
P
os
te
d
on

7
D
ec

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
28
10
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Assessing the global influence of ENSO on flood risk through 1600

years of simulations

Lenin Del Rio Amador1, Mathieu Boudreault1, and David A. Carozza1

1Université du Québec à Montréal
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Abstract

El Niño-Southern Oscillation (ENSO) is often considered as a source of long-term predictability for extreme events via its

teleconnection patterns. However, given that its characteristic cycle varies from two to seven years, it is difficult to obtain

statistically significant conclusions based on observational periods spanning only a few decades. To overcome this, we apply

the global flood risk modeling framework developed by Carozza and Boudreault to an equivalent of 1600 years of bias-corrected

GCM outputs. The results show substantial anomalies in flood occurrences and impacts for El Nino and La Nina when compared

to the all-year baseline. We were able to obtain a larger global coverage of statistically significant results than previous studies

limited to observational data. Asymmetries in anomalies for both ENSO phases show a larger global influence of El Nino than

La Nina on flood hazard and risk.
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Key Points:6

• We simulated an equivalent of 1600 years of realistic flood events globally using7

a statistical model forced with climate model outputs.8
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• Asymmetries in anomalies for both ENSO phases show a larger global influence11

of El Niño than La Niña on flood hazard and risk.12
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Abstract13

El Niño-Southern Oscillation (ENSO) is often considered as a source of long-term pre-14

dictability for extreme events via its teleconnection patterns. However, given that its char-15

acteristic cycle varies from two to seven years, it is difficult to obtain statistically sig-16

nificant conclusions based on observational periods spanning only a few decades. To over-17

come this, we apply the global flood risk modeling framework developed by Carozza and18

Boudreault to an equivalent of 1600 years of bias-corrected GCM outputs. The results19

show substantial anomalies in flood occurrences and impacts for El Niño and La Niña20

when compared to the all-year baseline. We were able to obtain a larger global cover-21

age of statistically significant results than previous studies limited to observational data.22

Asymmetries in anomalies for both ENSO phases show a larger global influence of El Niño23

than La Niña on flood hazard and risk.24

Plain Language Summary25

Global assessment of the occurrence probability and impact of floods is of key in-26

terest to environmental research, climate science, economics and financial risk manage-27

ment of flooding (governments, insurance and reinsurance industry, banks). However,28

hydrological models are too complex to evaluate the links between possible harms and29

risks associated to floods and climate variability at global scales for long periods of time.30

Only a few studies have been performed in this direction, but they are limited to obser-31

vational data spanning only a few decades. In this paper, we used the statistical and ma-32

chine learning modeling framework developed by Carozza and Boudreault to relate flood33

hazard and risk to El Niño-Southern Oscillation (ENSO), which is the main driver of in-34

terannual climate variability and one of the most predictable phenomena at these time35

scales. By producing an equivalent of 1600 years of simulations consistent with global36

climate models, we were able to obtain statistically significant results for a larger por-37

tion of the planet than previous studies limited to observational data. We also found a38

greater global influence of El Niño than La Niña on flood hazard and risk.39

1 Introduction40

Interannual climate variability is dominated by the El Niño-Southern Oscillation41

(ENSO) signal (H.-J. Wang et al., 1999). Its mechanisms of teleconnections and influ-42

ence over the climate at global scales have been vastly studied using many different ap-43

proaches, e.g. dynamical (C. Wang, 2018; Liu & Alexander, 2007; Domeisen et al., 2019),44

climate networks (Tsonis et al., 2006; Tsonis, 2018; Zhou et al., 2015), stochastic (Del45

Rio Amador & Lovejoy, 2021a), empirical/statistical (Rashid, 2020; Penland & Sardesh-46

mukh, 1995) and stochastic-dynamical (N. Chen & Majda, 2017; Giorgini et al., 2022).47

Besides conventional General Circulation Models (GCMs), these models have been ap-48

plied to obtain skilful predictions of ENSO with lead times up to several months (X. Wang49

et al., 2020; L’Heureux et al., 2019; Penland & Magorian, 1993).50

In contrast to the atmosphere, which exhibits deterministic predictability limits of51

≈ 7 to 10 days (the lifetime of planetary-size structures), the corresponding limit for ocean52

temperatures can go up to 2 years (Lovejoy & Schertzer, 2012, 2013; Lovejoy et al., 2018;53

Del Rio Amador & Lovejoy, 2021b). This is implicitly evidenced by coupled GCMs, which54

can predict low-frequency sea surface temperature (SST) variabilities such as ENSO and55

the Pacific Decadal Oscillation (PDO) at lead times of up to two years (D. Chen et al.,56

2004; Choi & Son, 2022). There are currently more than 20 models on ENSO for 3-month57

average real-time forecasts of the next 9 months (IRI, 2022). This makes the ENSO phe-58

nomenon the most predictable target of seasonal climate forecast.59

The main interest in forecasting ENSO comes from its strong correlation with episodes60

of rainfall (Shukla & Paolino, 1983), snowfall (Patten et al., 2003), droughts (Yu & Zou,61

2013; Kumar et al., 2006), hurricanes (Pielke & Landsea, 1999; Kim et al., 2009; G. Chen62

–2–



manuscript submitted to Geophysical Research Letters

& Tam, 2010; Zhang et al., 2015) and severe temperature patterns (Yang et al., 2018;63

Ropelewski & Halpert, 1986; Halpert & Ropelewski, 1992; Weng et al., 2009). Prepa-64

ration for such extreme events is essential for decision makers in order to mitigate their65

impact (de Perez et al., 2014). However, given that the characteristic cycle of El Niño66

and La Niña patterns varies from two to seven years, it is difficult to achieve statistically67

significant conclusions based on observational periods spanning only a few decades. For68

instance, although ENSO is known to influence hydrology and precipitation patterns in69

many regions of the world, only a few studies explored its impact on flood risk globally70

(P. J. Ward, Eisner, et al., 2014; P. J. Ward, Jongman, et al., 2014; P. Ward et al., 2016;71

Yan et al., 2020; Corringham & Cayan, 2019; Saghafian et al., 2017). All these analy-72

ses have been performed using observational time series spanning less than 50 years, i.e.73

around only a dozen El Niño events. As Emerton et al. (2017) pointed out, “the like-74

lihood of increased or decreased flood hazard during ENSO events is much more com-75

plex than is often perceived and reported” due to the limited length and the uncertain-76

ties inherent in the data.77

In addition, the simulation of global scenarios of flood risk that are consistent from78

climate, hydrological, hydraulic, and exposure standpoints is also limited by the com-79

putational cost of regional hydrological models and the data requirements that are not80

necessarily available globally (P. J. Ward et al., 2015). Typical approaches usually force81

higher-resolution hydrological models with runoff from lower-resolution climate model82

outputs (Winsemius et al., 2013; Yamazaki et al., 2011), adding an extra layer of com-83

plexity and uncertainty to the final result. This makes unpractical the use of relatively84

large series of climate model simulations to force hydrological flood models with the pur-85

pose of studying the influence of ENSO on flood risk.86

To overcome this lack of sufficiently long global series of observations or hydrolog-87

ical simulations, in this paper we use the global flood modeling framework developed by88

Carozza and Boudreault (C&B in the following) (Carozza & Boudreault, 2021). This data-89

driven model is climate-consistent, global, fast, flexible, and is ideal for applications that90

do not necessarily require high-resolution flood mapping. It applies statistical and ma-91

chine learning methods to relate historical flood occurrence and impact data with cli-92

matic, watershed, and socioeconomic factors for 4,734 basins at Pfafstetter level 5 glob-93

ally.94

The relatively low computational cost of the C&B framework allows us to simu-95

late an equivalent of 1600 years of flood hazard and risk by combining it with bias-corrected96

outputs from GCMs. Our goal is to obtain statistically robust distributions of the in-97

fluence of El Niño on flood risk at a global scale. It builds on the capacity of the C&B98

framework to replicate the actual occurrence and impact of floods from environmental99

variables and the ability of climate models to reproduce global patterns of ENSO events.100

This is of key interest to flood and environmental research, climate science, economics101

and financial risk management of flooding (governments, insurance and reinsurance in-102

dustry, banks).103

2 Data and Methods104

In the following paragraphs, we briefly describe the methods and data used in the105

C&B global flood risk modeling framework to simulate the occurrence and impact of floods106

around the globe, based on environmental and socioeconomic factors. We then present107

the GCM ensemble chosen to feed the model to produce long series of flood events which108

are physically consistent with the climate dynamics. Finally, we discuss the index used109

to characterize ENSO for each model output, aiming to identify statistical relationships110

between annual flood hazard and risk and the ENSO cycle.111
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2.1 Global Flood Risk Modeling Framework112

The C&B global flood risk modeling framework, introduced by Carozza and Boudreault113

(2021), is driven by historical flood and environmental observations. As a statistical model,114

it is capable of quickly generating large global catalogs of flood events that are physi-115

cally consistent with climate. In the original paper, the authors considered classical and116

machine learning methods, such as logistic and linear regression (LR), random forests117

(RF) (Breiman, 2001), and artificial neural networks (NN) (McCulloch & Pitts, 1943),118

to solve the statistical problems of classification and regression for flood occurrence and119

impact, respectively. In the present work, we only take outputs from the RF model, since120

it consistently showed better predictive skill than LR and is easier to interpret than NN121

models, while still capturing complex non-linear relationships and interactions between122

predictors.123

To train the model, an observational flood occurrence and impact dataset was built124

by intersecting data of historical flood events from the Dartmouth Flood Observatory125

Global Active Archive of Large Flood Events (DFO) (Brakenridge, 2019) with the Hy-126

droBASINS dataset (Lehner & Grill, 2013) of global watersheds at Pfafstetter level 5.127

For each of these 4,734 basins, covering the entire global land surface except Antarctica,128

the model associates annual flood occurrence and impact to the driving climatic, water-129

shed, and socioeconomic factors. In the DFO dataset, each flood is characterized by im-130

pact metrics such as the duration, deaths caused, population displaced, and severity (a131

proxy of return period). Here, we choose the population displaced as a measure of im-132

pact. This could then be translated into a measure of economic impact by simply mul-133

tiplying population displaced by the annual gross domestic product (GDP) per capita134

based on purchasing power parity (PPP) (Kummu et al., 2018) of a given watershed. This135

“GDP disrupted” does not directly measure all the economic losses, but could be regarded136

as a proxy of the economic impact associated to a flood event.137

For the case of flood occurrence, a total of 38 predictors were considered: average138

temperature for the hydrological year (October 1–September 30) and hydrological an-139

nual maximum precipitation at four different timescales were used as climate predictors;140

31 time-invariant covariates were taken to represent watershed characteristics, location141

and storage capacity; and finally, population density and GDP per capita were used as142

time-varying proxies of urbanization and flood control. To model the flood impact, the143

same predictors were used, only replacing the annualized values for temperature and pre-144

cipitation by average values over 7, 8–30, 31–60, and 61–120 days, prior to each flood145

event, for a total of 41 independent covariates.146

The historical data for precipitation was built by combining the Climate Hazards147

Group Infrared Precipitation with Stations (CHIRPS) dataset (Funk et al., 2015) for lat-148

itudes from 50°S to 50°N, and the CPC Global Unified Gauge-Based Analysis of Daily149

Precipitation (CPC Precipitation) dataset (Xie et al., 2007) for all other latitudes. The150

temperature was taken from the CPC Global Daily Temperature (CPC Temperature)151

dataset (Shi, 2007). A full description and references to the data used for all predictors152

are provided in Carozza and Boudreault (2021).153

The model was validated with observations from the DFO database in the period154

1985–2017 for a total of 32 hydrological years. Considering the 4734 watersheds at Pfaf-155

stetter level 5, there are 151,488 occurrence observations that can be either “flood” or156

“no flood”. After removing observations with missing data in the predictors, we are left157

with 128,494 observations for fitting the occurrence model, of which 19,746 are positive158

events used to fit the impact component. Out-of-sample cross-validation was always per-159

formed using a random sampling of 70% for training and the remaining 30% as a test160

set. Carozza and Boudreault (2021) report competitive values of skill score metrics for161

both components of the model, reflecting the ability of the C&B framework to predict162

flood hazard and impact over most of the globe.163

To further confirm the quality of the model and as an example application, Carozza164

and Boudreault (2021) stochastically simulate 1 million years of flood occurrences and165
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impacts over 4,734 watersheds globally. This is achieved by replacing the time-varying166

climate predictors by bias-corrected outputs from the National Center for Atmospheric167

Research’s (NCAR) Community Earth System Model (CESM) Large Ensemble (LE) (Kay168

et al., 2015). Using simulated temperature and precipitation data from the 40 members169

of CESM-LE in the 40-year period 1980–2020 (consistent with the flood observational170

record from DFO), the authors were able to obtain physically consistent flood hazard171

and risk distributions for an equivalent of 1600 years. The 1 million years of events were172

produced by sampling from these distributions. The good agreement between the sim-173

ulated and observational values of flood occurrence and impact is another validation of174

the quality of the C&B framework.175

2.2 Climate Model Output Data176

Our goal in this paper is to study the influence of ENSO on flood hazard and risk177

from the simulations produced by Carozza and Boudreault (2021). Besides the possi-178

bility to obtain long series of flood events by combining independent outputs from its179

40 members, we also choose the CESM-LE for its highlighted skill on reproducing ENSO180

events and its associated teleconnetion patterns (Deser et al., 2012; Vega-Westhoff & Sriver,181

2017). The CESM (Hurrell et al., 2013) is a fully coupled climate model composed of182

seven modules: atmosphere, land, river runoff, ocean, sea ice, land ice, and ocean wave.183

It was introduced by NCAR to examine interannual climate variability in the context184

of anthropogenic climate change and focused on improving the modeling of ENSO fea-185

tures, including its asymmetry and diversity, by introducing the westerly wind bursts186

parameterization (Tan et al., 2020).187

The CESM-LE is a set of 40 independent runs simulating the Earth system for the188

years 1920–2100 that share the same forcing of radiative gases in the atmosphere and189

aerosols. To achieve independence, each member is initialized with a roundoff error per-190

turbation to the atmosphere in model year 1850. Here we only use the outputs for pre-191

cipitation (rainfall + snowfall) from the Community Land Model 2.0 (Lawrence et al.,192

2011), as well as the temperature 2m above the surface from the Community Atmosphere193

Model 5.2 (Neale & Group, 2012). We also limited the series to the period 1980–2020194

to match the flood observational record from DFO used to fit the statistical model. We195

did so because of the known inability of the RF algorithm to extrapolate out of the train-196

ing domain (Hastie et al., 2009).197

Similar to how it was done with the climate predictors used in the statistical fit step,198

the precipitation and temperature from CESM-LE (originally at 0.5° resolution) were199

aggregated by averaging over the grid points in each level 5 watershed. The methodol-200

ogy of Hempel et al. (2013) was applied to these aggregated values to correct for biases201

in precipitation relative to CHIRPS and CPC Precipitation and in temperature relative202

to CPC Temperature. This debiasing method to correct monthly means and daily vari-203

ability about the means is widely used in the hydrological and flood impact literature.204

2.3 ENSO Index205

As mentioned earlier, we choose the CESM-LE for its ability to replicate global pat-206

terns associated to ENSO events. To study the influence of the latter on flood risk, we207

applied the C&B model to simulate flood hazard and impact using precipitation and tem-208

perature for each member of the CESM-LE outputs, while sea surface temperature (SST)209

from the same ensemble member was used to obtain the corresponding ENSO index. In210

this way, the physical links that relate ENSO to flood occurrence and intensity are pre-211

served through the internal dynamics of the climate model.212

There are many indices that are typically used to define the phase and strength213

of ENSO events. They include regional SST–based indices [e.g.: Niño-1+2, Niño-3, Niño-214

4, Niño-3.4, and Japan Meteorological Agency (JMA)], the surface atmospheric pressure–based215

Southern Oscillation index (SOI), and other more complex definitions such as the trans-216
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Niño index (TNI) and the multivariate ENSO index (MEI). Each of them has its own217

benefits and disadvantages. A detailed description and intercomparison among the in-218

dices mentioned above is given by Hanley et al. (2003). In the present study, we choose219

the JMA index because of its good sensitivity on selecting ENSO events (Bove et al., 1998).220

The Japan Meteorological Agency defines the ENSO index as a 5-month running221

mean of spatially averaged SST anomalies over the tropical Pacific: 4°S–4°N, 150°W–90°W222

(similar to the region used for the Niño-3, but with 1° reduction in latitude). To iden-223

tify ENSO years, they use the same definition that we use to identify annual flood events224

for hydrological years: from October through the following September. If the index value225

is above 0.5°C for at least 6 consecutive months (including October-November-December),226

the ENSO year is categorized as El Niño, if it is below −0.5°C as La Niña, and as neu-227

tral for all other values. Another advantage of the JMA index is that the ±0.5°C thresh-228

olds used to determine the different phases is very close to the more general range de-229

fined from the 25%–75% quantiles: −0.52°C to 0.47°C for JMA index in the period 1894–1993230

(Hanley et al., 2003). It is also worth mentioning that the correlation between the ENSO-231

JMA index and other ENSO indices is very high (above 0.9) and as such, we feel that232

using another index to identify ENSO phases would not influence our conclusions.233

3 Results234

In this section, we first analyze the relationship between annual flood occurrence235

and ENSO without distinguishing individual phases. Then, we present global maps of236

flood impact anomalies separating El Niño and La Niña events. This distinction allows237

us to detect asymmetries in the influence of ENSO on flood risk. We compare our re-238

sults with previous studies that perform similar analyses at a global scale or for specific239

regions.240

3.1 ENSO Influence on Flood Occurrence241

To simulate the annual occurrence of floods from the CESM-LE outputs, the C&B242

model performs Bernoulli trials using the probability parameter obtained from the RF243

algorithm. The RF was fitted with observational data and forced with bias-corrected pre-244

cipitation and temperature for each CESM ensemble member year and watershed (40245

members × 40 years × 4,734 watersheds). In Fig. 1a, we show an example time series246

of flood occurrence probability (black curve) from one of the ensemble members for a247

random basin centered at 14.7°N 85.8°W (in Honduras). From the same GCM output,248

we used SST to compute the annually averaged ENSO JMA index, shown as coloured249

bars in Fig. 1a. The ENSO phases for each hydrological year were identified according250

to the criteria described in Section 2.3.251

Similar series were obtained for each of the 40 CESM-LE outputs, giving a total252

of 1600 points to compute the Pearson correlation between the occurrence probability253

and the annually averaged ENSO JMA index for each basin. The results are shown in254

Fig. 1b, where watersheds without enough observational data to perform the fit are shown255

in black, and locations where the correlation is different from zero with less than 95%256

confidence are shown in white (absolute value is less than 0.05, considering 1600 pairs257

of data). The black area (corresponding to high latitudes lacking topographical obser-258

vations for the predictors) represents approximately 12% of the global surface over land259

(excluding Antarctica).260

The correlation patterns shown in Fig. 1b generally agree with regional results re-261

ported for Asia (Iqbal & Hassan, 2018; Saghafian et al., 2017), North America (Corringham262

& Cayan, 2019; Hamlet & Lettenmaier, 2007), South America (Isla & Junior, 2013), Aus-263

tralia (Kiem et al., 2003), Europe (Nobre et al., 2017) and Africa (Nicholson & Kim, 1997).264

To our knowledge, there are only a few studies in the literature reporting links between265

climate oscillations and floods at global scales [see the review by Kundzewicz et al. (2019)],266

most of them led by the VU Amsterdam group (P. J. Ward, Eisner, et al., 2014; P. J. Ward,267
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(a)

(b)

Figure 1. a) Example time series of occurrence probability (in black) from one of the en-

semble members for a basin centered at 14.7°N 85.8°W, and the corresponding ENSO index for

the same GCM output. b) Pearson correlations between the combined 1600-point time series of

occurrence probabilities and the annually averaged ENSO JMA index. Locations with correla-

tion different from zero with less than 95% confidence are shown in white. Watersheds without

enough data to perform the fit are shown in black.

Jongman, et al., 2014; P. Ward et al., 2016; Yan et al., 2020). In general, the correla-268

tion patterns shown in Fig. 1b match those reported by Ward et al. with a few excep-269

tions.270

In P. J. Ward, Eisner, et al. (2014), the authors report significant correlation (with271

more than 90% confidence) for 37% of land area. In the map shown in Fig.1b (despite272

the more restrictive criterion of zero being out of the 95% confidence interval) we get sig-273

nificant correlation for 55% of the total land area (complementing the 33% not signif-274

icant plus 12% corresponding to no data). This makes the present work the study with275

the largest global coverage of significant correlation between flood hazard and ENSO to276

date.277

From the significant correlation values, 35% of the overall land area are positive278

(higher occurrence probability during El Niño and lower during La Niña) and 20% of the279

total land surface are negative (lower during El Niño and higher during La Niña). This280

contradicts the results from P. J. Ward, Eisner, et al. (2014), where they find larger land281

surface with negative correlation (23%) than with positive significant correlation (14%).282

Notice that in their paper the signs are inverted, since they use the Southern Oscilla-283

tion Index (SOI) to characterize ENSO, which is in opposite phase with respect to the284

JMA index used here. It is worth mentioning that they only use 41 years of observations285

with 10 El Niño and La Niña events.286
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3.2 ENSO Influence on Flood Impact287

The correlations reported in the previous section provide an overall idea of the in-288

fluence of ENSO on flood occurrence at the global scale. However, they do not allow the289

individual effects of each of the phases to be distinguished. In the following, we make290

this distinction to analyze the relationship between ENSO and flood risk, measured through291

population displaced and GDP disrupted.292

In Fig. 2a and b, we show maps of anomalies averaged over El Niño and La Niña293

phases, respectively. These variations are taken with respect to the mean population dis-294

placed by flood events considering all the hydrological years [see Fig. 10 in (Carozza &295

Boudreault, 2021)]. Regions where anomalies are different from zero with less than 95%296

confidence are shown in white, while locations where not enough data were available for297

the analysis are shown in black. In contrast with other studies that only consider lim-298

ited periods of observational data, in these figures we are able to clearly and reliably iden-299

tify opposite global patterns of anomalies for the positive and the negative phases of ENSO.300

The opposite symmetry for the warm and the cold phases is expected by defini-301

tion: since there are almost the same number of El Niño than La Niña years, any pos-302

sible imbalance in the anomalies with respect to the all-year baseline could only be at-303

tributed to the Neutral phase. This symmetry is broken in a few locations due to the304

intrinsic nonlinear dynamics of the climate system. For example, the impact of flood-305

ing over Japan and Sri Lanka is large in La Niña years, while no significant deviation306

from the average was detected during El Niño. Anomalies with the same sign were also307

detected for the two phases, e.g.: in Ecuador (negative-negative) and Belgium (positive-308

positive).309

While population displaced by flooding is one proxy of its impact, a measure like310

GDP disrupted as defined above should be a more direct measure of economic losses. The311

corresponding maps of anomalies in GDP disrupted are shown in Fig. 2c and d. Although312

the patterns observed during El Niño or La Niña phases are generally similar to those313

of population displaced, the GDP maps give direct information relevant for policymak-314

ers and for risk analysis in the financial, insurance and reinsurance industries.315

The differences between the population displaced and the GDP disrupted patterns316

arise from the heterogeneous global distribution of wealth. For instance, a direct com-317

parison between the top and the bottom panels of Fig. 2, shows that a similar number318

of people displaced relative to the mean translates into much higher economic losses anoma-319

lies in the United States and Europe than in Central Africa, i.e. the colours intensify for320

the first and gets lighter for the latter when you switch from one measure to the other.321

In South America and Asia, the colouring remains similar for the two impact measures,322

showing intermediate values of GDP per capita with respect to the regions mentioned323

before. However, the combined effect of flood intensity and economic exposure is not triv-324

ial, since high-income countries could have overpopulation in affected urban areas while325

low-income countries could present higher vulnerability because of lower investments in326

risk reduction measures, among other causes.327

The information presented in the previous maps is very useful since it provides an328

overall idea of flood risk in terms of population displaced or GDP disrupted. But it would329

also be interesting to better differentiate flood hazard from flood risk. As such, we com-330

puted a unit-less metric by normalizing the anomalies with respect to the all-year im-331

pact. The results are shown in Fig. 3, where the average difference of number of peo-332

ple displaced during (a) El Niño and (b) La Niña years is expressed as a percentage of333

the average number of people displaced considering all years (very similar maps are ob-334

tained if the GDP disrupted is used instead). Such measure is thus closer to represent335

flood hazard in terms of flood occurrence and intensity.336

There are clear differences between the patterns shown in Fig. 3, and the corre-337

sponding maps in Fig. 2, a and b. For example, over India and China there are large op-338

posite values of anomalies reported for El Niño and La Niña phases, but they only rep-339

resent a small percentage of the average number of people affected by floods in these re-340

gions. On the contrary, in Australia, the difference in number of people displaced for each341

–8–



manuscript submitted to Geophysical Research Letters

(a
)

(c
)

(b
)

(d
)

A
ve

ra
ge

 p
o

p
u

la
ti

o
n

 d
is

p
la

ce
d

 a
n

o
m

al
y

A
ve

ra
ge

 G
D

P
 d

is
ru

p
te

d
 a

n
o

m
al

y

El
 N

iñ
o

La
 N

iñ
a

F
ig
u
re

2
.

A
n
o
m
a
li
es

in
p
o
p
u
la
ti
o
n
d
is
p
la
ce
d
(t
o
p
)
a
n
d
G
D
P

d
is
ru
p
te
d
(b
o
tt
o
m
)
w
it
h
re
sp

ec
t
to

th
e
a
ll
-y
ea
r
b
a
se
li
n
e
fo
r
(a
,c
)
E
l
N
iñ
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(a)

(b)

Figure 3. Anomalies of the average number of people displaced during (a) El Niño and (b)

La Niña years as a percentage of the average number of people displaced considering all years.

Regions where the anomalies are different from zero with less than 95% confidence are shown in

white. Basins in black correspond to not enough data for the fit.

phase is relatively small, but the normalized anomalies are significantly large since the342

average impact for all years is also low, except for the Eastern part of the country [see343

Fig. 10 in (Carozza & Boudreault, 2021)]. In this region, although it is considerably af-344

fected by floods, the impact seems to be uniformly distributed over all ENSO phases.345

We also remark that the maps shown in Fig. 3 very well replicate the reported global346

patterns of ENSO-induced precipitation (Dai & Wigley, 2000). They also agree relatively347

well with global maps of flood risk obtained by P. J. Ward, Eisner, et al. (2014); P. J. Ward,348

Jongman, et al. (2014); Yan et al. (2020). However, as we mentioned earlier, we obtain349

larger global coverage of statistically significant anomalies as well as different results re-350

garding the asymmetric global influence of ENSO on flood impact. The normalized anoma-351

lies for both phases are significant with more than 95% confidence for 69% of the global352

land surface (excluding Antarctica). For the La Niña phase, we find that: 0.6% less peo-353

ple are affected globally with respect to the overall average (all years), 0.2% less of the354

global GDP is disrupted, 29% of the total surface affected corresponds to significant pos-355

itive anomalies, while 40% is negative. For El Niño, we have: 0.4% more people and 0.2%356

more of the global GDP are affected, the surface partition is 41% positive while 28% has357

negative anomalies. This is in agreement with the correlation asymmetry mentioned in358

Section 3.1. In general, El Niño shows a greater global impact on flood hazard and risk359

than La Niña.360
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4 Summary and Conclusions361

ENSO is one of the main and most predictable components of interannual climate362

variability. A large amount of evidence of its relation with the frequency and intensity363

of extreme events has been published. However, studies showing its global influence di-364

rectly on flood occurrence and impact have been limited by the lack of sufficiently long365

global series of observations (comprising only a few ENSO cycles), and by the high com-366

putational cost of hydrological models to obtain long series of simulations.367

In this paper, we used the empirical C&B global flood risk modeling framework to368

simulate an equivalent of 1600 years of realistic flood events for each of 4,734 basins glob-369

ally. The simulations were created by forcing the statistical model with bias-corrected370

precipitation and temperature output from the large ensemble of the NCAR CESM cli-371

mate model. SST outputs from the same GCM were used to obtain ENSO indices for372

the same 1600 hydrological years. This approach allowed us to obtain physically con-373

sistent relationships between floods and ENSO with high a degree of confidence from a374

statistical point of view. Our results rely on the ability of the C&B framework to repli-375

cate the actual occurrence and impact of floods and the skill of the climate model to repli-376

cate ENSO events.377

The maps presented show similar distributions of normalized flood impact anoma-378

lies than known global patterns of ENSO-induced precipitation. They also agree rela-379

tively well with previous studies on flood risk at both global and regional scales, but we380

identified some important discrepancies. The much longer simulation periods used in our381

study allowed us to observe more frequent opposite patterns in flood risk for the warm382

and the cold phases of ENSO. Observing such patterns was difficult in other studies due383

to the internal variability and the lack of enough data to improve the signal-to-noise ra-384

tio. For the same reason, we were able to obtain reliable values of anomalies in many more385

regions than previous publications limited to observational data. To our knowledge, the386

results presented here have the largest global coverage of statistically significant corre-387

lations between flood hazard and ENSO to date. The same applies to the significance388

of the impact anomalies corresponding to each phase. Besides the expected opposite pat-389

terns of anomalies for both ENSO phases, we found a symmetry breaking in some re-390

gions, with El Niño showing greater global impact than La Niña on flood hazard and risk,391

in contradiction with P. J. Ward, Eisner, et al. (2014).392

5 Data Availability Statement393

Datasets, fitted statistical models, simulated catalogs and software for this research394

are available at https://doi.org/10.5281/zenodo.3873422 and Carozza and Boudreault395

(2021). The CESM Large Ensemble dataset is available at https://www.cesm.ucar.edu/396

projects/community-projects/LENS/data-sets.html and the authors acknowledge397
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