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Abstract

Our longest, stable record of cloud-top pressure (CTP) and cloud-top height (CTH) are derived from the Moderate Resolution
Imaging Spectroradiometer (MODIS) and Multi-Angle Imaging Spectroradiometer (MISR) on Terra. Because of single cloud-
layer assumptions in their standard algorithms, they provide only single CTP/CTH retrievals in multi-layered situations. In the
predominant multi-layered regime of thin cirrus over low clouds, MODIS significantly overestimates cirrus CTP and emissivity,
while MISR accurately retrieves low-cloud CTH. Utilizing these complementary capabilities, we develop a retrieval algorithm
for accurately determining both-layer CTP and cirrus emissivity for such 2-layered clouds, by applying the MISR low-cloud
CTH as a boundary condition to a modified MODIS CO2-slicing retrieval.

We evaluate our 2-layered retrievals against collocated Cloud-Aerosol Transport System (CATS) lidar observations. Relative to

CATS, the mean bias of the upper cloud CTP and emissivity are reduced by ˜90% and ˜75% respectively in the new technique,

compared to standard MODIS products. We develop an error model for the 2-layered retrieval accounting for systematic and

random errors. We find up to 88% of all residuals lie within modeled 95% confidence intervals, indicating a near-closure of error

budget. This reduction in error leads to a reduction in modeled atmospheric longwave radiative flux biases ranging between

5-40 Wm-2, depending on the position and optical properties of the layers. Given this large radiative impact, we recommend

that the pixel-level 2-layered MODIS+MISR fusion algorithm be applied over the entire MISR swath for the 22-year Terra

record, leading to a first-of-its-kind 2-layered cloud climatology from Terra’s morning orbit.
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Key Points: 9 
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1. Accurate, high-precision MISR low cloud heights are employed in a physics-based 11 

correction to MODIS CO2-slicing in multi-layered scenes. 12 

2. Cloud-top pressure bias drops from 65 hPa to 5 hPa, resulting in a quartering of cloud-13 

height and emissivity bias for cirrus over low cloud. 14 

3. Up to 88% of cloud-top pressure retrieval errors are bound by theoretical estimates, 15 

resulting in near-closure of CO2-slicing error budget. 16 
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Abstract 18 

Our longest, stable record of cloud-top pressure (CTP) and cloud-top height (CTH) are derived 19 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-Angle Imaging 20 

Spectroradiometer (MISR) on Terra. Because of single cloud-layer assumptions in their standard 21 

algorithms, they provide only single CTP/CTH retrievals in multi-layered situations. In the 22 

predominant multi-layered regime of thin cirrus over low clouds, MODIS significantly 23 

overestimates cirrus CTP and emissivity, while MISR accurately retrieves low-cloud CTH. 24 

Utilizing these complementary capabilities, we develop a retrieval algorithm for accurately 25 

determining both-layer CTP and cirrus emissivity for such 2-layered clouds, by applying the MISR 26 

low-cloud CTH as a boundary condition to a modified MODIS CO2-slicing retrieval. 27 

We evaluate our 2-layered retrievals against collocated Cloud-Aerosol Transport System (CATS) 28 

lidar observations. Relative to CATS, the mean bias of the upper cloud CTP and emissivity are 29 

reduced by ~90% and ~75% respectively in the new technique, compared to standard MODIS 30 

products. We develop an error model for the 2-layered retrieval accounting for systematic and 31 

random errors. We find up to 88% of all residuals lie within modeled 95% confidence intervals, 32 

indicating a near-closure of error budget. This reduction in error leads to a reduction in modeled 33 

atmospheric longwave radiative flux biases ranging between 5-40 Wm-2, depending on the position 34 

and optical properties of the layers. Given this large radiative impact, we recommend that the 35 

pixel-level 2-layered MODIS+MISR fusion algorithm be applied over the entire MISR swath for 36 

the 22-year Terra record, leading to a first-of-its-kind 2-layered cloud climatology from Terra’s 37 

morning orbit. 38 

Plain Language Abstract 39 

Our longest climate-quality record of global cloud-top heights (CTH) comes from the Moderate 40 

Resolution Imaging Spectroradiometer (MODIS) and Multi-Angle Imaging Spectroradiometer 41 

(MISR) on the Terra satellite. These sensors assume a single cloud-layer in retrieving CTH, even 42 

though ~30% of global cloud cover is multi-layered. Multi-layered clouds predominantly consist 43 

of thin ice clouds over low clouds. Under such conditions, MISR accurately retrieves low-cloud 44 

CTH, while MODIS systematically underestimates upper-cloud-layer CTH. Here, we have 45 

developed a 2-layered MODIS+MISR fusion CTH retrieval by using MISR’s accurate low-cloud 46 

CTH as an input to a modified MODIS algorithm. This algorithm combines the complementary 47 

capabilities of MISR and MODIS in distinguishing higher and lower clouds and estimates both-48 

layer cloud heights and high-cloud emissivity.  49 

Through comparisons against coincident Cloud-Aerosol Transport System (CATS) lidar 50 

observations, we find that the new algorithm improves the accuracies in retrieved CTH and cloud 51 

emissivities by ~75% over standard MODIS products. We further demonstrate significant 52 

improvements in estimates of simulated atmospheric longwave radiation from our implementation. 53 

Owing to its large radiative impact, we suggest that the pixel-level fusion algorithm be applied to 54 

all 22 years of Terra record to facilitate public dissemination of the first 2-layered cloud record 55 

from its morning orbit. 56 

1. Introduction 57 
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The vertical and horizontal distribution of clouds induces gradients in 3D radiative and latent 58 
heating rates (McFarlane et al., 2008; Cesana et al., 2019; Athreyas et al., 2020), affecting 59 

atmospheric circulation and precipitation patterns (Li et al., 2015; Voigt et al., 2021). As such, 60 
clouds play an important role in the Earth’s climate – yet, even after decades of research, they 61 
remain the key source of uncertainty in predicting future climate change under any given climate 62 
change scenario (Boucher et al., 2013). The cloud component of the uncertainty in climate model 63 
predictions arises, in part, from approximate sub-grid parametrization of cloud processes in those 64 

models (McFarlane, 2011). The sub-grid scale parameterizations are applied to microphysical 65 
(hydrometeor size and content) and macrophysical cloud properties (amount-by-altitude and cloud 66 
overlap), which together govern the radiative and hydrological properties of clouds. Accurate 67 
satellite records of these micro- and macro-physical properties, and their diurnal to long-term 68 
variability, are essential to provide empirical constraints on sub-grid cloud parameterizations and 69 

climate predictions (e.g., Zhou et al., 2013; Terai et al., 2016; Mace & Berry, 2017).  70 

Our longest record of cloud properties that are stable over multiple decades (features of a desirable 71 
climate record) and from a single satellite platform comes from NASA’s flagship Earth Observing 72 
System (EOS) mission, Terra. It maintained a stable equator-crossing time (ECT; 10:30 am ± 15 73 
minutes) for >20 years (2000-2022), with remarkable radiometric stability in its instruments. This 74 
long-term stability in Terra’s ECT makes it a unique climate record, since diurnal variability has 75 
not been aliased into the patterns of long-term variability. 76 

Two of the instruments on Terra – the Multiangle Imaging Spectroradiometer (MISR) and the 77 

Moderate Resolution Imaging Spectroradiometer (MODIS) – employ independent cloud-top 78 
height (CTH) retrieval algorithms. MISR retrieves CTHs through visible-channel stereoscopy 79 
(Moroney et al., 2002; Muller et al., 2002; Mueller et al. 2013), whereas MODIS employs infrared 80 

(IR) techniques, namely the CO2-slicing and 11µm brightness temperature techniques (Menzel et 81 

al., 2008; Baum et al., 2012). Both MODIS and MISR CTH retrieval algorithms assume a single 82 
cloud layer in the scene. This assumption is often not met in nature as multi-layered clouds occur 83 
frequently, with CALIPSO/CloudSat showing that >30% of all clouds occur under various degrees 84 

of overlap (Sassen et al., 2008; Joiner et al., 2010; Yuan & Oreopoulos, 2013; Li et al., 2015; 85 
Oreopoulos et al., 2017; Hong & Di Girolamo, 2020). By far the most dominant multi-layered 86 

cloud regime is a 2-layered system with thin cirrus overlying water clouds, followed by thin cirrus 87 
overlying mixed-phase clouds (Wang & Dessler, 2006; Oreopoulos et al., 2017; Hong and Di 88 
Girolamo 2020). Numerous validation studies against ground and space-based active sensors have 89 
shown that the presence of optically thin cirrus overlying low clouds leads to the most significant 90 
disagreements in retrieved CTH between MISR and MODIS (Naud et al., 2007; Marchand et al., 91 

2010; Mitra et al., 2021), suggestive of the presence of independent information of the upper and 92 

lower cloud layers in the two datasets.  93 

The path to improving the Terra record relies on exploiting the distinctiveness of the MODIS and 94 
MISR CTH techniques to estimate the properties of multi-layered clouds more accurately, as 95 

previously suggested (Naud et al., 2007; Mitra et al., 2021). CTH errors in multi-layered cloud 96 
regimes have been comprehensively studied for the Terra MODIS and MISR records by Mitra et 97 
al. (2021) using  collocated Cloud-Aerosol Transport System (CATS) lidar observations (McGill 98 
et al., 2015; Yorks et al., 2016) that operated aboard the International Space Station (ISS) from 99 
2015-2017. Comparison of MODIS Collection 6.1 CTH with CATS showed that the CTHs of thin 100 
cirrus in these multi-layered regimes were underestimated by more than 1 km on average. 42% of 101 
the MODIS CTH retrievals occurred below the cloud base detected by the lidar in these conditions. 102 
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Such biases are common in thermal CTH retrievals and are due to the radiative influence of the 103 
lower cloud layer reaching the sensor through the optically thin cirrus at infrared wavelengths. On 104 

the other hand, the stereoscopic technique employed by MISR tended to retrieve the height of the 105 
lower layer when cirrus visible optical depths were less than ~0.4, and with a high degree of 106 
precision and accuracy (-280±300 m). However, MISR failed to detect the higher layer in favor of 107 
the lower layer >80% of the time in these multi-layered conditions. This is due to the greater 108 
contribution of the optically thicker, more textured low clouds to the overall image texture that is 109 

used in stereoscopic retrieval. The distinct error characteristics of MISR and MODIS CTH 110 
retrievals indicate that there is information about multi-layering of clouds that can be extracted 111 
through fusion of the two retrieval methodologies. Here, we present a retrieval algorithm that 112 
makes use of the strengths of MISR’s sensitivity to low clouds and MODIS CO2-slicing 113 
technique’s sensitivity to high clouds to retrieve the coincident heights of up to two cloud layers, 114 

which also improves the CO2-slicing technique’s estimate of the cirrus emissivity. We carry out a 115 
detailed error budget analysis and validate the retrievals using CATS. 116 

The remainder of the paper is organized as follows. Section 2 describes the theoretical 117 
underpinnings of the CO2-slicing algorithm for retrieving CTH and emissivity of thin ice clouds, 118 
and how it has been updated here to account for the presence of an optically thick low cloud 119 
measured by MISR. Section 3 describes the datasets used and the method of implementation of a 120 
variant of the MODIS single-layered CO2-slicing, along with the implementation of our 2-layer 121 
CO2-slicing technique. Section 4 documents the validation of the 2-layer CO2-slicing against 122 

coincident CATS lidar observations, along with an error budget analysis for the same. Since cloud 123 
radiative effect depends strongly on cloud overlap (e.g., Li et al., 2011; L’Ecuyer et al., 2019, Kang 124 

et al. 2020), Section 5 demonstrates significant improvements in modeled cloud radiative effects  125 
when using inputs from the 2-layer algorithm compared to the 1-layer algorithm. Concluding 126 

remarks follow in Section 6. 127 

2. Theoretical Foundation 128 

CO2-slicing (Smith & Platt, 1978; Wielicki & Coakley, 1981), as used in MODIS (Menzel et al., 129 
2008), makes use of the difference of clear- and cloudy-sky radiances from closely separated 130 

channels in the 13-15 µm CO2 absorption band, where the emissivity for ice clouds (such as cirrus) 131 
remain invariant across wavelengths within the band. Clear-sky radiance are estimated through 132 
infrared radiative transfer to account for the radiance reaching MODIS that originates from below 133 

thin ice clouds. The spectral clear-sky IR radiance, 𝐼𝑐𝑠 (neglecting scattering) at wavelength λ, 134 
reaching a satellite sensor viewing at nadir over a black surface (for simplicity here) is given by: 135 

𝐼𝑐𝑠 (𝜆)  =  𝒯(λ,  Ps)𝐵(𝜆,  𝑇(Ps))  − ∫ 𝐵(λ, P)
d𝒯(𝜆,  𝑇(𝑃))

dP
dP

Ps

0

          … (1) 136 

where, Ps denotes the surface pressure, 𝐵(𝜆, 𝑇) denotes the Planck radiance at temperature T and 137 

wavelength 𝜆, with temperature defined as a function of pressure, P. 𝒯(λ, P) denotes the 138 
atmospheric transmittance between P and the satellite. For a completely opaque cloud covering 139 
the instantaneous field of view (IFOV) of the sensor, the effective emissivity, which is the product 140 

of cloud fraction (𝐴𝑐) within the IFOV and the cloud layer emissivity (𝜖𝑐), is unity. In this case, 141 
provided the opaque cloud is geometrically infinitesimally thin, the nadir radiance observed by the 142 

satellite, 𝐼𝑐, is devoid of all emissions from below the cloud-top pressure (𝑃𝑐), and is given by: 143 
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 𝐼𝑐  (𝜆, 𝑃𝑐)  =  𝒯(λ,  Pc)𝐵(𝜆,  𝑇(Pc))  − ∫ 𝐵(λ, P)
d𝒯(𝜆,  𝑇(𝑃))

dP
dP

Pc

0

           … (2) 144 

In reality, cirrus are often transmissive (𝜖𝑐𝐴𝑐 < 1). Then, the observed nadir top-of-atmosphere 145 
(TOA) radiance is: 146 

𝐼(𝜆)  =  𝐼𝑐𝑠(𝜆)  +  𝜖𝑐(𝜆)𝐴𝑐 [𝐼𝑐(𝜆, 𝑃𝑐)  −  𝐼𝑐𝑠(𝜆)]                                       … (3)  147 

where, 𝐴𝑐 is the cloud fraction, and 𝜖𝑐𝐴𝑐 is often interchangeably referred to as the effective cloud 148 
amount or effective emissivity. As effective emissivity for ice clouds is nearly equal for any two 149 

wavelengths (say 𝜆1 and 𝜆2) in the 15µm CO2-absorption band, we set them equal to each other, 150 
which, from Eq. 3, leads to  151 

𝐼(𝜆1) − 𝐼𝑐𝑠(𝜆1)

𝐼(𝜆2) − 𝐼𝑐𝑠(𝜆2)
=  

𝐼𝑐(𝜆1, 𝑃𝑐) − 𝐼𝑐𝑠(𝜆1)

𝐼𝑐(𝜆2, 𝑃𝑐) − 𝐼𝑐𝑠(𝜆2)
           … (4) 152 

Cloudy-sky radiances are calculated for a number of discrete 𝑃𝑐 values, and the value of 𝑃𝑐 for 153 
which the right-hand side (RHS) and the left-hand side (LHS) have the least absolute difference is 154 

taken as the retrieved 𝑃𝑐. Using this value of 𝑃𝑐, we can solve for the cloud effective emissivity 155 
from Eq. 3, for either band, by: 156 

𝜖𝑐(𝜆)𝐴𝑐 =  
𝐼(𝜆) − 𝐼𝑐𝑠(𝜆)

𝐼𝑐(𝜆, 𝑃𝑐) − 𝐼𝑐𝑠(𝜆)
                      … (5) 157 

For a 2-layer cloud system, with lower altitude cloud at 𝑃𝑙 of effective amount 𝜖𝑙(𝜆)𝐴𝑙 and an 158 

upper altitude cloud at 𝑃𝑢 of effective amount 𝜖𝑢(𝜆)𝐴𝑢, Eq. 3 misrepresents the observed TOA IR 159 

radiation at the satellite sensor as it does not consider the emission from the lower cloud layer 160 

when the upper-layer is thin (i.e., 𝜖𝑢(𝜆)𝐴𝑢 < 1). In reality, for such a 2-layered system, the 161 

background emission (equivalent to the clear-cloudy sky radiance difference in a single-layered 162 

case) comes not only from the surface but also from the lower-layer, and hence, 𝐼𝑐𝑠(𝜆) in Eq. 3 is 163 

modified to be 𝐼′𝑐𝑠(𝜆) =  𝜖𝑙(𝜆)𝐴𝑙𝐼𝑐(𝑃𝑙) + (1 −  𝜖𝑙(𝜆)𝐴𝑙)𝐼𝑐𝑠(𝜆), and the TOA IR radiance is: 164 

𝐼′(𝜆)  =  𝐼𝑐𝑠(𝜆) + 𝜖𝑙(𝜆)𝐴𝑙[1 − 𝜖𝑢(𝜆)𝐴𝑢] ∫ 𝐵(λ, P)
d𝒯(𝜆,  𝑇(𝑃))

dP
dP

𝑃𝑠

𝑃𝑙

165 

+ 𝜖𝑢(𝜆)𝐴𝑢[𝐼𝑐(𝜆, 𝑃𝑢) −  𝐼𝑐𝑠(𝜆)]                     … (6)  166 

Since 𝐼′(𝜆) is usually less than 𝐼(𝜆), the cloudy-clear radiance differences on the LHS of Eq. 4 are 167 

typically reduced when a second layer is present. Hence, simply using the single-layer strategy of 168 

Eq. 4 results in a CTP solution that is numerically greater than the true 𝑃𝑢. Comparing Eq. 3 and 169 

Eq. 6, we note that the second term of Eq. 6 must be accounted for in the CO2-slicing of 2-layered 170 
clouds, and hence, Equations 4 and 5 must be updated accordingly. Since the number of unknown 171 
variables in Eq. 6 would make solving the equation intractable, we make the simplifying 172 

assumption that the lower cloud is black [i.e., 𝜖𝑙(𝜆)𝐴𝑙 = 1], and define the following term: 173 

   ∆𝐼 (𝜆)  =  ∫ 𝐵(λ, P)
d𝒯(𝜆,  𝑇(𝑃))

dP
dP

𝑃𝑠

𝑃𝑙

              … (7) 174 

As in a 1-layered CO2-slicing, we assume 𝜖𝑢
1𝐴𝑢

1 =  𝜖𝑢
1𝐴𝑢

1
 (but now strictly for the upper cloud 175 

marked by ‘u’). With all these modifications, Eq. 4 for multi-layered cases is recast as: 176 
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𝐼(𝜆1) − 𝐼𝑐𝑠(𝜆1) − ∆𝐼(𝜆1)

𝐼(𝜆2) − 𝐼𝑐𝑠(𝜆2) − ∆𝐼(𝜆2)
=  

𝐼(𝜆1, 𝑃𝑢) − 𝐼𝑐𝑠(𝜆1) −  ∆𝐼(𝜆1)

𝐼(𝜆2, 𝑃𝑢) − 𝐼𝑐𝑠(𝜆2) −  ∆𝐼(𝜆2)
       … (8) 177 

Similarly, Eq. 5 is adjusted to account for ∆𝐼(𝜆), and is recast from Eq. 6, as: 178 

𝜖𝑢(𝜆)𝐴𝑢 =  
𝐼(𝜆) − 𝐼𝑐𝑠(𝜆) −  ∆𝐼(𝜆)

𝐼𝑐(𝜆, 𝑃𝑢) − 𝐼𝑐𝑠(𝜆) −  ∆𝐼(𝜆)
                      … (9) 179 

3. Methodology 180 

 181 
Section 3.1 briefly describes the datasets used in this study to both implement and validate our 182 
CO2-slicing algorithm. Section 3.2 describes the method of implementation of this algorithm. 183 
 184 

3.1. Data 185 

The operational MODIS Cloud Top Property algorithm [detailed in the MODIS Algorithm 186 

Theoretical Basis Document or ATBD (Menzel et al. 2015)], which produces the 1 km-resolution 187 

Collection 6.1 MOD06 product, uses gridded model output from the National Center of 188 

Environmental Prediction Global Data Assimilation System (GDAS) (Derber et al., 1991) for 189 

temperature and moisture fields and Reynolds Sea Surface Temperatures (Reynolds et al., 2007) 190 

to set up the forward model atmosphere. In our implementation, we have instead used gridded 191 

ERA5 Reanalysis products (Hersbach et al., 2020) at 0.25º-resolution, at 4 times a day (i.e., 0, 6, 192 

12 and 18 UTC), to do the same. ERA5 is chosen over other reanalyses because it has been 193 

demonstrated to compare better against observations than older reanalyses (Tetzner et al., 2019; 194 

Tegtmeier et al., 2020), as well as to use its publicly available modeling error estimates for error 195 

budget analysis (see Section 4.2). ERA5 temperatures, specific humidity, and geopotential heights 196 

from all 37 ERA5 pressure levels are linearly interpolated as a function of the logarithm of pressure 197 

to arrive at the atmospheric state for the 101 pressure levels employed by the MOD06 algorithm. 198 

Surface pressures, temperatures (2m temperature over land and sea-surface temperature over 199 

oceans) and 2m dewpoint temperatures (to calculate surface moisture) are also used from ERA5 200 

reanalysis, 4 times daily, to define surface temperature and near-surface humidity. 201 

Well-mixed and trace gases (except ozone) are taken from standard atmospheric profiles 202 
(Northern/Southern Midlatitude Summer/Winter, Tropical) (Anderson et al., 1986); as are 203 

temperatures, specific humidity, and geopotential heights in the uppermost reaches of the 204 
atmosphere (i.e., pressures < 1 hPa; ERA5 reanalyses are not available at these altitudes). Between 205 
April-September, we assume a Northern Midlatitude Summer; while, between October-March, we 206 

assume a Northern Midlatitude Winter. The opposite is true for the Southern Hemisphere. The 207 
tropical profile remains invariant for all times of the year and is applied between 30ºN-30ºS, 208 
whereas the midlatitude profiles are chosen for latitudes poleward of ±30º. From Collection 6 209 
MOD06, ozone profiles are taken from gridded GDAS output; however, for simplicity, we 210 
obtained ozone profiles similar to legacy MOD06 products – climatological ozone mixing-ratio 211 
profiles were estimated by linear interpolation in latitude and month among model atmospheres 212 
(Tropical, Midlatitude Summer/Winter). Surface emissivity is taken from the same global surface 213 
emissivity database used in MOD06 (Seemann et al., 2008). 214 
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The observed infrared radiances used in Equations 4/5 and 8/9 are taken from the Collection 6.1 215 
MODIS Level 2 geocalibrated radiance product (MOD021KM). Terra MODIS uses Bands 33, 35 216 

and 36 (13.3, 13.9 and 14.2 µm, respectively) for CO2-slicing CTP estimation [Band 34 (13.6 µm), 217 
also a CO2 absorption channel, is unused due to high noise]. Hence, the band-pairs 36/35 and 35/33 218 
are used for estimating CTP (Equations 4 and 8). Band 31 (11.2 µm) radiances are used to calculate 219 
effective cloud amounts (Equations 5 and 9). 220 

The low-cloud pressure, 𝑃𝑙, is taken from MISR Level 2 CTH (in pressure coordinates). We use 221 
the 1.1 km-resolution MISR “wind-corrected” cloud height, from the TC_CLOUD Version 222 
F01_0001 product. The low cloud CTH is transformed to pressure coordinates through a linear 223 
interpolation between multi-level ERA5 geopotential height and the logarithm of pressure. MISR 224 

CTH is reported on the 1984 World Geodetic System (WGS84) ellipsoid, and hence, 0.25º-225 
resolution nearest neighbor geoid heights were added to MISR CTH to obtain low cloud heights 226 

above mean sea level, before calculating CTP from it. 227 

We validate our CO2-slicing technique by comparing against coincident observations from the 228 

CATS lidar. Thus, our validation is restricted to latitudes traversed by the ISS orbit (±52º in either 229 

hemisphere). The CATS data is taken from the CATS Version 2.01 Level 2 Product, that reports 230 

lidar observations such as 1064 nm cloud-masked lidar backscatter at an along-track resolution of 231 

5 km and a vertical resolution of 60 m. We use the same dataset of CATS CTH, layer depth and 232 

layer-integrated backscatter used in Mitra et al. (2021) for this study. As in Mitra et al. (2021), 233 

CATS, MISR and MODIS samples were selected only if they are collocated (< 1 km) and 234 

coincident (< 5 minutes), for robust statistical analysis. Note that the filtering of multi-layered 235 

scenes in our study must be based solely on MISR and MODIS retrievals. Based on the discussion 236 

in Section 2, our algorithm is best suited for scenes with a thin ice-phase cloud overlying a 237 

vertically well-separated low cloud layer (further discussed in Section 3.2). To ensure application 238 

only on ice-phase clouds, we apply our algorithm only on scenes where the MOD06 product had 239 

used CO2-slicing for cloud-top detection (since CO2-slicing is only applied on ice-phase clouds). 240 

To ensure that our algorithm is applied on scenes with well-separated cloud layers, we choose only 241 

those scenes where MODIS-MISR CTH difference > 1 km [suggestive of well-separated cloud 242 

layers, based on Mitra et., al (2021)]. Upon imposing these conditions, it is found that all scenes 243 

in the remaining dataset are indeed multi-layered according to CATS. 95% are likely 2-layered 244 

(for 92% of such cases, the CATS signal completely attenuates in the second layer). The remaining 245 

5% pixels show attenuation in a third cloud layer. The final dataset constitutes 2790 pixels from 246 

501 independent scenes (i.e., unique MISR and MODIS granules and CATS orbits), hence ~6 247 

samples per scene (Figure S1). Out of these, 305 (~11%) pixels are no-retrievals. This is largely 248 

due to the presence of radiance artifacts, such as striping within the MODIS data. In the current 249 

study, such bad pixels are discarded from the analyses, but can be dealt with in future 250 

implementations by established procedures of MODIS radiance de-striping (Weinreb et al., 1989; 251 

Bouali & Ladjal, 2011).  252 

IR emissivity (𝜖𝐼𝑅) of a cloud layer is related to visible optical depth (𝜏𝑉𝐼𝑆) over the layer, as 253 

  𝜏𝑉𝐼𝑆 = − ζ ln(1 − 𝜖𝐼𝑅)                            … (10) 254 

where, −ln(1 − 𝜖𝐼𝑅) equals the thermal IR optical depth (𝜏𝐼𝑅). The constant 𝜁 is taken to be 2.13 255 

for ice clouds (Minnis et al., 1993; Rossow & Schiffer 1999). Estimates of visible optical depth 256 
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(𝜏𝑉𝐼𝑆) of the topmost cloud layer from CATS comes from a linear regression between layer-257 
averaged integrated backscatter and layer-integrated optical depth for high clouds (CTH > 7 km) 258 

[detailed in (Mitra et al., 2021)]. These estimates of high cloud 𝜏𝑉𝐼𝑆 are converted to infrared 259 

effective emissivity (𝐴𝑐𝜖𝑐, assuming 𝐴𝑐 = 1) using Eq. 10 for validation. MODIS 1 km-resolution 260 

CTP, CTH, effective emissivity (𝐴𝑐𝜖𝑐) and visible optical depth (𝜏𝑉𝐼𝑆) from the MOD06 product 261 
are also used in comparison to CATS and our 2-layered solution. 262 

3.2. Implementation of the CO2-slicing Algorithm 263 

For our implementation of the CO2-slicing algorithm, we have modified the original MOD06 264 
Fortran Cloud-Top Property code obtained from the MODIS Adaptive Processing System (see 265 
Section 7) and wrapped it in Python. Salient features of the operational code and the modifications 266 
for our implementation are hereby discussed. 267 

The MOD06 algorithm simulates clear- and cloudy-sky radiances using Equations 1 and 2, on 101 268 
vertical pressure levels between 0.05 to 1100 hPa, taking gaseous absorption, surface emissivity 269 
and satellite zenith angle into account. These radiances are calculated for the channels centered on 270 
11.2, 13.3, 13.6, 13.9 and 14.2 µm, using a transmittance model named Pressure layer Fast 271 

Algorithm for Atmospheric Transmissions (PFAAST) (Hannon et al., 1996), and further corrected 272 
for increased path-length along off-nadir viewing zenith angles. The usage of these modeled 273 

radiances along with the observed radiances from MODIS, in Eq. 4, requires that the cloud 274 
emissivity for pairs in the CO2-slicing spectral bands be nearly equal, which is more satisfied by 275 
ice clouds than water or mixed-phase (Zhang & Menzel, 2002). Hence in generating the standard 276 

MOD06 product, the MODIS cloud phase detection algorithm is run ahead of the cloud-top 277 
algorithm. The CO2-slicing technique is applied only on such scenes with ice phase detection (11.2 278 

µm brightness temperature technique is applied elsewhere).  279 

In our implementation we use the same PFAAST model and we account for cloud phase by 280 
selectively working only on those pixels where the Collection 6.1 MODIS CO2-slicing had been 281 

previously used. Global comparison of Aqua-MODIS cloud phase with CLOUDSAT-CALIPSO 282 
data had shown that the MODIS cloud phase algorithm mischaracterizes multi-layered clouds with 283 
an upper ice layer as liquid or mixed in <1% of all cases (Marchant et al., 2016). This ensures 284 

confidence that pixels flagged as confidently ice by the Terra MODIS cloud phase algorithm is 285 
nearly always ice topped and hence, suitable for the implementation of our algorithm. 286 

3.2.1. Implementation of a Single-layered CO2-slicing and its Bias 287 

To obtain solutions for CTP and emissivity, Eq. 4 is solved iteratively between the surface and the 288 

tropopause, to obtain the value of 𝑃𝑐 that best reduces the difference between LHS and RHS of 289 

Eq.4. The tropopause is chosen as the upper limit of CTP solution, because the temperature profile 290 

is nearly flat across the tropopause, leading to non-unique solutions. The tropopause is taken to be 291 

the level of the highest altitude inflection point in the reanalysis temperature profile for pressures 292 

> 100 hPa. If many points satisfy such a condition, the lowest altitude point is chosen to be the 293 

tropopause. The solution of 𝑃𝑐 from Eq. 4 is then used in Eq. 5 using 11.2 µm radiances to estimate 294 

effective cloud amounts (𝐴𝑐𝜖𝑐).  295 

The standard MOD06 algorithm calculates all possible CTP solutions, before only reporting a 296 

“best” solution through a “top-down” method that checks for the possibility of a higher wavelength 297 

solution before a lower wavelength or brightness temperature solution (i.e., 36/35 solution over 298 



Manuscript submitted to Journal of Geophysical Research, Atmospheres 

 

35/33 solution, over an IR BT solution) (Menzel et al., 2008). For a solution to be viable, the clear-299 

cloudy radiance difference must exceed noise levels for each particular channel in that spectral 300 

band pair (designated to be 1.25, 1.0, 1.0 and 0.75 W m-2 sr-1 for Bands 36-33, respectively), and 301 

the solution from that channel must lie within a specific portion of the troposphere where the 302 

atmosphere is emissive for that spectral channel (i.e., for 36/35 pair, CTP solutions must be < 450 303 

hPa; for the 35/33 pair, CTP solutions must be < 650 hPa) (Baum et al., 2012).  304 

To verify the implementation of our algorithm, we compared our 1-layer CTP solutions against 305 

MOD06 CTP for 500 CATS single-layer high cloud (CTH > 7 km) pixels from 42 independent 306 

scenes in January-February 2016. We find a mean (± standard deviation) difference in CTP 307 

between our implementation and MOD06 to be -5±30 hPa. For these scenes, the mean CTP bias 308 

(relative to CATS) for MOD06 is 20±30 hPa, whereas it is 15±35 hPa for our implementation. 309 

This provides confidence in our implementation, while also underscoring the fact that moving from 310 

GDAS to ERA5 reanalysis had only a minor impact on the single-layer CO2-slicing retrieval.    311 

To estimate the systematic errors accrued from cloud overlap in CO2-sliced CTP, we conduct an 312 

experiment where we apply the 1-layered CO2-slicing on 2-layered cloud systems. For these 313 

experiments, we employ the forward model described in Section 3.2 to calculate synthetic 314 

radiances for the 2-layered system, except we include a lower, black cloud layer as in Eq. 6. We 315 

then use Equations 4 and 5 to retrieve the CTP under the assumption of a single layer and examine 316 

the resulting errors. This experiment is idealized in that it neglects any errors in the forward model. 317 

We perform retrievals on the synthetic two-layered systems for a climatological tropical 318 

atmosphere for different values of 𝑃𝑢 and 𝑃𝑙. We calculate the overestimations of CTP above 𝑃𝑢 for 319 

four effective cloud amounts between 0.05-0.75 and for each of the spectral band pairs that are 320 

used by Terra MODIS, with results shown in Fig. 1. Here we see that the highest overestimation 321 

of high-cloud CTP (i.e., an underestimation of high-cloud CTH) occurs in the 35/33 band pair for 322 

a combination of very thin high cirrus over a low cloud (provided the low cloud is sufficiently 323 

decoupled from the surface). It is unsurprising that the 35/33 band pair is more susceptible to the 324 

presence of low clouds, because there is a large reduction in the amount of near-surface radiation 325 

that reaches the satellite sensor in going from 13.3 to 14.2 µm due to increasing absorption by 326 

CO2. For the same high-low cloud combination and same spectral band pair, it is also unsurprising 327 

that the thinnest of clouds (𝜖𝑐 𝐴𝑐 = 0.05) has the highest errors in CTP determination. As the lower 328 

cloud approaches either the high cloud or the surface, the 2-layered system essentially becomes 329 

indistinguishable from a single-layered high cloud; hence, in both these extreme conditions, the 330 

bias is reduced. These results are similar to the estimates of CTP bias arising from the application 331 

of a 1-layered CO2-slicing for 2-layered cloud systems by the HIRS/2 sounder (Figures 3, 5 and 6 332 

in Baum & Wielicki, 1994) and MODIS (Figure 10a of Menzel et al, 2015).  333 

Based on these findings, our bias-correction approach (Equations 8 and 9) for two-layered cloud 334 

systems will have the largest correction for well-separated cloud layers, particularly when the 335 

lower cloud-top is both sufficiently colder than the surface and warmer than the upper-layer cloud.  336 
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337 
Figure 1. Bias in CTP from MODIS CO2-slicing (under single-layer assumption) for Bands 36/35 (left panels) and 338 
35/33 (right panels) for a high cloud at pressure = 200 hPa (upper panels) and 350 hPa (bottom panels), given a 339 
standard tropical atmosphere profile of water vapor (g/kg) and temperature (K; inset in c). Climatological profiles of 340 
ozone and trace gases are used. The lower cloud is assumed opaque, and the surface (1014 hPa) is a dark ocean. For 341 
each high-low combination, the experiment is repeated for cloud emissivities of 0.05 (blue), 0.1 (green), 0.3 (orange) 342 
and 0.75 (red). 343 

3.2.2. Implementation of the 2-layered CO2-slicing 344 

The modification to the CO2-slicing solution for a 2-layered system involves replacing Equations 345 

4 and 5 with Equations 8 and 9 in the CO2-slicing workflow, which, in turn, requires the 346 

computation of the term ∆𝐼, given by Eq. 7. This step requires the value of MISR CTP (Section 347 

3.1). The closest of the 101 MODIS levels to MISR CTP is taken as 𝑃𝑙 in Eq. 7. Solutions for 𝑃𝑢 348 

from band pairs 36/35 and 35/33 are recorded. A best solution is also chosen using the “top-down” 349 

method. If no legitimate solution is found (Section 3.2.1), it is a no-retrieval.  350 

All 2485 valid CTP retrievals are converted to CTHs, using ERA5 geopotential heights. All such 351 

retrievals are also used to estimate effective cloud amounts (using Eq. 9). MOD06 effective cloud 352 

amounts are also used for comparison. Following Eq. 10, effective cloud amounts are converted 353 

to visible optical depths (𝜏𝑉𝐼𝑆), assuming 𝐴𝑐 = 1. Note, the estimates for 𝐴𝑐𝜖𝑐 and 𝜏𝑉𝐼𝑆 are 354 

estimates of the high cloud optical properties retrieved after the radiative contribution of the lower 355 

cloud has been removed. In contrast, the corresponding MOD06 retrievals are effective estimates 356 

of those quantities retrieved using the combined radiation from both upper and lower cloud layers.  357 

This aforementioned modification to the CO2-slicing is rooted in physical theory and makes use 358 
of Terra’s unique design for fusion between instruments, which allows us to improve the MODIS 359 
upper-layer CTP/CTH and emissivity, provided the layer is optically thin for MISR to retrieve 360 
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CTH of the lower cloud [this is also the regime where MODIS CO2-slicing CTH errors are 361 
maximum (Mitra et al., 2021)]. To distinguish the new high cloud properties from the operational 362 

MODIS data variables, we shall refer to the new estimates of cirrus CTP/CTH, 𝐴𝑐𝜖𝑐 and 𝜏𝑉𝐼𝑆 as 363 
the MISR-MODIS Fusion Product for Cloud-Top Height (MM_CTH).  364 

4. Validation  365 
 366 

In Section 4.1, MM_CTH and MOD06 estimates of high cloud macrophysics and optical 367 
properties will be validated against CATS estimates of those quantities. Section 4.2 provides a 368 
detailed error budget analysis of our 2-layered CO2-slicing CTH retrieval with the goal of closing 369 

the total error budget had through a comparison with CATS CTH. 370 
 371 
4.1. Comparison with the CATS lidar 372 

To validate our new algorithm, we compare the results of high cloud CTP/CTH, high cloud 373 

effective emissivity (𝐴𝑐𝜖𝑐) and visible optical depths (𝜏𝑉𝐼𝑆) from MM_CTH against concurrent 374 
MOD06 and CATS observations. We divide the validation of MM_CTH along two lines – 375 

validation of high cloud macrophysics (CTP, CTH) and high cloud optical properties (𝐴𝑐𝜖𝑐, 𝜏𝑣𝑖𝑠).  376 

4.1.1. Validation of High-Cloud Macrophysical Properties  377 

As in Mitra et al. (2021), we take CATS CTH/CTP to be an unbiased truth in our analysis. CATS 378 

CTH is converted to CATS CTP, using ERA5 geopotential and standard geoid heights, in the same 379 

manner as MISR CTH to CTP conversion. Figure 2 shows the distribution of CTP/CTH differences 380 

between CO2-slicing techniques (MOD06 and MM_CTH) and the lidar on the left panels, and the 381 

distributions of high cloud CTP/CTH from the 3 techniques (MOD06, MM_CTH and CATS) on 382 

the right panels. The mean bias (±standard deviation) in retrieved CTP and CTH improves from 383 

65±85 hPa and -1.6±2.3 km, respectively, for MOD06 to 5±80 hPa and -0.4±2.4 km for MM_CTH. 384 

This represents a ~90% reduction in CTP bias and a ~75% reduction in CTH bias.  385 

The reduction in the CTP/CTH bias for high-cloud retrievals results in improved high cloud 386 

macrophysical distributions (right panels of Figure 2), with the MM_CTH distributions of 387 

CTP/CTH closely mirroring those from CATS. Mitra et al. (2021) showed that for 42% of all 388 

scenes with a thin cirrus overlying a low cloud, MODIS CTH lies below the vertical extent of the 389 

cirrus (i.e., lower than CATS cloud-layer base). The application of the 2-layered MM_CTH 390 

reduces the instances of such below-cloud-base height retrievals to 12%.  391 
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For the distributions of MM_CTH minus CATS CTP and CTH (Figures 2a and 2c), we note the 392 

existence of a significant number of scenes (~4% of each distribution) where MM_CTH appears 393 

to overestimate the value of CATS CTH by > 4 km (i.e., underestimate CTP > 100 hPa). Previous 394 

studies (Rajapakshe et al., 2017; Mitra et al., 2021) had identified these as scenes where the 1 km-395 

resolution infrared sensor detects physically tenuous (e.g., broken cirrus) clouds, but the lidar’s 5 396 

km-resolution algorithm picks the height of a lower, possibly horizontally continuous, cloud field. 397 

Here, we show that this assertion is indeed true by calculating the mean MISR-CATS CTH for 398 

scenes with MM_CTH – CATS CTH difference > 4 km, and finding a mean difference of -0.5±0.5 399 

km. This is close to MISR’s CTH accuracy for low clouds (Mitra et al., 2021). Thus, in these 400 

scenes, MODIS retrieved cirrus heights and CATS retrieved low cloud heights. Such an effect is 401 

noticeably smaller in the corresponding MOD06 distributions because MOD06 estimates of CTH 402 

(CTP) are lower (higher), and hence, closer to the CATS low-cloud retrievals. 403 

4.1.2. Validation of High-Cloud Optical Properties 404 

Unlike cloud-top properties (CTP and CTH), we do not have an unbiased estimate for cloud 405 

effective amount (𝐴𝑐𝜖𝑐). As a result, we have converted CATS 𝜏𝑉𝐼𝑆 to CATS 𝐴𝑐𝜖𝑐 by inverting 406 

Eq. 10 (taking 𝜁 = 2.13 and assuming 𝐴𝑐 = 1). Even though this is not an unbiased estimate of 407 

true 𝐴𝑐𝜖𝑐, one can reasonably expect the CATS 𝐴𝑐𝜖𝑐 to be a closer estimate of true cirrus 408 

Figure 2. Distribution of errors (left) in CTP (top panels; hPa) and CTH (bottom panels; km) from MOD06 (red) and 

MM_CTH (green) and the distribution of high cloud macrophysics (right panels) for multi-layered scenes from 

MOD06 (red), MM_CTH (green) and CATS (blue). The vertical dashed lines in each color represents the mean value 

of the quantities whose distributions are in that same color. 



Manuscript submitted to Journal of Geophysical Research, Atmospheres 

 

emissivity as compared to MOD06 𝐴𝑐𝜖𝑐, because the MOD06 𝐴𝑐𝜖𝑐 estimate is impacted by the 409 

lower cloud layer. As shown in Figure 3, we have compared MM_CTH estimates of 𝐴𝑐𝜖𝑐 and 𝜏𝑉𝐼𝑆 410 

against CATS and MOD06 estimates of those quantities. The improvements in cloud 411 

macrophysical retrievals shown in Section 4.1.1 have propagated to improvements in retrievals of 412 

high cloud optical properties. From Fig. 3, we notice a ~75% increase in accuracy in both 𝐴𝑐𝜖𝑐 413 

and 𝜏𝑉𝐼𝑆 for MM_CTH over MOD06 (assuming that CATS emissivity and 𝜏𝑉𝐼𝑆 are unbiased). 414 

These improvements lead to MM_CTH distributions of high cloud emissivity and optical depths 415 

that are comparable to the corresponding distributions from the CATS lidar. 416 

The MOD06 estimates of 𝐴𝑐𝜖𝑐 and 𝜏𝑉𝐼𝑆 are both overestimations of true high-cloud optical 417 
properties because their individual retrieval methods do not remove the radiative contribution of 418 

the lower cloud. As a result, both are effective retrievals over all cloud layers. Improved estimates 419 

of upper-cloud optical properties (especially 𝜏𝑉𝐼𝑆) are crucial in the accurate representation and 420 

tuning of cloud radiative effects in models (which we demonstrate in Section 5). In Fig 4b, the 421 

MOD06 estimates of 𝜏𝑉𝐼𝑆 are from the standard MODIS bispectral optical depth retrievals 422 
(Platnick et al., 2017) which use visible channel radiances and separate pre-computed look-up 423 

tables for ice and water clouds. As such, since we are working on scenes where MODIS cloud 424 

phase detected ice, the ice look-up tables had been used to retrieve 𝜏𝑉𝐼𝑆 for a 2-layered multi-phase 425 

system. Here, we have improved the retrieval by improving our estimates of only the cirrus 𝜏𝑉𝐼𝑆. 426 

However, with the improvements achieved by MM_CTH in defining the CTP of the ice and water 427 
cloud layers, future work can design 2-layered ice + water/mixed phase cloud look-up tables to 428 
simultaneously retrieve the visible optical depths of both cloud layers present within the scene.  429 

In the previous sections, we have presented the validation of MM_CTH retrievals against CATS 430 
lidar. A detailed discussion of the CTP error budget follows in Section 4.2. 431 

4.2. The 2-layered CO2-slicing Error Budget Analysis 432 

Figure 3. Distribution of effective emissivity (left) and visible optical depth (right) from MOD06 (red), MM_CT 

(green) and CATS (blue) for high clouds in multi-layered scenes. The dashed lines in each color represents the mean 

value of the quantities whose distributions are in that same color. On the right plot, the mean values of vis from 

MM_CTH and CATS are visibly indistinguishable. 
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In this section, we shall investigate the effect of various sources of systematic and random errors 433 
on MM_CTH CTP with the goal of comparing the total computed error against those shown in 434 

Section 4.1 (note that we do not repeat this exercise for effective emissivity as we do not have a 435 
truth dataset for that quantity). We consider the following sources of errors: 436 

i. the uncertainty in MISR low-cloud stereo heights,  437 
ii. the covariance of modelling errors in ERA5 Reanalysis temperature and specific humidity,  438 

iii. the inherent noise in detected radiances from the MODIS spectral bands,  439 
iv. the effect of geometric depth of cirrus clouds,  440 
v. the uncertainty in the geo-collocation of CATS, MISR and MODIS pixels,  441 

vi. the uncertainty incurred from the application of spatial interpolation to obtain atmospheric 442 
parameters at the 101 MOD06 vertical pressure levels,  443 

vii. the breakdown of the assumption that the low clouds are perfectly black, and 444 

viii. the effect of uncertainty in surface emissivity.  445 

Empirical error estimates are known (as explained below) for the first six items on the list above. 446 
However, we lack a ‘truth’ dataset for low cloud opacity and surface emissivity. Hence, error 447 

sources vii and viii will be dealt with in a different manner to the others.  448 

We run radiative transfer simulations over a range of 2-layered cloud combinations and use the 449 
simulated radiances in MM_CTH retrievals to estimate CTP errors. We compile these errors, E 450 

(bias and standard deviation), in the prescribed functional form: 𝐸 =451 

𝐸(𝑃ℎ𝑖𝑔ℎ, 𝑑𝑒𝑝𝑡ℎ, 𝜏𝑉𝐼𝑆, 𝑃𝑙𝑜𝑤 , 𝜆𝑝𝑎𝑖𝑟 , 𝑐𝑙𝑖𝑚𝑎𝑡𝑒 𝑧𝑜𝑛𝑒). Here, 𝑃ℎ𝑖𝑔ℎ, 𝑑𝑒𝑝𝑡ℎ, 𝜏𝑉𝐼𝑆 are CTP, geometric 452 

depth, and visible optical thickness of the high clouds in the simulations. 𝑃𝑙𝑜𝑤 is the CTP of the 453 

low black cloud. 𝜆𝑝𝑎𝑖𝑟 refers to the MODIS band-pair being employed (i.e., either 35/33 or 36/35), 454 

and 𝑐𝑙𝑖𝑚𝑎𝑡𝑒 𝑧𝑜𝑛𝑒 denotes the 5 climate zones introduced in Section 3.1. For each climate zone 455 

and 𝜆𝑝𝑎𝑖𝑟, we run the MM_CTH algorithm for every combination of the following: 456 

(a) 10 values of 𝑃ℎ𝑖𝑔ℎ (50 hPa intervals between 150 and 550 hPa)  457 

(b) 6 values of 𝑃𝑙𝑜𝑤(50 hPa intervals between 700 and 1000 hPa)  458 

(c) 5 values of geometric depth (25 hPa intervals between 25 and 150 hPa)  459 

(d) 8 values of 𝜏𝑉𝐼𝑆 (0.25 intervals between 0.25 and 2.5)  460 

This leads to 2400 cases for each band-pair and climate zone (hence 24000 in total). We choose 461 

the ranges for high cloud properties and 𝑃𝑙𝑜𝑤 from the distributions of high cloud properties and 462 

low cloud heights (in units of pressure) that we observed in the CATS and MISR data used in this 463 

study. Out of the variables on which the error function 𝐸 depends, we expect there to be significant 464 

random variability in estimates of 𝑃𝑙𝑜𝑤, ERA5 reanalysis profiles and MODIS infrared radiances 465 

(error sources i, ii, and iii). To model this expected variability, we perturb these 3 quantities to 466 

derive 200 different realizations of each of the aforementioned 24000 cases. We do this to 467 

propagate the uncertainties in these quantities to uncertainties in simulated radiances and thereby, 468 

to uncertainties in retrieved CTP. This procedure is detailed below. 469 

a)  Low-cloud CTP: Mitra et al. (2021) showed that MISR low cloud CTH error is -230±300 470 

m. This error is propagated to CTP error using the formula 𝜎𝑃 = |
𝑃

𝐻
|  𝜎𝑧 , where, 𝜎𝑃 is the 471 

pressure uncertainty at a pressure level P corresponding to a height uncertainty of 𝜎𝑧, for a 472 

pressure profile that varies with height according to the formula 𝑃(𝑧) = 𝑃𝑜𝑒−𝑧/𝐻. Here, P0 473 
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is the pressure at surface (z = 0), z is the altitude of the pressure level and H is the scale 474 

height of the atmosphere, given by the altitude where P = P0/e. For every low-level cloud, 475 

we bias our estimate of low-cloud CTP by taking the pressure equivalent of MISR CTH + 476 

230 m (using the form for P(z), given above) and then perturb the resulting 𝑃𝑙𝑜𝑤 by drawing 477 

200 different samples drawn from a normal distribution given by µ=𝑃𝑙𝑜𝑤, σ = 𝜎𝑃. 478 

b) ERA5 Reanalysis Error: To estimate the error-covariances of the ERA5 temperature and 479 

moisture profiles, we used the results of all model ensemble (Hersbach et al., 2020) that 480 

are publicly available along with ERA5 reanalysis (given by the ensemble mean). These 481 

ensemble members provide flow-dependent uncertainties based on propagation of 482 

assimilated measurement uncertainties as well as perturbations to physical tendencies. We 483 

took data from all grid cells over the globe over a day from each month of 2016 and 484 

calculated flow-dependent perturbations by subtracting each ensemble member from the 485 

ensemble mean. We then grouped the perturbations by latitude and season in the 5 pre-486 

defined climate regimes (Section 3.1). Here, we estimated the error-correlations between 487 

all pressure levels of the profiles of temperature and moisture reanalysis, neglecting error-488 

correlations between adjacent columns. Horizontal error correlations are neglected, as they 489 

are only relevant for the aggregation of pixel retrievals, not for individual pixel-level 490 

uncertainties. Upon comparing against estimates of ERA5 uncertainty from field studies 491 

(Graham et al., 2019), we found that the ERA5 ensemble variance is similar to observed 492 

uncertainty for specific humidity profiles. However, the ensemble uncertainty 493 

underestimates observed uncertainty of Graham et al. (2019) by a factor ranging between 494 

4-6, depending on pressure level. To correct this discrepancy, temperature profile 495 

perturbations from the ERA5 ensemble data are inflated by a constant value of 5, for all 496 

pressure levels. For each climate regime, we then propagated the resulting errors to errors 497 

in CTP through Monte Carlo sampling. Specifically, we drew 200 perturbed profiles of 498 

temperature and specific humidity assuming multivariate Gaussian distributions. The mean 499 

value of these distributions are given by their climatological profiles and their covariance 500 

matrix is set as described above. 501 

c) Instrument Noise: We introduced further perturbations to the calculated TOA radiances, 502 
by drawing 200 random samples from a normal distribution with µ=0, σ = 1 W m-2

. Here, 503 
we have set σ as the mean noise level for the Terra MODIS CO2-slicing channels (as noted 504 

in Section 3.2.1, the noise levels in Bands 33-36 varies between 0.75-1.25 Wm-2). 505 

To model the error from finite cloud geometric depth (error source iv), we modify the gas-only 506 
model (Section 3.2) for clear-sky radiative transfer to include cloud. We prescribe a cloud optical 507 

depth, cloud-top and bottom pressure (based on our choices of 𝑃ℎ𝑖𝑔ℎ, 𝑃𝑙𝑜𝑤, 𝑑𝑒𝑝𝑡ℎ, 𝜏ℎ𝑖𝑔ℎ listed (a) 508 

to (d)). We assume that cloud extinction is homogeneously distributed in pressure over the cloud 509 
depth. We verify our implementation using the analytic solution for an isothermal, non-scattering 510 
atmosphere. We use this model to simulate radiances in the CO2-slicing bands for geometrically 511 

thick, non-black clouds and estimate the CTP retrieval errors stemming from the infinitesimally 512 
thin high cloud assumption of the CO2-slicing technique. Gas optics uncertainties are numerically 513 
insignificant (<<1% of instrument noise) (Hannon et al., 1996) and are hence, ignored. 514 

With the major sources of systematic and random errors accounted for, we run the MM_CTH 515 

algorithm for all 200 perturbed instances of each of the 24000 combinations of 516 
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(𝑃ℎ𝑖𝑔ℎ, 𝑃𝑙𝑜𝑤, 𝑑𝑒𝑝𝑡ℎ, 𝜏ℎ𝑖𝑔ℎ, 𝜆𝑝𝑎𝑖𝑟 , 𝑐𝑙𝑖𝑚𝑎𝑡𝑒 𝑧𝑜𝑛𝑒). We note the bias and standard deviation in CTP 517 

for each of those instances to construct the error function, E for comparison against observed error.  518 

To account for further sources of random error (error sources v and vi), we estimated the 519 
uncertainty in CTP introduced by the process of geo-collocation of MODIS and CATS pixels. 520 
Mitra et al. (2021) showed a maximum uncertainty of 900 m in CTH due to the geo-collocation of 521 
MODIS and CATS pixels for CATS retrievals above an altitude of 5 km. Using the equation to 522 

propagate height errors to pressure errors given earlier, we estimate this collocation uncertainty 523 

(given by 𝜎𝑐𝑜𝑙𝑙) for all pixels. The errors in interpolating our CTP solutions to the discrete grid 524 
employed by the MODIS algorithm also result in an additional source of random error. This error, 525 

which we denote by 𝜎𝑔𝑟𝑖𝑑 is numerically equal to half the grid-spacing between the nearest two 526 

levels of a CTP solution. As in Mitra et al. (2021), the random error in CATS CTH (converted to 527 

a CTP error given by 𝜎𝐶𝐴𝑇𝑆
 ) is equal to that associated with an equal probability of successful or 528 

failed retrieval over a 60 m CATS range gate, i.e., a random error of 30 m. Since, these sources of 529 
error are mutually independent, we estimate total random uncertainty (in a pixel-level retrieval) as 530 

𝜎 =  √𝜎𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔
2 +  𝜎𝑐𝑜𝑙𝑙

2 + 𝜎𝑔𝑟𝑖𝑑
2 +  𝜎𝐶𝐴𝑇𝑆

2  where, 𝜎𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔 is the error incurred from the 531 

various uncertainties in the radiative transfer simulations (sources i to iv), that are accounted by 532 

the standard deviation estimates from the error matrices, 𝐸.  533 

To ascertain the fraction of pixels that are bound by our calculated total error estimates in E, we 534 

investigated the distribution of bias-corrected errors, normalized by 𝜎, i.e., 
𝐶𝑇𝑃𝑀𝑀−𝑏𝑖𝑎𝑠−𝐶𝑇𝑃𝐶𝐴𝑇𝑆

𝜎
, 535 

where 𝐶𝑇𝑃𝑀𝑀 is the estimated value of CTP from the MM_CTH method, 𝐶𝑇𝑃𝐶𝐴𝑇𝑆 is the observed 536 
(also, the assumed “true”) CTP from CATS, whereas, bias is the closest estimate of theoretical 537 

systematic error for a particular pixel from the error matrices, 𝐸(𝑃ℎ𝑖𝑔ℎ, 𝑃𝑙𝑜𝑤, 𝑑𝑒𝑝𝑡ℎ, 𝜏ℎ𝑖𝑔ℎ, 𝜆𝑝𝑎𝑖𝑟). 538 

We find 78% of all pixels to be within the bounds of 95% confidence interval (i.e., [-1.96, 1.96] 539 

in units of 𝜎). The remaining 17% (i.e., 95% minus 78%) of errors remain outside the purview of 540 

what can be constrained against empirically observed variables. We suspect that low cloud non-541 
opacity and uncertainty in surface emissivity are the reasons behind these outliers.  542 

We argue that surface emissivity is a less significant source of uncertainty than low clouds because 543 

in most multi-layered cases, the surface remains partly to nearly obscured by an opaque low cloud 544 
and >70% of all retrievals in our dataset are done by the 36/35 band pair (which is nearly 545 
insensitive to surface emissions; Menzel et al., 2015). Moreover, the effect of surface emissivity 546 

only becomes relevant in the very cases where the black low cloud assumption breaks down – e.g., 547 
for broken low clouds. Hence, we do not investigate surface emissivity separately. To investigate 548 

the effects of low-cloud properties, we first note that the non-opacity of low clouds (i.e., 𝐴𝑙𝜖𝑙 ≠ 1) 549 
may arise due to the presence of sub-pixel low clouds (e.g., small trade wind cumuli) or due to the 550 

presence of optically thin low clouds with 𝜖𝑐 < 1. To quantify the errors in such scenarios, we 551 
relaxed the condition of a low, black cloud by assuming low cloud effective amounts of 0.1 552 
iterations between 0.1-0.9 for each of the 24000 test cases listed above. Effective IR emissivity of 553 

the low cloud is then converted to cloud optical depth (using Eq. 10 with 𝜁 = 2.56 for liquid water 554 

(Minnis et al. (1993)), and the transmission profile is adjusted accordingly. Surface emissivity is 555 
taken to be 1. In spite of the non-black low cloud, we still solve for the high cloud CTP assuming 556 

𝐴𝑐𝜖𝑐 = 1. The mean and standard deviation of the resulting errors over all possible cases, for each 557 
value of low-cloud effective amount and MODIS CO2-slicing band pair, are computed and shown 558 
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in Figure 4. For the Band 36/35 pair, unsurprisingly (since this pair is less sensitive to surface 559 
emission), low-cloud semitransparency leads to lower and nearly constant error, irrespective of the 560 

low cloud amount (especially, for 𝐴𝑐𝜖𝑐 > 0.4). However, the standard deviations of error for the 561 
Band 35/33 pair drops significantly as low cloud amount increases.  562 

 563 

Taking the effect of non-opaque low cloud into account, we redefine the bias-corrected errors to 564 

mean 
𝐶𝑇𝑃𝑀𝑀−𝑏𝑖𝑎𝑠−𝑏𝑖𝑎𝑠𝑙𝑜𝑤− 𝐶𝑇𝑃𝐶𝐴𝑇𝑆

𝜎
, where 𝑏𝑖𝑎𝑠𝑙𝑜𝑤 is defined as the mean bias for both band-pairs 565 

in Fig 4, weighted by their relative frequency of usage in our dataset. We calculate distributions of 566 

bias-corrected error (in units of σ) for all values of 𝐴𝑙𝜖𝑙 and study the percentage of errors which 567 

lie within 95% CI in each case. Taking low clouds into account results in > 80% of all pixels lying 568 

within 95% CI for all values of 𝐴𝑙𝜖𝑙. We find that the maximum agreement between theoretical 569 

and observed errors is achieved for 𝐴𝑙𝜖𝑙 = 0.3, resulting in 88% of all bias-corrected errors within 570 
the 95% CI. Here, we note that the expected dominant effect of low-cloud heterogeneity is likely 571 

from sub-pixel clouds. Assuming 𝜖𝑙 = 1, this would suggest that the average value of low-cloud 572 

fraction in our dataset is 𝐴𝑙 = 0.3. For 1-km resolution MODIS pixels, a low-cloud fraction of 0.3 573 

equals an average area-equivalent diameter for low clouds in our dataset of 620 m. This seems 574 

reasonable as our dataset has samples from both trade cumulus regions with typical cloud 575 

diameters of ~450 m (Zhao and Di Girolamo, 2007) and from regions with more stratiform clouds 576 

(that would typically cover the entire 1 km MODIS pixel). Thus for 𝐴𝑙𝜖𝑙=0.3, only 7% of all pixels 577 
are not constrained by our theoretical estimates (denoted by 95% CI), we can say that a near-578 
closure of the MM_CTH CO2-slicing error budget has been achieved. The sources of error that 579 
could potentially explain these outliers are the incomplete modeling of low-cloud uncertainties, 580 
uncertainties in surface emissivity, inaccuracies in MODIS cloud phase detection and the 581 

assumption in CO2-slicing of equal ice-cloud effective emissivities in closely spaced IR channels. 582 

5. Impact on Cloud Radiative Effect 583 

Figure 4. Distribution of errors in CTP (in hPa) incurred from the breakdown of the assumption of a black low cloud, 

from MODIS Band Pair 36/35 (left) and 35/33 (right) for different values of thermal IR effective emissivity (𝐴𝑐𝜖𝑐) of 

the low cloud. 
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As noted in Section 1, the vertical distribution of cloud properties controls the vertical variation of 584 

cloud radiative effect (CRE), defined here as the difference in upwelling cloudy and clear sky 585 

radiative fluxes at the top of the atmosphere (and similarly for downwelling radiative fluxes at the 586 

surface). When high and low clouds coexist in multi-layered situations, the CRE will depend on 587 

the optical properties of the two layers and their geometric locations within the atmosphere; the 588 

later controlling their temperature and the extent of absorbing gases above, below and between the 589 

cloud layers. Hence, the longwave (LW) or shortwave (SW) CRE due to a 2-layered cloud system 590 

cannot simply be expected to equal the corresponding CRE due to the ‘effective’ single-layered 591 

ice cloud with CTP and effective emissivity from a 1-layered CO2-slicing solution. Thus, the 592 

accurate representation of the macrophysical and optical properties of both cloud layers in a scene 593 

is likely needed for accurate estimation of CRE in radiative transfer simulations. As a result, the 594 

accuracies of the MM_CTH method in determining macrophysical and optical cloud properties in 595 

2-layered systems (Section 4.1) are expected to improve our estimates of modeled CRE for 2-596 

layered systems. Here, we demonstrate this improvement due to the implementation of MM_CTH. 597 

We do this simply by estimating the impact of the 1-layer CO2-slicing CTP and effective emissivity 598 

biases on simulated TOA upwelling and surface downwelling LW CRE. The impact of single-599 

layer retrievals are ostensibly significant for shortwave (SW) CRE as well. Here, we do not study 600 

the SW CRE bias as that would be strongly dependent on multiple factors beyond layer-averaged 601 

properties (e.g., ice/water single-scattering properties and sun-satellite geometry), which would be 602 

beyond a concise explanation for the simple demonstration we are aiming for. 603 

To estimate the LW impact of 1-layered CO2-slicing retrievals applied to a 2-layered cloud system, 604 

we run radiative transfer simulations for different combinations of high and low cloud CTP and 605 

high cloud effective emissivity. In each of these cases, we calculate TOA upwelling and surface 606 

downwelling LW CRE for both the ‘True’ 2-layered cloud configuration (that we prescribe) and 607 

the ‘Effective’ single-layered ice cloud parameters (from a 1-layered CO2-slicing retrieval). We 608 

define the CRE bias resulting from the application of a 1-layered CO2-slicing as the difference 609 

between the ‘True’ CRE and ‘Effective’ CRE, defined as follows. ‘True’ LW CRE is defined as 610 

the difference between cloudy and clear-sky LW atmospheric radiative fluxes calculated using our 611 

pre-defined parameters for higher ice and lower water cloud properties. However, after the 612 

application of a 1-layered CO2-slicing retrieval, we retrieve a single ice cloud layer at a lower 613 

altitude than the true altitude of the upper layer (Sections 3.2.1 and 4.1), along with its effective 614 

emissivity that is larger than its true emissivity (Section 4.1). We then use this retrieved 1-layer 615 

CTP and effective emissivity to calculate the LW CRE and compare it to the true LW CRE to 616 

assess the LW CRE bias. Further details of the radiative transfer simulations are in Text S2 of 617 

Supporting Information, which are for thin cirrus overlying a lower liquid water cloud that is 618 

opaque in the infrared. Figure 5 shows the variation of the surface and TOA LW CRE bias with 619 

true high and low cloud CTP and high cloud effective emissivity.  620 

The left panels of Fig. 5 shows that the TOA LW CRE bias is sensitive to both the cloud 621 

macrophysics and high-cloud emissivity, which the true LW CRE is also sensitive too. The 622 

absolute value of the bias decreases with increasing effective emissivity of the upper cloud. As 623 

shown in Sections 3.2.1 and 4.1, applying a 1-layered CO2-slicing retrieval on a 2-layered system 624 

results in overestimations in CTP and 𝐴𝑐𝜖𝑐 for the upper-cloud layer. Since the retrieved cloud is 625 

lower in altitude, hence warmer, and more opaque in the infrared, the resultant top-of-atmosphere 626 
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LW CRE bias is negative, as shown in Figure 5, with the largest absolute bias (~40 Wm-2) 627 

occurring for thin clouds near the tropopause overlying low altitude clouds.  628 

  629 

Figure 5. Variation of top-of-atmosphere (left panels) and surface (right panels) LW Flux (CRE) bias (W m-2) with 630 
variations in high and low CTP, due to a single-layered CO2-slicing retrieval on a 2-layer scene. The atmosphere and 631 
surface properties are set up similar to Figure 1. CRE bias is defined as true minus modeled LW CRE. High Cloud 632 
Effective Emissivity is taken to be 0.1 (top panels), 0.2 (middle panels) and 0.4 (bottom panels). 633 

The right panels of Fig. 5 show the surface LW CRE bias is strongly sensitive to cloud 634 

macrophysics but less sensitive to high-cloud emissivity. Unlike the TOA, the true LW CRE at the 635 
surface is dependent only on the height of the low cloud because its LW emissivity is one in our 636 
simulations. Thus, in order to achieve the little differences that we see between Fig. 5(b), (d) and 637 
(f), the surface LW CRE calculated using the 1-layer CO2-slicing solution must also be somewhat 638 
insensitive to the effective emissivity of the upper cloud. This occurs because the 1-layer CO2-639 

slicing solution produces a larger CTP bias, hence warmer cloud, for clouds with smaller 640 
emissivity compared to clouds with larger emissivity. Thus, changes in high cloud effective 641 
emissivity leads to competing changes in the resultant 1-layered retrieval (cloud temperature 642 
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versus emissivity), thus impacting surface LW CRE bias only weakly. Thus, it is the heights of the 643 
two cloud layers  that have the largest effect on the LW CRE bias, with absolute values of the bias 644 

being largest (~30 Wm-2) for high tropospheric clouds overlying mid-level clouds. 645 

Based on these findings, application of the MM_CTH algorithm is expected to provide 646 

improvements in modeled LW radiative fluxes that are of a similar order of magnitude (~10 W m-647 
2) to the CRE biases calculated here. These improvements to modeled radiative fluxes will be 648 

helpful when estimating, for example, the surface and atmospheric radiation budgets based on 649 

retrieved cloud properties [e.g., Kato et al. (2018)]. They may also provide a set of cloud properties 650 

that have variability that is more consistent with the variability in Earth’s radiation budget, thereby 651 

providing improved benchmarks for the evaluation of climate models. 652 

6. Conclusions 653 

Thin cirrus cloud overlying low clouds constitute >80% of multi-layered clouds globally (multi-654 
layered clouds themselves constitute ~30% of all cloud cover) (Wang & Dessler, 2006; Oreopoulos 655 
et al., 2017; Hong and Di Girolamo 2020). For 2-layered scenes, MODIS underestimates top-layer 656 

CTH by >1 km as the CO2-slicing technique converges at a higher CTP solution, when an optically 657 
thin cirrus is present. As a result, MODIS produces more midlevel CTH than MISR and MISR-658 

MODIS CTH differences have generally low absolute values (Naud et al., 2007; Mitra et al., 2021). 659 
However, MISR often retrieves the lower cloud height in a majority (>80%) of such 2-layered 660 
cases, provided the top-layer optical depth <~0.4 (Mitra et. al, 2021) In this study, we have 661 

developed an algorithm to retrieve accurate high-cloud properties for 2-layered cloud systems, 662 
named the MISR-MODIS Fusion Product for Cloud-Top Height (MM_CTH). MM_CTH used a 663 

modified version of the standard MODIS CO2-slicing algorithm (of the Collection 6.1 MOD06 664 

product), using accurate MISR low-cloud CTH retrievals as an input to account for the presence 665 

of the lower cloud in multi-layer scenes. Using collocated ISS-CATS as a reference, we validate 666 
the MM_CTH retrievals to find a ~90% reduction in cirrus CTP bias over MOD06. This 667 

improvement to CTP accuracy propagates to ~75% improvements in accuracy for cirrus CTH and 668 
effective emissivity over the standard MOD06 products. The MM_CTH algorithm also allows us 669 
to retrieve lidar-like distributions of high cloud macrophysics (Figure 2b and 2d) and optical 670 

properties (Figure 3) in 2-layer cloud systems from passive sensors. Table 1 summarizes the results 671 

of the validation (Section 4.1) of CO2-slicing CTP, CTH and thermal IR 𝐴𝑐𝜖𝑐 (against CATS), and 672 

the distributions of CATS, MOD06 and MM_CTH CTP, CTH and 𝐴𝑐𝜖𝑐. 673 

Table 1. Summary of mean errors in CO2-slicing CTP, CTH and effective emissivity for MOD06 and MM_CTH with 

respect to CATS and the mean value of the retrieved distributions of CTP, CTH and effective emissivity from MOD06, 

MM_CTH and CATS. 

Data 

Source 

Mean Errors (with respect to 

CATS) 

Net Distribution for High 

Clouds 

CTP 

(hPa) 

CTH 

(km) 
𝑨𝒄𝝐𝒄 

CTP 

(hPa) 

CTH 

(km) 
𝑨𝒄𝝐𝒄 

MOD06 65±85 -1.6±2.3 0.4±0.3 300±85 9.7±2.3 0.5±0.3 

MM_CTH 5±80 -0.4±2.4 0.1±0.2 235±70 11.2±2.0 0.2±0.2 

CATS N/A N/A N/A 225±80 11.7±2.5 0.1±0.2 
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We also performed a detailed error budget analysis using CATS high cloud retrievals as reference. 674 
CATS high cloud retrievals, ERA5 modeling error estimates, and estimates of MISR CTH and 675 

MISR, MODIS, CATS geo-collocation errors from Mitra et al., (2021) are used to model the 676 
systematic and random sources of CTP error, which are then compared against empirical estimates 677 
of errors (from comparison with CATS). 78% of all observed errors were found to be within 678 
theoretical limits (i.e., 95% CI), when non-opacity of low-cloud properties (stemming primarily 679 
from sub-pixel clouds) are neglected. However, when the sub-pixel nature of low-cloud is 680 

accounted for, up to 88% of observed MM_CTH error estimates fall within the limits of 95% CI 681 
– thus providing a near-closure of the MM_CTH error budget. The lack of a truth dataset for low-682 
cloud cloud fraction and emissivity, uncertainties in prescribed surface emissivity, inaccuracies in 683 
MODIS cloud phase detection and the assumption in CO2-slicing technique that ice-cloud effective 684 
emissivities in closely spaced IR channels are equal could potentially lead to the existence of the 685 

7% outlier pixels. Since the benefit of including an estimate of sub-pixel (i.e., within a 1-km 686 
MODIS pixel) low-altitude cloud fraction is significant, it is recommended that MISR’s 687 
Stereoscopic Derived Cloud Mask (SDCM; Mueller et al. (2013)) be reported at the native 688 

resolution of MISR, i.e. 275 m, rather than its current resolution of 1.1 km.  689 

We demonstrated that the improvement in high cloud properties from the MM_CTH algorithm 690 
may be highly relevant in studies involving Earth’s radiation budget. In 2-layered cloud systems, 691 
our results show improved estimates of modeled atmospheric fluxes (demonstrated for TOA and 692 
surface LW CRE in Figure 5) by ~5 to 40 W m-2, depending on the 2-layered properties, when 693 

using MM_CTH retrievals rather than the standard single-layer CO2-slicing retrievals. Thus, our 694 
algorithm could provide a climatology of CTH and high-cloud optical properties that is more 695 

consistent with the fluctuations in the Earth’s radiation budget than corresponding estimates from 696 
standard MOD06 retrievals for multi-layered scenes. 697 

Although this current study is concerned with introducing the pixel-level MM_CTH algorithm and 698 
its validation and error budget analysis, we would like to stress its future importance to broader 699 
climate science, especially in leveraging the 22-year-long stable Terra record to study long-term 700 

climate-scale cloud responses, especially for high cloud populations. Of the many cloud responses 701 
to anthropogenic forcing predicted by models, the highest confidence is associated with rising 702 

CTHs (Boucher et al. 2013). Rising CTH is predicted to be the first signal of forced change that 703 
will emerge above natural variability (Chepfer et al., 2014; Winker et al., 2017). For example, 704 
simulations of a uniform 21st century 4K warming had predicted the increase in high cloud amounts 705 
by ~5-15%, along with ~25 m/year increase in mean tropical high CTH (Chepfer et al., 2014). In 706 
fact, there have been non-significant detection of the expected rising patterns in global high cloud 707 

amounts from passive sensors (Norris et al., 2016; Aerenson et al., 2022). For confident detection 708 

of such trends, however, we need stable multi-decadal observations (subject to robust uncertainty 709 

analysis) of cloud vertical distribution, globally (Shea et al., 2017). While active sensors capable 710 
of vertically resolving cloud layers like lidars might seem ideal, the emergence of such trends from 711 
lidars are thwarted by their short lifetimes and lack of swath coverage. Hence, multidecadal passive 712 
sensor records from stable-orbit satellites like Terra are still the best suited for such a task.  713 

However, as demonstrated in Section 1, both stereoscopic and multi-spectral retrievals of cloud 714 

macrophysics suffer from issues of sensitivity to different cloud types and accuracy. MISR stereo 715 

misses a majority of cirrus in 2-layered cases. On the other hand, unless the cirrus is very thin (OD 716 

<< 1), MODIS IR channels detect cirrus emission above the channels’ noise levels, but it is the 717 
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restrictive choice of a 1-layer solution (in the MODIS forward model) that leads to the 718 

misrepresentation of cirrus properties, including its retrieved emissivity. Left unchecked, it would 719 

be difficult to impossible to decouple long-term changes in high cloud heights and emissivity from 720 

true changes in low cloud heights and amount using MODIS data alone. Similarly, it would be 721 

difficult to impossible to decouple long-term changes in low cloud heights and amounts from true 722 

changes in high cloud amount and optical depths from MISR data alone. MM_CTH is a means to 723 

tackle these problems as it can provide lidar-like distributions of high cloud properties over a 724 

passive sensor swath (the MISR swath) over the 22-year stable-orbit satellite record of Terra. 725 

Due to its unmatched stability and longevity, the Terra record will remain a unique climate record 726 

of global cloud macro-physical and optical properties between 2000-2022. We are therefore left 727 
with the goal to ensure that the Terra record produces cloud products with well-characterized 728 

uncertainties for future studies on the Earth’s climate. Towards this goal, we strongly recommend 729 

that the pixel-level MM_CTH algorithm introduced here be scaled to a fully operational product 730 
over the entire Terra record for public dissemination.  731 
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Introduction  

In the following two sections, we will provide some supporting information that will aid 

the reader in understanding the main manuscript better. In Section S1, we present the 

geographical distribution of CATS, MISR and MODIS collocated pixels that were deemed 

worthy for our main analysis (Section 4.1 of main manuscript). In Section S2, we present 

further details of the radiative transfer simulations used to determine the estimates of 

longwave cloud radiative effect (CRE) biases resulting from the application of a 1-alyered 

CO2-slicing, that has been presented in the Section 5 of the main manuscript. 

Text S1. Spatial distribution of collocated CATS, MISR and MODIS pixels where 

MODIS-MISR CTH difference > 1 km and MODIS employed CO2-slicing for Cloud-top 

Detection 

As in Mitra et al. (2021), CATS, MISR and MODIS samples were selected only if they are 

collocated (< 1 km) and coincident (< 5 minutes), for robust statistical analysis. Such 



 

 

2 

 

collocated pixels are restricted to latitudes traversed by the ISS orbit (±52º in either 

hemisphere), from which the CATS lidar operated. 

 

 

Figure S1. Spatial distribution of collocated CATS, Terra-MODIS and MISR pixels between 

2015-17 (a) globally and (b) binned zonally. 

Text S2. Details on Radiative Transfer Modeling to understand the LW CRE bias due 

to a 1-layered CO2-slicing (Section 5) 

To estimate broadband LW CRE we use radiative transfer simulations from the uvspec 

program in the version 2.0.4 libRadtran software package (Mayer & Kylling, 2005). The 

same climatological atmospheric and surface conditions are used as in Figure 1 (Section 

3.2.1). We also use the values of CTP overestimations (and corresponding overestimations 

of effective emissivity) for Band 36/35 (the more widely applied solution) from Figure 1 in 
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estimating cloud radiative effect (CRE) bias from a 1-layered CO2-slicing in Fig. 5. This 

procedure described below is repeated for different combinations of high CTP between 

150-600 hPa and low cloud CTP between 600-1000 hPa for 3 values of high cloud effective 

emissivity (0.1, 0.2 and 0.4).  

Broadband longwave (LW) fluxes are calculated between 4-100 µm using the DISORT 

radiative transfer solver with 16 streams. Molecular absorption is calculated using the ‘fu’ 

parameterization scheme (Fu & Liou, 1992). For the ‘True’ LW CRE we define both a low 

and a high cloud layer. The low cloud has a homogeneous cloud liquid water content of 

0.5 g m-3 and particle effective radius (Re) of 10 µm with a geometric thickness of 500 m. 

Water cloud optical properties are calculated using the ‘hu’ scheme (Hu & Stamnes, 1993). 

For the high cloud, Re is fixed at 40 µm and geometric thickness at 100 m. This higher cloud 

is deliberately chosen to be geometrically thin to mimic the infinitesimally thin condition 

in a CO2-slicing forward model (Section 2). 

The above software settings require ice water content (IWC) of the high cloud as input. In 

setting the IWC, we prescribe the 11.2 µm (MODIS Channel 31) emissivity of the upper 

layer. We convert this emissivity to an infrared optical depth (𝜏𝐼𝑅) at 11.2 µm (MODIS 

channel 31). We use the ‘baum’ ice microphysical model (Baum et al., 2014) to calculate 

the required IWC from 𝜏𝐼𝑅 (Figure S2). To calculate the ‘effective’ LW CRE we use CTP and 

emissivity from our 1-layered CO2-slicing algorithm to define a single ice cloud layer (500 

m thick). The same conversion described above is used to define the IWC of this cloud. 

The Re of the retrieved cloud is assumed to be that of the upper cloud layer (40 µm).  

 

 

 

 

 

 

Figure S2. Variation of visible optical depth (τ) with ice-water content (IWC; g/m3) for a 250 m thick 

ice-cloud at 10 km, with effective radius of ice particles = 40 µm and in a tropical climatological 

atmospheric profile. 

 


