected given the high soil phosphorus levels in the MRB. For example, accord-955

ing to Dayton et al. (2020), the median Mehlich-3 soil test phosphorus (STP) levels of956

most counties still exceed 27 mg/kg, the upper bound of optimum (Dodd & Mallarino,957

2005), with the larger quantiles of all counties greatly exceeding the optimum (Dayton958

et al., 2020). When STP exceeds optimum, the amount of phosphorus released from soil959

to runoff increases exponentially, leading to high phosphorus concentration even with-960

out additional fertilization (Higgs et al., 2000; Kleinman et al., 2002; Weil & Brady, 2017).961

Increasing surplus phosphorus resultant from imbalanced input and output has been962

a global problem in developed and emerging economies (Bouwman et al., 2013). Besides963

causing direct phosphorus loss into aquatic systems (Figures 7a and 7b), high surplus964

phosphorus also accumulates in agricultural soils and leads to high baseline soil phos-965

phorus levels (Weil & Brady, 2017). As exemplified by the case of Maumee in this study,966

baseline soil phosphorus from agricultural land is a large nonpoint source of pollution.967

Therefore, reducing excessive soil phosphorus and reducing its loss from agricultural land968

is crucial for nutrient management. Under our current model framework, the specific sources969

of the baseline soil phosphorus are unattributable, and its accumulation is a result of long-970

term fertilization (Nair et al., 1995).971

One way of mitigating excessive soil phosphorus is to reduce fertilization on cul-972

tivated cropland (Sheffield et al., 2008). This reduction can be achieved via direct halt-973

ing or reduction of fertilizer and manure application (McDowell et al., 2020), or phos-974
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phorus removal from manure (Lorimor et al., 2000; Sheffield et al., 2008). Another way975

is increasing plant uptake via double cropping of corn and winter cereals (Sheffield et976

al., 2008). Practices that reduce phosphorus loss from high-phosphorus soils include plant-977

ing riparian buffers or cover crops, which reduce runoff intensity and absorb nutrients978

(Zhou et al., 2014; Weil & Brady, 2017).979

5 Conclusions980

This study advances our ability to attribute phosphorus sources by developing a981

lightweight modeling framework that integrates excess phosphorus derived from data,982

flow dynamics derived from hydrologic model, and water quality measurements data into983

a network model framework and applies the statistical approach Approximate Bayesian984

Computation. Our model reveals significant spatial and temporal variability in phospho-985

rus release, which is averaged out in the coarse-scale attribution by calculating the dif-986

ference between nutrient load measurements at sparsely deployed monitors. Being able987

to identify such variability can benefit targeted enforcement via prioritizing regions and988

time periods with higher pollutant release.989

Open Research Section990

v1.0.1 of the code used for the network model framework (Verma, Wei, et al., 2022)991

is preserved at https://doi.org/10.5281/zenodo.7246383 with open access. The us-992

age instructions are provided in the README files of the repository. All the processed993

data used in the simulation, part of the raw data, and the SWAT simulation results used994

by the network model framework (Verma, Alam, et al., 2022) are preserved at https://995

doi.org/10.5281/zenodo.7295662 with open access. The code for processing the raw996

data, which are either in the data repository or publicly available online, is provided in997

the code repository. The links to the publicly available raw data are also provided in the998

code repository.999
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Text S1. Hydrologic model set-up.

We used the Soil and Water Assessment Tool (SWAT), a semi-distributed, physically
based hydrologic model, to simulate the hydrologic processes in the Maumee River Basin.
The SWAT model solves the water balance equation at its smallest calculation unit, known
as a hydrologic response unit (HRU), to quantify water flux and changes in storage. Each
HRU is determined from the unique combinations of land use, soil, and slope data. The key
strength of the SWAT model is that it can represent the physical hydrologic processes and
model agricultural and water management changes, all while being computationally faster
than commonly used distributed hydrologic models like Variable Infiltration Capacity (VIC).

We used topography, soil, land use, and meteorological time series data to set up
the SWAT model for the Maumee River Basin. Table S1 lists the type, source, and resolution
of each data set used for the SWAT model. We followed four key steps for model
development.

First, we delineated the watersheds using topographic data (via a digital elevation
model, or DEM). The elevation data was used to compute flow direction and flow
accumulation (i.e., the number of grids contributing flow to each grid). Streams generally
have relatively higher flow accumulation value (or higher number of grids upstream
contributing flow), which then used to separate stream networks. Based on the threshold
area for flow accumulation, the stream network density was determined. Using smaller
thresholds yielded denser networks. We tested several thresholds in an attempt to obtain
stream network density resembling the USGS HUC-12 watersheds, ultimately using a
threshold of 3000 ha, or 30 km2. However, we note that the areas we obtained are not
identical to HUC-12 watersheds.

Furthermore, to obtain simulated outputs at locations with USGS water quality and
flow measurements, we added outlet points at these locations. In a few cases, USGS
monitor locations are not exactly on the streamlines due to errors in delineated stream
network locations. The typical approach in this scenario is to snap the monitor locations to
the streamline, which we did for distances up to 100 m from the stream. We note that
positioning outlets subdivides a subwatershed into two, which in some cases resulted in
the creation of much smaller subwatersheds. Furthermore, we identified two channels in
the NHDPlus stream network that are undirected cycles (loops independent of edge
direction); these generally occur when there are bypasses or irrigation channels. Because
we seek to aggregate the channel contributions at subwatershed scale, we collapsed these
loops into single edges. In summary, the watershed delineation process yields



subwatersheds with outlets located at the water quality monitors and stream junctions. For
reference, these monitor and junction nodes are later used to simulate pollutant transport
through the stream network, while the subwatersheds are used as source nodes.

Second, we used the land use map from USDA Cropland Data Layer (Han et al.,
2012), the soil map from SSURGO (Soil Survey Staff, 2015), and slope information derived
from DEM to determine HRUs. SWAT used these three datasets to find unique
combinations of land parcels, which are defined to be the HRUs. All simulation in SWAT is
first computed at the HRU level, then aggregated at the subwatershed level.

Third, we forced the model with temperature and precipitation data from PRISM
(PRISM Climate Group, 2014) to simulate the model at daily time steps from 2014 through
2020. We used 2014 as the spinning period (or warming period, which is necessary for
model stability), so the simulation output is available from 2015 to 2020.

Fourth, we calibrated the model using SWAT-simulated streamflow as the calibration
variable and the USGS streamflow data as the ‘observed’ data. The objective function for
calibration was to maximize Kling-Gupta Efficiency (KGE). Details about calibration and
validation are provided in the following section (Text S2).

Figure S1 shows the elevation, land use, and soil maps used as inputs to the SWAT model.



Figure S1. Input data to the SWAT hydrologic model. (a) 30-m elevation map from Shuttle
Radar Topographic Mission (SRTM). (b) 30-m land use and crop type map from USDA-NASS.
Legend for land use includes only the dominant land use types; others are not shown for
concision. (c) 10-m SSURGO soil map from USDA. Legend for soil type, which consists of a
large number of soil types, is not shown for brevity.



Text S2. SWAT calibration and validation.

When calibrating the SWAT model, we search for the model parameter values for
which model simulation most closely matches the in-situ measurements. Because we use
simulated flow and runoff for source attribution, we calibrate the model using streamflow,
or river discharge. Hydrologic model calibration is generally suggested to be treated as a
multi-objective problem using either multi-site or multi-variable measurements or
multi-response function (Gupta et al., 2009; van Griensven & van Bauwens, 2003; Madsen,
2003). In this study we performed multi-site calibration. For calibration, we chose
Kling-Gupta-Efficiency (KGE) as the objective function (Kling et al., 2012). KGE includes
correlation (r), variability (α), and bias error (β) in its goodness-of-fit criterion (Gupta et al.,
1998; Kling et al., 2012). This goodness-of-fit criterion measures the match between
simulated and observed values on a scale ranging from negative infinity to 1, where 1
indicates a perfect match.

The objective function for optimization is:
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calibrated the streamflow for three years: 2015, 2017, and 2019. The validation periods
were the alternate years: 2016, 2018, and 2020.

We used the Dynamically Dimensioned Search Algorithm (DDS), a widely used method for
hydrologic calibration, to optimize SWAT model parameters (Lin et al., 2017; Tolson and
Shoemaker, 2007). The key advantage of DDS over commonly-used global search
algorithms (e.g., the shuffled complex evolution algorithm) is the ability to dynamically
adjust search space by successively decreasing parameter dimension until iterations reach
a user-defined limit. For this study, we calibrated seven parameters and iterated 3000
times, using the tool Ostrich that has a built-in DDS algorithm (Matott, 2017). Parameter



selection was based on the most commonly-used parameters for streamflow calibration
(Abbaspour et al., 2015; Zambrano-Bigiarini & Rojas, 2013), as well as our experiments to
identify most sensitive parameters. The calibration parameters used in our SWAT model
are listed in Table S1.

Table S1. Calibrated parameters for the SWAT model. Here, R indicates that an existing
parameter value is multiplied by (1+ a given value), while V indicates that the existing
parameter value is replaced by a given value.

Parameter Definition Type of change Range Fitted value
CN2 Curve number for moisture condition II R -0.25 ⎯ 0.25 0.04
ALPHA_BF Baseflow alpha factor for bank storage

(days)
V 0 ⎯ 1 0.99

SURLAG Surface runoff lag coefficient V 0.01 ⎯ 2 0.3
GW_DELAY Groundwater re-evaporation factor V 0.01 ⎯ 50 0.07
SOL_AWC Available soil water capacity (mm

H2O/mm soil)
R -0.8 ⎯ 0.2 0.04

SOIL_K Saturated hydraulic conductivity
(mm/h)

R -0.8 ⎯ 0.2 0.0017

GWQMN Threshold depth of water in the
shallow aquifer required for return
flow to occur (mm)

V -1000 ⎯ 1000 657

Table S2 shows the performance metrics. We find the KGE values for the calibration and
validation periods are 0.78 and 0.82, respectively. R2 for the calibration and validation
periods are 0.87 and 0.83, respectively. The KGE and R2 values testing the match between
simulated and observed flow indicate overall satisfactory model performance.

Table S2. Performance metrics for calibration and validation periods.

Evaluation criterion Calibration period Validation period
KGE 0.78 0.82
R2 0.87 0.83

Figure S2 compares simulated and observed streamflows at multiple USGS sites.



Figure S2. SWAT-simulated vs. USGS observed flow at selected sites.



Figure S2. SWAT-simulated vs. USGS observed flow at selected sites (continued).
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