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Abstract

We show the first achievement of inferring the electron temperature in ionospheric conditions from synthetic data using fixed-

bias Langmuir probes operating in the electron saturation region. This was done by using machine learning and altering the

probe geometry. The electron temperature is inferred at the same rate as the currents are sampled by the probes. For inferring

the electron temperature along with the electron density and the floating potential, a minimum number of three probes is

required. Furthermore does one probe geometry need to be distinct from the other two, since otherwise the probe setup may

be insensitive to temperature. This can be achieved by having either one shorter probe or a probe of a different geometry, e.g.

two longer and a shorter cylindrical probe or two cylindrical probes and a spherical probe. We use synthetic plasma parameter

data and calculate the synthetic collected probe currents to train a neural network and verify the results with a test set. We

additionally verify the validity of the inferred temperature in altitudes ranging from about 100 km-500 km, using data from

the International Reference Ionosphere model. Even minor changes in the probe sizing enable the temperature inference and

result in root mean square relative errors between inferred and ground truth data of under 3%. When limiting the temperature

inference to 120-450 km altitude an RMSRE of under 0.7% is achieved for all probe setups. In future, the multi-needle Langmuir

Probe instrument dimensions can be adapted for higher temperature inference accuracy.
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• The electron temperature is inferred in ionospheric conditions from synthetic data8
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Abstract14

We show the first achievement of inferring the electron temperature in ionospheric con-15

ditions from synthetic data using fixed-bias Langmuir probes operating in the electron16

saturation region. This is done by using machine learning and altering the probe geom-17

etry. The electron temperature is inferred at the same rate as the currents are sampled18

by the probes. For inferring the electron temperature along with the electron density and19

the floating potential, a minimum number of three probes is required. Furthermore does20

one probe geometry need to be distinct from the other two, since otherwise the probe21

setup may be insensitive to temperature. This can be achieved by having either one shorter22

probe or a probe of a different geometry, e.g. two longer and a shorter cylindrical probe23

or two cylindrical probes and a spherical probe. We use synthetic plasma parameter data24

and calculate the synthetic collected probe currents to train a neural network and ver-25

ify the results with a test set. We additionally verify the validity of the inferred temper-26

ature in altitudes ranging from about 100 km–500 km, using data from the International27

Reference Ionosphere model. Even minor changes in the probe sizing enable the tem-28

perature inference and result in root mean square relative errors between inferred and29

ground truth data of under 3%. When limiting the temperature inference to 120–450 km30

altitude an RMSRE of under 0.7% is achieved for all probe setups. In future, the multi-31

needle Langmuir Probe instrument dimensions can be adapted for higher temperature32

inference accuracy.33

1 Introduction34

Langmuir probes are commonly used to measure plasma parameters, such as elec-
tron density and electron temperature, which can be derived from collected currents. To
collect a current, a biased/floating conductor is exposed to a plasma (Mott-Smith & Lang-
muir, 1926). The probes are used in laboratory and space plasmas (e.g. ionosphere, (Brace,
1998)) and have been flown in various setups on numerous satellite and rocket missions.
A common way to operate the probes is to step through a pre-defined set of voltages,
whilst measuring the current, and produce a current–voltage graph needed to derive the
plasma parameters. A sweep takes multiple time steps to be completed and therefore
the parameters are derived at a lower resolution than the actual sampling rate provides.
Therefore, the data recorded with high resolution in time and space are not exploited
to its full potential. Another option is to have multiple probes operating at a fixed bias,
but different from each other. This Langmuir probe sampling concept is used by Jacobsen
et al. (2010); Bekkeng et al. (2010), with its aim to measure absolute electron density
at a resolution sufficient to resolve finer structures than possible with present techniques
in an ionospheric plasma. The electron temperature can not be resolved at the same rate
in this sampling concept, it is however an important parameter to characterize plasma.
Ionospheric plasma irregularities and instabilities can be driven e.g. by currents, den-
sity gradients, drifts, temperature gradients. The electron temperature plays an impor-
tant role for characterizing irregularities and instabilities in plasma. Various attempts
were made to understand which instabilities dominate at different ionospheric conditions
(e.g. Fejer & Kelley, 1980; Keskinen & SL, 1983; Onishchenko et al., 2004; Perron et al.,
2009, 2013; Moen et al., 2013; Eltrass & Scales, 2014; Dimant et al., 2021; Enengl et al.,
2022, and others). To improve our characterization of ionospheric plasma and understand
predominant instabilities, the availability of temperature data in sufficient resolution is
crucial. Characterization of plasma processes and instabilities is also important in other
regions, such as in the Earth’s magnetosphere and the solar wind (e.g. Beghin et al., 2017;
Yoon, 2017, and others). In this work we aim to provide a method to retrieve the elec-
tron temperature with high sampling resolution from fixed-bias Langmuir probe setups,
similar to the multi-needle Langmuir probe (m-NLP) setup proposed by Jacobsen et al.
(2010); Bekkeng et al. (2010). The m-NLP consists of four cylindrical probes. For suf-
ficiently long probes with small radii, the m-NLP is assumed to operate according to the
orbital-motion limited (OML) theory. The theory is valid for a probe radius smaller than
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the Debye length in an unmagnetized, non-drifting, Maxwellian plasma. The m-NLP setup
should then provide a way to measure the plasma density independently of the temper-
ature and the spacecraft’s floating potential (Jacobsen et al., 2010). In the electron sat-
uration region the ion current to the probe is negligible and the electron current collected
is then given by

Ic = neq

√
kTe

2πme
AC

(
1 +

q(Vf + Vb)

kTe

)β

(1)

with ne being the electron density, Te the electron temperature, Vf+Vb the sum of float-35

ing and bias voltage and β is a parameter dependent on the probe geometry and plasma36

parameters (Mott-Smith & Langmuir, 1926). The parameters q, k,me, A are the elemen-37

tary charge, the Boltzmann constant, the electron mass and the probe surface area re-38

spectively. For a cylindrical probe the geometry constant C is 2/
√
π and for a spheri-39

cal probe C is 1, as long as the probe geometries follow the limitations of OML theory.40

Jacobsen et al. (2010) assumed β to be 0.5 for two cylindrical probes of 0.51 mm
diameter and 25 mm length (C1 and C2). With this assumption, the temperature de-
pendence is eliminated by taking the difference of the currents squared:

I2c2 − I2c1 =
�������2kTe

me
(neq2rl)

2 −
�������2kTe

me
(neq2rl)

2 +
2q

me
(neq2rl)

2V2 −
2q

me
(neq2rl)

2V1. (2)

It is then easy to solve for ne. While Jacobsen et al. (2010) assumes β to be 0.5 for cylin-41

drical probes, the β parameter can, in fact, deviate from the assumed value. As a con-42

sequence, the dependence of electron density on electron temperature and floating po-43

tential is not eliminated. This is then affecting the accuracy of electron density and space-44

craft charging determination (Barjatya et al., 2009; Hoang, Røed, et al., 2018). Differ-45

ent approaches were taken to improve the accuracy of inferred plasma parameters, treat-46

ing β as an unknown parameter. Barjatya et al. (2009) used a nonlinear fit for the pa-47

rameters ne, Te, Vf , β using equation 1 with the currents collected by the four probes.48

While Hoang, Røed, et al. (2018) similarly used nonlinear and least square fits, Guthrie49

et al. (2021) inferred plasma parameters with the use of radial basis functions regression.50

They succeeded in improving the accuracy for inferring the electron density and space-51

craft potential. However, none of them provide an electron temperature, as the inferred52

parameters seem insensitive to it (Barjatya et al., 2009; Hoang, Røed, et al., 2018). Guthrie53

et al. (2021) concludes only a weak dependence of collected currents on the temperature54

for these types of probes. All previous attempts to infer temperature from fixed biased55

multiple Langmuir probes were unsuccessful.56

The problem of inferring electron temperature from multiple fixed-bias Langmuir57

probes remains open. Marholm (2020) points out that in order to solve for a certain pa-58

rameter, as for the temperature Te, it is necessary that the characteristic I be sufficiently59

sensitive to it, and in a way that allow us to separate its effect from that of other pa-60

rameters such as the floating potential. When β ̸= 0.5, the temperature no longer can-61

cels like in equation 2. However, based on previous unsuccessful attempts at inferring62

temperature this is apparently not enough. Given that probes of different length corre-63

spond to different β parameters, a stronger temperature sensitivity may be introduced64

by using different probe lengths. In this work, we investigate for which setups a temper-65

ature sensitivity is introduced, and whether the electron temperature can be inferred.66

We then test our hypothesis practically on synthetic data with machine learning meth-67

ods, evaluate which probe setups may be used to infer electron temperature, and how68

the m-NLP can be adapted in future missions. This work is divided in theory, method-69

ology, assessment, summary and conclusion sections. The theory section presents how70

the probes are dependent on the temperature, and how temperature could be calculated71

analytically if β were known. This section is followed by the methodology section, in which72

the network used to infer electron temperature from current measurements is introduced73

and the testing of the system is described. The assessment section compares the differ-74

ent setups and assesses its accuracy and robustness. In the summary and conclusion sec-75
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tion, a short recap of the paper is presented along with suggestions for further improve-76

ments of m-NLP for the future.77

2 Theory78

In this section, we show analytically how the collected probe currents of three probes79

can introduce temperature sensitivity and how we could calculate the electron temper-80

ature analytically, if the β parameters were known.81

Let us assume a Langmuir probe setup, which consists of three cylindrical probes
collecting currents (Ic1, Ic2, Ic3) according to equation 1. Two of the cylindrical probes
have the same length (l1 = l2) and one of them has a shorter length (l3) compared to
the others. This is also reflected in the factors (β1 = β2, β3 > β1). A sufficiently long
cylinder would have a β of 0.5, while a small sphere corresponds to a β of 1. The shorter
a cylinder, the more it approaches the β of a sphere due to edge effects. The geometry
constants are indicated as Cn and are the same for two probes of the same geometry. The
probes are biased with fixed voltages (Vb1, Vb2, Vb3). Higher bias voltages can lead to a
larger plasma wakes behind probes. Wake formation behind Debye-scale Langmuir probes
in the ionospheric F-region require higher separation of the probes for accurate measure-
ments (Jao et al., 2022). Here, it is assumed that the probes are well separated, and are
not affected by one another, by wakes or by their booms. The floating voltage Vf is un-
known, and so is the electron temperature Te and electron density ne. We can use equa-
tion 1 to describe the currents measured by the cylindrical probes. As previously men-
tioned, this is valid for a non-drifting, collision-less and non-magnetized plasma. The first
condition is fulfilled as the thermal speed of the electrons is larger than the speed of a
rocket/ spacecraft relative to the plasma. The plasma density in the ionosphere is low,
which makes it possible to assume a collision-less plasma, at least for our region of in-
terest, at altitudes above 120 km. Further, the Larmor radius is sufficiently large com-
pared to our probe radii to neglect magnetic field effects (Jacobsen et al., 2010). Divid-
ing Ic1 by Ic2 using equation 1 gives:

Ic1
Ic2

=
C1

(
1 +

q(Vf+Vb1)
kTe

)β1

C1

(
1 +

q(Vf+Vb2)
kTe

)β1
. (3)

When the terms

η =
q(Vf + Vb)

kTe
(4)

are sufficiently large, the relation Ic1 by Ic2 can be simplified to:

Ic1
Ic2

=

(
Vf + Vb1

)β1

(
Vf + Vb2

)β1
. (5)

Ic1, Ic2, Vb1, Vb2 are known. If, for the moment, we assume β known, we can solve for Vf .82

Dividing Ic1 by Ic3 using the equation 1 for large η (equation 4) we obtain:83

Ic3
Ic1

=
C3

(
q(Vf+Vb3)

kTe

)β3

C1

(
q(Vf+Vb1)

kTe

)β1
(6)

and solved with known β and C for Te:

Te =
q

k

((
Vf + Vb3

)β3(
Vf + Vb1

)β1

Ic1C3

Ic3C1

) 1
β3−β1

(7)
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Inspecting equations 6 and 7 shows that when we are well in the electron saturation regime84

(large η), and β1 is equal to β3, the temperature term disappears. This means that for85

inferring the temperature, a difference between β1 and β3 is required. The stronger the86

temperature dependence is, the easier it is to infer the temperature from the probe setup.87

Using cylindrical probes of very different lengths, or even introducing a spherical88

probe, increases the difference in the geometry factor β and makes the setup more tem-89

perature sensitive. At the same time, using two of the probes with the same geometry90

still keeps the possibility of determining the floating potential, as shown in equation 5.91

In these equations, only β unknown, otherwise one could now solve for Vf , Te and92

then insert in equation 1 to solve for ne. For given β parameters, the system can be de-93

termined analytically with three unknowns (Vf , ne, Te) with only the three fixed-biased94

probes. However, as β is not known to us, we have to use a different method.95

3 Methodology96

To infer electron temperatures from collected currents, multiple steps are required.97

The individual steps are visualized in schematic Figures 2, 3, and 4. The first step be-98

ing the construction of a synthetic data set consisting of synthetic plasma parameters99

and corresponding currents, see Figure 2. This is used to train a neural network with100

synthetic training and validation data, which is then evaluated on the synthetic test set,101

see Figure 3. As a third step, the machine learning model is then applied to data from102

the International Reference Ionosphere (IRI), used as another test set to further eval-103

uate its performance, see Figure 4. Finally, the model’s robustness to noise is tested and104

its limitations are assessed.105

3.1 Construction of Synthetic Plasma Parameter Data Set and Derived106

Currents107

Step 1: A synthetic data set is defined based on plasma parameters that are en-108

countered in the regions of interest. In this study the goal is to infer electron temper-109

ature based on data collected in the lower ionosphere (here: 120-500 km). The plasma110

parameter ranges are selected in accordance with which values the IRI model predict for111

the region. IRI is an empirical standard model of the ionosphere, based on available data112

sources (Bilitza, 2018). The electron density values are chosen to be in the range of 4×113

1010 to 3 × 1011 m−3, the electron temperatures are varying from 300 to 2800 K and114

the floating potential is set to range from −2 to 0 V , see green box in Figure 2. Loga-115

rithmically distributed random values for ne and uniformly random values for the remain-116

ing plasma parameters (Te and Vf ) within the given ranges are determined, so the mea-117

sured current for each of the probes can be calculated. The current is calculated using118

a finite length model for the cylindrical probe and a finite radius model for the spher-119

ical probe. In the OML theory, the probe radius has to be smaller than the Debye length120

and the plasma particle motion is determined by the probe potential. The finite length/finite121

radius model is similar to the OML theory, but adapted using theoretical scaling laws122

and numerical simulations to allow the probe length/ radii to be larger than the Debye123

length (Laframboise, 1966; Darian et al., 2019; Marholm & Marchand, 2020; Marholm124

& Darian, 2021). The finite length model also accounts for edge effects on the cylindri-125

cal probes. Both models have been extrapolated further to account for higher values of126

η > 25, which are encountered in ionosphere, see Figure 1b. The η parameter is depen-127

dent on the Te, Vf and Vb as shown in equation 4) The extrapolation of the finite radius128

model has been benchmarked with particle in cell simulations using PTetra (a fully ki-129

netic PIC code by Marchand (2012); Marchand and Resendiz Lira (2017)) to confirm its130

validity. Figure 1a shows an example of a collected normalized current by a sphere with131

a radius of 0.5 λDebye according to the OML theory (shown in black), PTetra simula-132

tion results (shown in red) and a power law extrapolation of a normalized computed cur-133
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rent vs η table by Laframboise (1966) (shown in blue, ±6% in light blue). The normal-134

ized current shown in Figure 1a is the collected current I by the sphere that has been135

normalized by the thermal current Ith = neq
√
kTe/2πmeA, dependent on the sphere136

radius (through the surface area A) and temperature. The PTetra simulations were car-137

ried out with a fixed ne of 1011 m−3, a Te stepping from 500 to 1000 K and a bias volt-138

age between 1 to 10 V in such a way that η spans from 25 to 110. The sphere radius be-139

tween 0.24 cm to 0.34 cm. The PTetra simulations are within ±6.5% of the power law140

extrapolation and thus validates it. The power law extrapolation has been used to cal-141

culate currents collected by spherical probes in this study. Below 150 km, η increases142

rapidly due to decreasing temperature, see Figure 1b, and the black dashed horizontal143

line is at 150 km. For higher biased probes (7.5V) η is 110 at this altitude. Therefore,144

the extrapolation has been verified up to η = 110, see black dashed vertical line in Fig-145

ure 1b, to guarantee reliable current calculations down to at least 150 km. The data used146

in Figure 1b is from the IRI database and a floating potential is calculated as described147

in section 3.3. The whole generated data set consisting of probe geometry, plasma pa-148

rameters (green box in Figure 2) and corresponding currents (yellow box in Figure 2)149

is referred to as synthetic data. The data are split into a training, validation and test150

sets for Step 2 (blue box in Figure 2).151

Figure 1. Panel a: Power law extrapolation (blue line) of computed values for the attracted

species current (blue dots) from Laframboise (1966), compared with the collected current from

the OML theory (black line), PTetra simulations (red dots) as collected by a sphere with a radius

of 0.5 λDebye for η values up to 110. Panel b: Comparison of altitude vs η values for different set

bias voltages. The black dashed vertical line at η = 110 shows how η rapidly increases under an

altitude of 150 km (indicated by a black dashed horizontal line). For the main three bias voltages

used (2.5,4,7.5V) in this paper, verification of the power law extrapolation up to η = 110 verifies

our current calculations for down to at least 150 km.

3.2 Inferring the Electron Temperature from Probe Currents Using a152

Neural Network153

Now we are fully equipped with a synthetic data set consisting of the necessary pa-
rameters (Te and I). Inverting the relationship between the probe currents and the elec-
tron temperature, as shown in equation 7, leaves us with an undetermined system of equa-
tions, as the geometry parameters β remain unknown. However, β is not needed when

–6–
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Figure 2. Visualization of Step 1: Construct the synthetic data set (green box), to then de-

rive currents (yellow box) using the Langmuir library finite length and finite radius model and

creating the combined synthetic data set of ionospheric plasma parameters and collected currents

(blue box).

using the finite-length/finite-radius models to calculate the currents in the synthetic data
sets. Machine learning techniques are then applied to invert those models, and infer the
temperature. For this we have to construct a neural network (NN), which typically con-
sists of an input layer, multiple hidden layers and an output layer. Every node j in a layer
i is assigned a value vi,j . The next layer is dependent on the previous layer through weight
factors ωi,j,k, activation function a and bias terms bi,j with

vi+1,k =

ni∑
j=1

ωi,j,ka(vi,j + bi,j) (8)

The network is a type of feed-forward neural network (Goodfellow et al., 2016). First,154

the input currents are normalized using a preprocessing normalization built-in Tensor-155

Flow function. This layer is followed by two dense layers, which use the activation func-156

tion Rectified Linear Unit (RELU – a standard TensorFlow activation functions from157

Keras). Both of the dense layers are equipped with 80 nodes/units (dimension of out-158

put space). A last dense layer with RELU activation and a single node is used as an out-159

put layer. This gives a total number of 7,041 trainable parameters. To compile our NN,160

the mean absolute error function is chosen in combination with adaptive moment esti-161

mation (ADAM) optimizer, both are standard functions from Keras and effective across162

a wide range of learning methodologies (Kingma & Ba, 2014). The synthetic data set163

defined in the first step is chosen to consist of at least 13000 combinations of currents164

and plasma parameters. Of these, 70 % are used for training, 10 % for validation and165

20 % for testing, see blue box in Figure 2 and 3). The validation data is used to prevent166

overfitting, and to understand after how many training steps the model converges (train-167

ing accuracy and validation accuracy decreasing). The NN (see turquoise box in Figure168

3) is first applied to the training and validation set. The training process converges af-169

ter approximately 80 steps (before the validation accuracy increases). The test set is a170

separate set, that is not seen during the training. Once the NN has been trained, the ma-171

chine learning model (see pink box in Figure 3) is stored and applied to the test data.172

The performance is evaluated by calculating the root mean square relative error (RM-173

SRE) and Pearson correlation coefficient (PCC) between inferred data and synthetic ground174

truth data, see red box in Figure 3).175
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Figure 3. Visualization of Step 2: Use the training and validation data (blue) from Step 1

to train a NN (turquoise box) and save a machine learning model (pink box). Use then the test

data current (blue box) from Step 1 and apply the machine learning model (pink) to it. Finally,

evaluate the performance of the inferred temperatures compared to the ground truth temperature

(red box).

3.3 Evaluation and Robustness of the Model176

To evaluate the temperature inference performance further, the machine learning
model is applied to another test set, an altitude profile of plasma parameters from IRI.
A random altitude profile with electron temperature and electron density values is fetched
from the IRI data base, see green box in Figure 4. For the floating potential, we use a
current as predicted by OML theory for a sphere, which is dependent on the voltage, and
find the voltage where the sum of electron and ion current equals zero by means of a nu-
merical root finder. This voltage is used as the floating potential. This will not be a true
floating potential, but it gives us a variable potential that we can use to test our model.
For an updated probe design, this should be adjusted to a more realistic value depen-
dent on the probe application environment. The current measured by the probes is then
calculated using the same approach as in step 1, using the finite length and finite radius
function (see yellow box in Figure 4). On the calculated currents, the machine learning
model from step 2 (see pink box in Figure 4) is applied to infer the temperature, which
is then compared to the one from IRI to, again, assess the performance of our model by
calculating the RMSRE and PCC between inferred data and ground truth IRI data (see
red box in Figure 4). Subsequently, we test the model robustness. The robustness is tested
by adding shot noise to the input currents also calculated based on IRI data (see yel-
low box in Figure 4). The added noise is proportional to the square root of the signal
strength I0. The expression for the collected current and corresponding noise Iσ is given
by:

Iσ = I0 + σ
√

|I0|r, (9)

with σ as a relative standard deviation and r as a random number with a standard Gaus-177

sian normal distribution (Ikezi et al., 1968; G. Liu & Marchand, 2021; Marholm & Dar-178

ian, 2021). The RMSRE and PCC between inferred data and ground truth IRI data is179

assessed for different levels of noise. As a consistency check, the currents calculated from180

the synthetic data are compared to currents which are again calculated from the inferred181

parameters using the finite-length/finite-radius models, as suggested by (G. Liu et al.,182

2022). This verifies the results of the inference model, as the back-inferred currents should183

agree with the currents from the synthetic data. The consistency check succeeded, as the184

currents could be reproduced, but is not shown in this paper. Lastly, we verify that it185
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is still possible to infer the electron density and floating potential from the different probe186

set-ups.

Figure 4. Vizualisation of Step 3: Use another data source (here from IRI) (green box) to de-

rive measured currents (yellow box) to test the machine learning model on (pink box). Evaluate

again the inferred temperatures compared to the ground truth (here IRI) temperatures (red box).

To test the robustness, add different noise levels to the derived current (yellow box), according to

equation 9.

187

4 Results and Assessment188

In this section, three different setups of multiple fixed-bias Langmuir probes are189

introduced and assessed in their performance of temperature inference. Setup 1 consists190

of three cylinders, setup 2 of three spheres and setup 3 of a combination of four cylin-191

ders and a sphere. As mentioned in section 2, one of the probes in each setup has to be192

of a different length from the others to increase temperature sensitivity into the system193

and with that, enable temperature inference. To better quantify the dependence on β,194

we investigate for the three setups different cases with varied probe length and radius.195

Limitations and errors for the different cases are given and discussed. The robustness196

of setups is evaluated by adding noise. Lastly, the inference of floating potential and elec-197

tron density is demonstrated.198

4.1 Setups199

The chosen parameters, cylinder length ln, cylinder radius rc, sphere radius rs, bias200

voltage Vb, for each setup and discussed case are given in table 1, 2 and 3. The expres-201

sion for the collected current, equation 1, was used to analytically calculate values for202

β for each set of selected synthetic plasma parameters, probe parameters and constants.203

This equation is based on OML theory assumptions, however it still provides an approx-204

imate value for β. The mean value and standard deviation of β for each probe was cal-205

culated and is stated in tables 1, 2 and 3. β varies for different geometries and is also206

dependent on the plasma parameters and slightly on the bias voltage. This is why there207

is a deviation of β over the altitude profiles. The difference between β1 of probe 1 and208

β2 of probe 2 is listed as ∆β for each case. This makes it possible to compare the effect209

of different probe length/β to the performance of the temperature inference. This per-210

formance is evaluated by using the RMSRE and the PCC between the test set synthetic211

electron temperatures and the inferred electron temperatures. The performance param-212

–9–
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Table 1. Parameters for Probe Setup 1: three cylindrical probes. The probes have follow-

ing bias voltages: Vb1=4V,Vb2=2.5V,Vb3=7.5V. The probe radii rc are 0.255mm. In the table

the probe length (l), geometry factor (β), difference between β1and β2 (∆β) and parameters to

evaluate the temperature inference performance RMSRE and PCC are reported.

l1[cm] β1 l2 = l3[cm] β2 β3 ∆β RMSRE [%] PCC

2.5 0.73 ± 0.03 3 0.7 ± 0.03 0.73 ± 0.03 0.03 4.3 0.99

2.5 0.73 ± 0.02 4 0.67 ± 0.03 0.71 ± 0.03 0.06 2.4 1

1 0.76 ± 0.01 9 0.6 ± 0.03 0.63 ± 0.03 0.16 0.7 1

Table 2. Parameters for Probe Setup 2: three spherical probes. The probes have following

bias voltages: Vb1=4V,Vb2=2.5V,Vb3=7.5V. In the table the probe length (l), geometry factor

(β), difference between β1and β2 (∆β) and parameters to evaluate the temperature inference

performance RMSRE and PCC are reported.

rs1[cm] β1 rs2 = rs3[cm] β2 β3 ∆β RMSRE [%] PCC

0.5 0.97 ± 0.03 1.5 0.88 ± 0.07 0.86 ± 0.07 0.08 1.4 1

Table 3. Parameters for Probe Setup 3: four cylindrical probes and one spherical probe. The

probes have following bias voltages: V1=4V,V2=2.5V,V3=4V,V4=5.5V,V5=10V. In the table

the probe length (l), geometry factor (β), difference between β1and β2 (∆β) and parameters to

evaluate the temperature inference performance RMSRE and PCC are reported.

rs[cm] β1 ln[cm] β2 ∆β RMSRE[%] PCC

1 0.92 ± 0.05 2.5 0.72 ± 0.03 0.2 79 0.85

1 0.92 ± 0.05 7 0.62 ± 0.03 0.3 22 0.99

3 0.75 ± 0.09 2.5 0.72 ± 0.03 0.0326 2.5 0.99

0.3 0.99 ± 0.01 2.5 0.72 ± 0.03 0.27 0.8 1

eters are listed in the last two columns of tables 1, 2 and 3. β2 and β3 are slightly dif-213

ferent due to a difference in bias voltage (all else being equal).214

The inferred temperatures as compared to the synthetic test set (ground truth) ones215

are plotted against each other to visualize the performance in scatter plots such as in216

Figure 5 a,c,e. The probe geometry parameters, RMSRE is repeated in the plots. The217

machine learning model was also applied to currents derived from the IRI dataset (used218

as an additional test set). The inferred temperatures versus the IRI ground truth tem-219

peratures are visualized in plots such as in Figure 5 b,f,d, with the RMSRE reported in220

the plots. The ground truth temperatures are shown in blue, and the predicted/inferred221

temperatures are shown in orange. The red horizontal lines indicate the range (120–450 km)222

within which the RMSRE is calculated for. This range has been chosen, as also weaker223

setups (see Figure 5 a,b) perform reasonably well (RMSRE < 5%) and the compari-224

son to other cases is not affected by larger deviations outside of this range.225
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4.1.1 Setup 1: Three Cylindrical Probes226

For this setup, three cases are presented in detail. For all probes, a diameter of 0.255227

mm is chosen. This is the same as for the m-NLP (Jacobsen et al., 2010). Case 1), con-228

sists of one cylinder with 25 mm length (same as for the m-NLP) and two cylinders with229

30 mm length. In case 2), a probe of 25 mm is combined with two longer probes of 40230

mm. In case 3), one probe is shortened to 10 mm, while the other two are 90 mm long.231

The voltages for the probes are set on 2.5, 4 and 7.5 V (adapted from the m-NLP). We232

remind the reader that past attempts at inferring the temperature for such probes have233

failed, but then the probes had equal length. We can report that also our NN was in-234

capable of inferring temperature for probes when they were of equal length.235

The set parameters for case 1) are listed in 1 (first row). The difference in length236

of the cylinders is only 0.5 cm, which results in a minor ∆β of (0.03). The standard de-237

viation in β is of the same magnitude. However, even such a small difference in length,238

enables inference of the temperature. In this case the RMSRE is 4.3%, and the PCC is239

0.99 for the inferred temperature in relation to the test set temperature, see Figure 5a.240

Figure 5b shows that the inferred temperatures lie within 4.1% of the IRI ground truth241

temperatures. This RMSRE is close to the RMSRE for the original test set.242

In case 2) the difference in length was increased to 1.5 cm, increasing ∆β to 0.06,243

see 1 (second row). The RMSRE decreased to 2.4% and the PCC increased to 1. Fig-244

ure 5c shows less spread in the scatter plot of inferred vs synthetic temperature and the245

RMSRE value between inferred temperature and IRI temperature data is only 1.3%,see246

Figure 5d. This is even better than for the original test set.247

In case 3), the length difference is even further expanded. Case 3) consists of a very248

short 1 cm probe and two long 9 cm probes, parameters listed in 1 (third row). The RM-249

SRE in this case is as low as 0.7% and the PCC stays at its maximum, see Figure 5e.250

The inference of temperature is improved further. The RMSRE is here 0.5%, as shown251

Figure 5f.252

Case 1) shows how a minor difference in probe length enables inference of temper-253

ature. In case 2), the precision of the inferred temperatures are improved by increasing254

the length difference. While case 3) leads to the best results, one may be in favor of case255

2), as it shows major improvements compared to case 1) and does not require as much256

design modifications from the m-NLP as case 3).257
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Figure 5. Setup 1), three cylindrical probes: Predicted temperatures versus synthetic tem-

peratures of the test set are shown in form of scatter plots in panel a,c,d. Probe geometry and

RMSRE are reported in the plot texts. Altitude profiles of temperature data from IRI are shown

as ground truth in blue, and inferred temperature data from probe currents calculated from IRI

data are shown in orange in panel b,d,f. The red horizontal lines delimit the range over which the

RMSRE reported in the plot, was calculated.
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4.1.2 Setup 2: Three Spherical Probes258

Spherical probes can also be used to infer temperature, using the same approach.259

One probe has a different size compared to the other two. In this case, one spherical probe260

with a radius of 0.5 cm and two spherical probes with radii of 1.5 cm are selected. The261

voltages for the probes are set on 2.5, 4 and 7.5 V (same as for the cylindrical probes).262

The parameters are summarized in table 2. For spherical probes β is closer to 1. Here,263

the ∆β is 0.08. This value lies in between the ∆β of setup 1, case 2 and case 3 (cylin-264

drical probes). The RMSRE between test and inferred temperature is 1.4%, also between265

the RMSRE of setup 1, case 2 and case 3 (cylindrical probes). This is shown in Figure266

6a. Panel b shows the comparison of IRI temperatures and inferred temperature. The267

RMSRE is 0.7%, lower than for the original test data. The temperature inference per-268

formance using spherical probes is comparable to the one of the cylindrical probes.269

Figure 6. Setup 2), three spherical probes: Predicted temperatures versus synthetic temper-

atures of the test set are shown in form of scatter plots in panel a. Probe geometry and RMSRE

are reported in the plot texts. The altitude profile of temperature data from IRI is shown as

ground truth in blue, and inferred temperature data from probe currents calculated from IRI

data is shown in orange in panel b. The red horizontal lines delimit the range over which the

RMSRE reported in the plot, was calculated.

4.1.3 Setup 3: Combination of four Cylindrical Probes and a Spher-270

ical Probe271

The same setup of probes as flown on the ICI-2 rocket is chosen to be evaluated272

in this section, four cylindrical probes and one spherical probe (probe setup: ICI-2) (Jacobsen273

et al., 2010). In case 1 of this setup the same geometry as for the m-NLP is used, see274

parameters summarized in table 3 (first row). The radius of the spherical probes is 10275

mm, the length of the four cylindrical probes are 25 mm and their diameter is 0.255 mm.276

The voltages for the cylindrical probes are set on 2.5, 4, 5.5 and 10 V and for the spher-277

ical probe 4 V (same as for the ICI-2 probe setup). The geometry difference results in278

a ∆β of 0.2. This is rather large, compared to the previous studied cases with a max-279

imum ∆β of 0.16 in setup 1, case 3 (cylindrical probes). However, the RMSRE is 79%,280

giving a PCC of 0.85 between test and inferred data, see Figure 7a. This does not pro-281

vide a reliable method to infer the electron temperature.282
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Figure 7. Setup 3), four cylindrical Probes and a spherical probe: Predicted temperatures

versus synthetic temperatures of the test set are shown in form of scatter plots in panel a,b.

Probe geometry and RMSRE are reported in the plot texts.

In an attempt to improve the inference (case 2), the cylinders have been increased283

to a size of 70 mm, see table 3 (second row). This increases ∆β to 0.3 and strengthens284

the PCC to 99%. Nevertheless, the RMSRE remains high, at 22%.285

Keeping the length of the cylindrical probes at 25 mm, while adjusting the radius286

of the spherical probe delivers better results. The Parameters for case 3 are shown in287

3 (third row). The ∆β is now 0.03, which is similar to the cases with only spherical or288

cylindrical probes, we studied previously. The RMSRE between test and inferred data289

is down to 2.5% and the PCC is at 0.99, see Figure 7b. This is now similar to previous290

values for other setups for which temperature inference is achieved.291

Case 4 uses a setup with cylindrical probes of 25 mm length and a spherical probe292

of only 3 mm radius. The ∆β is comparably high at 0.27 and in the same range of the293

first two cases for this setup in which reliable temperature inference was not achieved.294

In this case however, we achieve similar results as for setup 1, case 3 (cylindrical probes)295

in which we used long probes of 9 cm. The RMSRE is only 0.8% and the PCC is 1, see296

Figure 8a. Applying the NN model to currents calculated from IRI data to infer tem-297

perature and comparing it to IRI temperature ground truth data, gives a RMSRE of 0.005%298

within 120-450 km, see Figure 8b. This is the best achievement of all evaluated cases.299

The setup of case 4 can be easily achieved by modifying the ICI-2 probe setup and sim-300

ply using a smaller spherical probe.301

The geometry in case 1 and 2 did not provide reliable temperature inference. In302

case 3 and 4 the spherical probe size could be adapted to enable temperature inference.303

The reason for this could be that in case 3 the radius of the sphere is so large (30 mm),304

that its dependence of the current on the temperature could be compared to the mea-305

surements by a similar size cylindrical probe (here 25 mm). We can also see the simi-306

larity when comparing β for the spherical probe and cylindrical probe, see table 3 (third307

row). For the spherical probe β equals 0.75, and for the cylindrical ones 0.72. Therefore308

their dependence on temperature is similar and the NN model can predict temperatures.309

In case 4, the spherical probe radius is 3 mm and corresponding β is 0.99. A cylindri-310

cal probe, with small length acts as a sphere. In this case the probe might be so small311

that it does not matter, whether it is a cylinder or a sphere as the temperature depen-312
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dence is also similar here. Again, all probes could be considered as cylinders. Thus it313

may be easier to infer the temperature from only spheres or cylinders or mixed geome-314

tries in a limit where they approach another. Future research into why mixed geome-315

try setups fail, and what could be done about it, could be useful. If inference were suc-316

cessful, it might enable rapid temperature inference of past missions not initially designed317

for it, such as the ICI-2.318

Figure 8. Setup 3), four cylindrical Probes and a spherical probe: Predicted temperatures

versus synthetic temperatures of the test set are shown in form of scatter plots in panel a. Probe

geometry and RMSRE are reported in the plot texts. The altitude profile of temperature data

from IRI is shown as ground truth in blue, and inferred temperature data from probe currents

calculated from IRI data are shown in orange in panel b. The red horizontal lines delimit the

range over which the RMSRE reported in the plot, was calculated.

4.2 Robustness and Consistency319

One method to understand the robustness of our model is to add noise to the sys-320

tem and evaluate its performance. Different noise levels (σ) have been added to the cur-321

rents calculated from data of the IRI model (using equation 9). First, currents measured322

by three cylindrical probes (case 2: l1=3 cm, l2=l3=4 cm) are calculated, then, noise is323

added and again, the temperature is inferred. The probe parameters, noise level and per-324

formance parameters are listed in table 4. Above a noise level of σ = 2 ·10−6 the per-325

formance decreases and the RMSRE grows to more than 5% (table 4, third row). As for326

the presented case with only spherical probes (rs1=0.5 cm,rs2=rs3=1.5 cm), the noise327

level can be increased to σ = 10−5 until the RMSRE increases over 3%, see parame-328

ters in table 5. Testing the robustness of the setup with four cylindrical probes and one329

spherical probe (case 4: ln=2.5 cm, rs=0.3 cm), a noise level above σ = 10−5 would330

increases RMSRE to over 5.4%, see table 6.331
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Table 4. Parameters for Robustness Evaluation of Probe Setup 1: three cylindrical probes. In

the table the probe length (l), bias voltage (Vb1), noise level (σ) and parameters to evaluate the

temperature inference performance RMSRE and PCC are reported.

l1[cm] Vb1[V] l2 = l3[cm] Vb2[V] Vb3[V ] σ RMSRE[%] PCC

2.5 4 4 2.5 7.5 10−7 1.7 0.999

2.5 4 4 2.5 7.5 10−6 2.9 0.997

2.5 4 4 2.5 7.5 2 · 10−6 5.4 0.986

Table 5. Parameters for Robustness Evaluation of Probe Setup 2: three spherical probes. In

the table the probe length (l), bias voltage (Vb1), noise level (dσ) and parameters to evaluate the

temperature inference performance RMSRE and PCC are reported.

rs1[cm] Vb1[V] rs2 = rs3[cm] Vb2[V] Vb3[V] σ RMSRE[%] PCC

0.5 4 1.5 2.5 7.5 10−5 3 0.997

Table 6. Parameters for Robustness Evaluation of Probe Setup 3: four cylindrical probes

and a spherical probe. In the table the probe length (l), bias voltage (Vb1), noise level (dσ) and

parameters to evaluate the temperature inference performance RMSRE and PCC are reported.

rs Vb1 ln Vb2 − Vb4 σ RMSRE[%] PCC

0.3 4 2.5 2.5,4,5.5,10 10−5 5.4 0.989
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To prove that the changes to the probe geometry do not sacrifice the ability to in-332

fer electron density and floating potential, we also have successfully inferred both of them333

from the different probe setups. One case is shown in Figure 9 a,b, where the electron334

density and floating potential were inferred from a setup of cylindrical probes and a spher-335

ical probe (case 4: ln=2.5 cm, rs=0.3 cm) just as in table 3 (fourth row). The floating336

potential was inferred from the same NN as the electron temperature (7,041 trainable337

parameters). However, the electron density was inferred from a network with six dense338

layers but only 40 nodes each layer (8,481 trainable parameters). The same has been done339

for the other setups (not shown here).340

Figure 9. A NN model is applied to electron density and bias voltage to verify that besides

the electron temperature, also the other parameters can still be inferred. In panel a, the inferred

electron density versus the synthetic electron density of the test set is shown in form of a scat-

ter plot. In panel b, the scatter plot shows the inferred floating potential versus the synthetic

floating potential of the test set. The low RMSRE and root mean square error (a different error

measure needed to be used here, due to the values between 0-1) demonstrates that the electron

density and floating potential can be inferred from this setup. The setup used for this analysis

consists of four cylindrical probes (2.5 cm length) and a spherical probe (0.3 cm radius): setup 3,

case 4).
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5 Discussion and Conclusion341

In this work, we showed the first achievement of inferring the electron temperature342

using fixed-biased Langmuir probes operating in the electron saturation region. This was343

obtained through considering different probe geometries to achieve temperature sensi-344

tivity and then train a NN to predict temperature based on the measured currents. The345

NN is relatively simple and consists of only 3 layers. The performance of temperature346

inference has been evaluated with three different setups. At least three probes are re-347

quired to infer temperature, as the current is dependent on three unknowns: electron den-348

sity, floating potential and electron temperature. First, a three cylindrical probe setup349

was assessed in its temperature inference performance. It is found that larger difference350

in probe length increases the ∆β and with it the performance of inferring temperature,351

see again table 1. Already minor changes in ∆β enable the temperature inference. When352

designing an updated m-NLP, a trade-off between probe design factors (e.g. geometry)353

and temperature inference performance may be preferable. Second, temperature infer-354

ence performance of a combination of three spherical probes was evaluated. The same355

behaviour is observed. When introducing a difference in probe size (in this case a dif-356

ferent radius), it is shown to be possible and reliable (for ∆β = 0.08, with an RMSRE357

of 1.4%) to reliably infer temperature, see again table 2. Lastly, the inference of tem-358

perature from a setup of four cylindrical probes and a spherical probe (ICI-2 setup) was359

assessed. Given the geometry differences of cylindrical and spherical probes, we only suc-360

ceeded to reliably (RMSRE < 5%) infer temperature in the limit of a rather large (3 cm361

radius) or rather small (3 mm radius) spherical probe in combination with the cylindri-362

cal probes, see again table 3.363

The m-NLP is a frequently used instrument that has an extensive flight heritage364

on numerous rocket missions, e.g. on ICI-2,3,4 (Jacobsen et al., 2010), ECOMA-7,8,9365

(Friedrich et al., 2013), NASA 36.273 MICA (Lynch et al., 2015), Maxidusty 1 and 1b366

(Antonsen et al., 2019), has also been flown on a satellite mission, e.g. NorSat-1 (Hoang,367

Clausen, et al., 2018), and is proposed for more future missions e.g. on miniature satel-368

lites (Bekkeng et al., 2019) and the International Space Station. From these missions,369

many studies investigating ionospheric plasmas have been published using the derived370

electron density from the probes (e.g. Spicher et al., 2015; Lynch et al., 2015; Chernyshov371

et al., 2018; Jin et al., 2019, 2021; Sinevich et al., 2022, and others). The electron tem-372

perature could not be derived, but would add valuable insights to plasma structuring pro-373

cesses, as the electron temperature can be used as a measure of energy injection/dissipation374

and to characterize a plasma. The instabilities can be directly driven temperature vari-375

ations or detected by temperature changes (e.g. Perron et al., 2013; Oppenheim & Di-376

mant, 2013; J. Liu et al., 2016, and others).377

The efforts of inferring accurate electron temperatures from Langmuir probe con-378

figurations (floating and fixed) have existed longer than the m-NLP instrument and are379

continuously being improved (e.g. Powers, 1966; Hirao & Oyama, 1971; Wrenn et al.,380

1973; Riccardi et al., 2001; Olowookere & Marchand, 2021; Giono et al., 2021, and oth-381

ers). While Barjatya et al. (2009); Hoang, Røed, et al. (2018); Guthrie et al. (2021) laid382

the path to using non-linear fits and regression to infer plasma parameters, the key to383

infer electron temperature is the probe setup to be dependent on it. This was pointed384

out by Marholm (2020), while Guthrie et al. (2021) stated that only a weak dependence385

on temperature can be found for the m-NLP. With this stepping stone, we were able to386

adapt the probe setup accordingly, to introduce temperature sensitivity and successfully387

infer it.388

However, the temperature inference does come with some limitations. We do set389

certain assumptions on optimal the plasma conditions and are neglecting probe inter-390

actions. The presumptions are the same as in Jacobsen et al. (2010). In the probe-design391

process unwanted potential wake-effects shall be minimized and probe sizing and volt-392

ages chosen with regards to encountered plasma conditions, as described in Jao et al. (2022).393
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Charging effects may occur, and also have been neglected here, but can be taken into394

consideration when selecting probe bias voltages (Ivarsen et al., 2019). As we added noise395

to the derived currents, we tested the limitations of the probe setups under conditions396

of disturbed measurements(Ikezi et al., 1968; G. Liu & Marchand, 2021; Marholm & Dar-397

ian, 2021). This shows the robustness of our proposed temperature inference method.398

In conclusion, we achieved to infer electron temperature from fixed biased multi-399

ple Langmuir probe setups. Using three probes, with one length/ geometry different from400

the other two is the key to enable temperature sensitivity of the probe setup. By chang-401

ing the length/ radius, the probe setups can be optimized. Finally, different setups can402

be tested to provide a reliable probe setup to be flown on future satellite or rocket mis-403

sions. A future adaption of the m-NLP may consider its ability to infer, besides the elec-404

tron density and floating potential, also the electron temperature. This would enable us405

to study ionospheric plasma instabilities in higher resolution than before and it would406

contribute to answer many of the open questions on ionospheric plasmas.407

6 Open Research408

This paper predominantly makes use of data generated and then post-processed409

with openly available models and software, such as IRI, Langmuir and TensorFlow. We410

believe the text is sufficiently detailed to reproduce our results with these codes. Fur-411

ther data used in this paper will be provided upon reasonable request.412

Acknowledgments413

This work was supported by the European Research Council under the European414

Union’s Horizon 2020 research and innovation programme (grant 866357, POLAR-4DSpace),415

by the Research Council of Norway (grant 275653) and the Natural Sciences and Engi-416

neering Research Council of Canada (NSERC). The numerical simulations were performed417

on resources provided by Sigma2 - the National Infrastructure for High Performance Com-418

puting and Data Storage in Norway, project number NN9299K. This work is a part of419

the 4DSpace Strategic Research Initiative at the University of Oslo. S.M. and S.A. also420

acknowledge Øyvind Jensen and the Institute for Energy Technology for permission to421

complete this research while at IFE.422

References423

Antonsen, T., Havnes, O., & Spicher, A. (2019). Multi-scale measurements of meso-424

spheric aerosols and electronsduring the maxidusty campaign.425

doi: https://doi.org/10.5194/amt-12-2139-2019426

Barjatya, A., Swenson, C. M., Thompson, D. C., & Wright, K. H. (2009). Invited427

article: Data analysis of the floating potential measurement unit aboard the428

international space station. Review of scientific instruments, 80 (4), 041301–429

041301-11. doi: https://doi.org/10.1063/1.3116085430

Beghin, C., Hamelin, M., Lebreton, J. P., Vallieres, X., More, J., & Henri, P. (2017,431

JUL). Electron temperature anisotropy associated to field-aligned currents in432

the earth’s magnetosphere inferred from rosetta mip-rpc observations during433

2009 flyby. Journal of Geophysical Research: Space Physics, 122 (7), 6964-6977.434

doi: https://doi.org/110.1002/2017JA024096435

Bekkeng, T. A., Helgeby, E. S., Pedersen, A., Trondsen, E., Lindem, T., & Moen,436

J. I. (2019). Multi-needle langmuir probe system for electron density437

measurements and active spacecraft potential control on cubesats. IEEE438

Transactions on Aerospace and Electronic Systems, 55 (6), 2951-2964. doi:439

10.1109/TAES.2019.2900132440

–19–



manuscript submitted to Enter journal name here

Bekkeng, T. A., Jacobsen, K. S., Bekkeng, J. K., Pedersen, A., Lindem, T., Le-441

breton, J.-P., & Moen, J. I. (2010, jul). Design of a multi-needle langmuir442

probe system. Measurement Science and Technology , 21 (8), 085903. Re-443

trieved from https://doi.org/10.1088/0957-0233/21/8/085903 doi:444

10.1088/0957-0233/21/8/085903445

Bilitza, D. (2018). Iri the international standard for the ionosphere. Advances446

in Radio Science, 16 , 1–11. Retrieved from https://ars.copernicus.org/447

articles/16/1/2018/ doi: 10.5194/ars-16-1-2018448

Brace, L. H. (1998). Langmuir probe measurements in the ionosphere. In Geophys-449

ical monograph series (Vol. 102, pp. 23–35). Washington, D. C: American Geo-450

physical Union. doi: https://doi-org.ezproxy.uio.no/10.1029/GM102p0023451

Chernyshov, A. A., Spicher, A., Ilyasov, A. A., Miloch, W. J., Clausen, L. B. N.,452

Saito, Y., . . . Moen, J. I. (2018). Studies of small-scale plasma inhomogeneities453

in the cusp ionosphere using sounding rocket data. Physics of Plasmas, 25 (4),454

042902. doi: 10.1063/1.5026281455

Darian, D., Marholm, S., Mortensen, M., & Miloch, W. J. (2019, jun). The-456

ory and simulations of spherical and cylindrical langmuir probes in non-457

maxwellian plasmas. Plasma physics and controlled fusion, 61 (8), 85025.458

doi: https://doi.org/10.1088/1361-6587/ab27ff459

Dimant, Y. S., Khazanov, G., V, & Oppenheim, M. M. (2021, DEC). Effects of460

electron precipitation on e-region instabilities: Theoretical analysis. Journal of461

Geophysical Research: Space Physics, 126 (12). doi: https://doi.org/10.1029/462

2021JA029884463

Eltrass, A., & Scales, W. A. (2014, SEP). Nonlinear evolution of the temperature464

gradient instability in the midlatitude ionosphere. Journal of Geophysical Re-465

search: Space Physics, 119 (9). doi: https://doi.org/10.1002/2014JA020314466

Enengl, F., Kotova, D., Jin, Y., Clausen, L. B. N., & Miloch, W. J. (2022). Iono-467

spheric plasma structuring in relation to auroral particle precipitation. Earth468

and Space Science Open Archive, 29. Retrieved from https://doi.org/469

10.1002/essoar.10511323.1 doi: 10.1002/essoar.10511323.1470

Fejer, B., & Kelley, M. (1980). Ionospheric irregularities. Reviews of Geophysics,471

18 (2), 401-454. doi: https://doi.org/10.1029/RG018i002p00401472

Friedrich, M., Torkar, K., Hoppe, U.-P., Bekkeng, T.-A., Barjatya, A., & Rapp,473

M. (2013). Multi-instrument comparisons of d-region plasma measurements.474

Annales Geophysicae (1988), 31 (1), 135–144.475

Giono, G., Ivchenko, N., Sergienko, T., & Brandstrom, U. (2021, JUL). Multi-476

point measurements of the plasma properties inside an aurora from the spider477

sounding rocket. Journal of Geophysical Research: Space Physics, 126 (7). doi:478

10.1029/2021JA029204479

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.480

(http://www.deeplearningbook.org)481

Guthrie, J., Marchand, R., & Marholm, S. (2021). Inference of plasma parame-482

ters from fixed-bias multi-needle langmuir probes (m-nlp). Measurement sci-483

ence technology , 32 (9), 95906.484

Hirao, K., & Oyama, K. (1971). Electron-temperature observed with langmuir probe485

and electron-temperature probe. JOURNAL OF GEOMAGNETISM AND486

GEOELECTRICITY , 23 (2), 161-&. doi: 10.5636/jgg.23.161487

Hoang, H., Clausen, L. B. N., Røed, K., Bekkeng, T. A., Trondsen, E., Lybekk,488

B., . . . Moen, J. I. (2018). The multi-needle langmuir probe system on489

board norsat-1. , 214 (4), 1. doi: https://doi-org.ezproxy.uio.no/10.1007/490

s11214-018-0509-2491

Hoang, H., Røed, K., Bekkeng, T. A., Moen, J. I., Spicher, A., Clausen, L. B. N., . . .492

Pedersen, A. (2018). A study of data analysis techniques for the multi-needle493

langmuir probe. Measurement Science and Technology , 29 (6), 065906. doi:494

10.1088/1361-6501/aab948495

–20–



manuscript submitted to Enter journal name here

Ikezi, H., Fukiwara, M., & Takayama, K. (1968). Probe noise in quiescent plasmas.496

Journal of the physical society of Japan, 25 (6), 1663-&. doi: https://doi.org/497

10.1143/JPSJ.25.1663498

Ivarsen, M. F., Hoang, H., Yang, L., Clausen, L. B. N., Spicher, A., Jin, Y., . . .499

Lybekk, B. (2019). Multineedle langmuir probe operation and acute probe500

current susceptibility to spacecraft potential. IEEE Transactions on Plasma501

Science, 47 (8), 3816-3823. doi: 10.1109/TPS.2019.2906377502

Jacobsen, K. S., Pedersen, A., Moen, J. I., & Bekkeng, T. A. (2010). A new lang-503

muir probe concept for rapid sampling of space plasma electron density. Mea-504

surement science technology , 21 (8), 085902–085902. doi: https://doi.org/10505

.1088/0957-0233/21/8/085902506

Jao, C.-S., Marholm, S., Spicher, A., & Miloch, W. J. (2022). Wake formation be-507

hind langmuir probes in ionospheric plasmas. Advances in Space Research,508

69 (2), 856-868. doi: https://doi.org/10.1016/j.asr.2021.11.012509

Jin, Y., Clausen, L. B. N., Spicher, A., Ivarsen, M. F., Zhang, Y., Miloch, W. J.,510

& Moen, J. I. (2021). Statistical distribution of decameter scale (50 m)511

ionospheric irregularities at high latitudes. Geophysical Research Letters,512

48 (19), e2021GL094794. Retrieved from https://agupubs.onlinelibrary513

.wiley.com/doi/abs/10.1029/2021GL094794 doi: https://doi.org/10.1029/514

2021GL094794515

Jin, Y., Moen, J. I., Spicher, A., Oksavik, K., Miloch, W. J., Clausen, L. B. N.,516

. . . Saito, Y. (2019). Simultaneous rocket and scintillation observations of517

plasma irregularities associated with a reversed flow event in the cusp iono-518

sphere. Journal of Geophysical Research: Space Physics, 124 (8), 7098-7111.519

Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/520

10.1029/2019JA026942 doi: https://doi.org/10.1029/2019JA026942521

Keskinen, M., & SL, O. (1983). Theories of high-latitude ionospheric irregularities-522

a review. Radio Science, 18 (6), 1077-1091. doi: https://doi.org/10.1029/523

RS018i006p01077524

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv.525

Retrieved from https://arxiv.org/abs/1412.6980 doi: 10.48550/ARXIV526

.1412.6980527

Laframboise, J. G. (1966). Theory of spherical and cylindrical langmuir probes in a528

collisionless maxwellian plasma at rest. University of Toronto.529

Liu, G., & Marchand, R. (2021). Kinetic simulation of segmented plasma flow me-530

ter response in the ionospheric plasma. Journal of Geophysical Research: Space531

Physics, 126 (5), e2021JA029120. doi: https://doi.org/10.1029/2021JA029120532

Liu, G., Marholm, S., Eklund, A., Clausen, L. B. N., & Marchand, R. (2022). m-nlp533

inference models using simulation and regression techniques. Earth and Space534

Science Open Archive, 20. doi: https://doi.org/10.1002/essoar.10510978.1535

Liu, J., Wang, W., Oppenheim, M., Dimant, Y., Wiltberger, M., & Merkin,536

S. (2016). Anomalous electron heating effects on the e region iono-537

sphere in tiegcm. Geophysical Research Letters, 43 (6), 2351-2358. doi:538

https://doi.org/10.1002/2016GL068010539

Lynch, K. A., Hampton, D. L., Zettergren, M., Bekkeng, T. A., Conde, M., Fer-540

nandes, P. A., . . . Samara, M. (2015). Mica sounding rocket observa-541

tions of conductivity-gradient-generated auroral ionospheric responses:542

Small-scale structure with large-scale drivers. Journal of Geophysical Re-543

search: Space Physics, 120 (11), 9661-9682. Retrieved from https://544

agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JA020860 doi:545

https://doi.org/10.1002/2014JA020860546

Marchand, R. (2012). Ptetra, a tool to simulate low orbit satellite–plasma interac-547

tion. IEEE Transactions on Plasma Science, 40 (2), 217-229. doi: 10.1109/TPS548

.2011.2172638549

–21–



manuscript submitted to Enter journal name here

Marchand, R., & Resendiz Lira, P. A. (2017). Kinetic simulation of space-550

craft–environment interaction. IEEE Transactions on Plasma Science, 45 (4),551

535-554. doi: 10.1109/TPS.2017.2682229552

Marholm, S. (2020). The unstructured particle-in-cell method with applications for553

objects in ionospheric plasmas (PhD dissertation, University of Oslo). Re-554

trieved from https://www.duo.uio.no/bitstream/handle/10852/73029/1/555

PhD-Marholm-2020.pdf556

Marholm, S., & Darian, D. (2021, September). langmuirproject/langmuir:. Zen-557

odo. Retrieved from https://doi.org/10.5281/zenodo.5469073 doi: 10558

.5281/zenodo.5469073559

Marholm, S., & Marchand, R. (2020, Apr). Finite-length effects on cylindrical lang-560

muir probes. Phys. Rev. Research, 2 , 023016. doi: https://doi.org/10.1103/561

PhysRevResearch.2.023016562

Moen, J., Oksavik, K., Alfonsi, L., Daabakk, Y., Romano, V., & Spogli, L. (2013).563

Space weather challenges of the polar cap ionosphere. Journal of space weather564

and space climate, 3 , A02. doi: https://doi.org/10.1051/swsc/2013025565

Mott-Smith, H. M., & Langmuir, I. (1926, Oct). The theory of collectors in gaseous566

discharges. Phys. Rev., 28 , 727–763. doi: https://doi.org/10.1103/PhysRev.28567

.727568

Olowookere, A., & Marchand, R. (2021, JUN). Density-temperature constraint from569

fixed-bias spherical langmuir probes. IEEE Transactions on Plasma Science,570

49 (6), 1997-1999. doi: 10.1109/TPS.2021.3076806571

Onishchenko, O., Pokhotelov, O., Sagdeev, R., Stenflo, L., Treumann, R., & Ba-572

likhin, M. (2004). Generation of convective cells by kinetic alfven waves in the573

upper ionosphere. Journal of Geophysical Research: Space Physics, 109 (A3).574

doi: https://doi.org/10.1029/2003JA010248575

Oppenheim, M. M., & Dimant, Y. S. (2013). Kinetic simulations of 3-d farley-576

buneman turbulence and anomalous electron heating. Journal of Geophysical577

Research: Space Physics, 118 (3), 1306-1318. doi: https://doi.org/10.1002/jgra578

.50196579

Perron, P. J. G., Noel, J. M. A., Kabin, K., & St-Maurice, J. P. (2013). Ion tem-580

perature anisotropy effects on threshold conditions of a shear-modified current581

driven electrostatic ion-acoustic instability in the topside auroral ionosphere.582

Annales Geophysicae, 31 (3), 451-457. doi: 10.5194/angeo-31-451-2013583
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