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Abstract

A current along a sloping bottom gives rise to upwelling, or downwelling Ekman transport within the stratified bottom boundary

layer (BBL), also known as the bottom Ekman layer. In 1D models of slope currents, geostrophic vertical shear resulting from

horizontal buoyancy gradients within the BBL is predicted to eventually bring the bottom stress to zero, leading to a shutdown,

or \lq arrest \rq \, , of the BBL. Using 3D ROMS simulations, we explore how the dynamics of buoyancy adjustment in a

current-ridge encounter problem differs from 1D and 2D temporal spin up problems. We show that in a downwelling BBL, the

destruction of the ageostrophic BBL shear, and hence the bottom stress, is accomplished primarily by nonlinear straining effects

during the initial topographic counter. As the current advects along the ridge slopes, the BBL deepens and evolves toward

thermal wind balance. The onset of negative potential vorticity (NPV) modes of instability and their subsequent dissipation

partially offsets the reduction of the BBL dissipation during the ridge-current interaction. On the upwelling side, although the

bottom stress weakens substantially during the encounter, the BBL experiences a horizontal inflectional point instability and

separates from the slopes before sustained along-slope stress reduction can occurred. In all our solutions, both the upwelling

and downwelling BBLs are in a partially arrested state when the current separates from the ridge slope, characterized by a

reduced, but non-zero bottom stress on the slopes.
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Abstract13

A current along a sloping bottom gives rise to upwelling, or downwelling Ekman transport within14

the stratified bottom boundary layer (BBL), also known as the bottom Ekman layer. In 1D mod-15

els of slope currents, geostrophic vertical shear resulting from horizontal buoyancy gradients16

within the BBL is predicted to eventually bring the bottom stress to zero, leading to a shut-17

down, or ‘arrest ’ , of the BBL. Using 3D ROMS simulations, we explore how the dynam-18

ics of buoyancy adjustment in a current-ridge encounter problem differs from 1D and 2D tem-19

poral spin up problems. We show that in a downwelling BBL, the destruction of the ageostrophic20

BBL shear, and hence the bottom stress, is accomplished primarily by nonlinear straining ef-21

fects during the initial topographic counter. As the current advects along the ridge slopes, the22

BBL deepens and evolves toward thermal wind balance. The onset of negative potential vor-23

ticity (NPV) modes of instability and their subsequent dissipation partially offsets the reduc-24

tion of the BBL dissipation during the ridge-current interaction. On the upwelling side, although25

the bottom stress weakens substantially during the encounter, the BBL experiences a horizon-26

tal inflectional point instability and separates from the slopes before sustained along-slope stress27

reduction can occurred. In all our solutions, both the upwelling and downwelling BBLs are28

in a partially arrested state when the current separates from the ridge slope, characterized by29

a reduced, but non-zero bottom stress on the slopes.30

Plain Language Summary31

At the ocean surface, winds pump mechanical energy into the ocean at an average rate32

of between 0.8 TW and 1 TW. This wind-input occurs mainly at large, so-called synoptic scales33

spanning thousands of kilometers. Absent dissipative pathways, this steady energy input would34

cause uncontrolled spinup of the ocean gyres. For decades it has been assumed that friction35

at the seabed has an important role in the eventual turbulent dissipation of the ocean kinetic36

energy. In the 1990s, theoretical models suggested that turbulence could be wholly suppressed37

on sloping bottom bathymetry due to the rearrangement of density surfaces within the bottom38

boundary layer — a mechanism called buoyancy adjustment. Here we revisit this problem us-39

ing modern 3D simulations of currents encountering a ridge. We find that although the bot-40

tom stress can be markedly reduced on topographic slopes, the mechanism through which it41

occurs is quite different than that in simplified 1D and 2D models. Flow ‘deformation ’, or42

straining effects during the topographic encounter play a more important role in weakening43

the bottom stress than buoyancy adjustment. Furthermore, geometric effects like curvature, and44
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flow instabilities can partially offset the reduction in dissipation caused by suppression of bot-45

tom boundary layer turbulence.46

1 Introduction47

When a bottom boundary layer (BBL) develops over sloping bathymetry, buoyancy ad-48

vection in the cross-slope direction produces horizontal buoyancy gradients within the BBL,49

and hence a geostrophic vertical shear through the thermal wind balance. This process, known50

as buoyancy adjustment (or Ekman adjstment), acts to oppose the ageostrophic boundary layer51

shear, thereby weakening the bottom stress on the slopes. In simplified models of slope cur-52

rents (MacCready & Rhines, 1991; Garrett et al., 1993), a steady state is eventually reached53

in which the bottom stress collapses, bringing the cross slope Ekman transport to zero — a54

state referred to in the literature as ‘Ekman arrest’. These predictions have been validated in55

1D numerical models (Brink & Lentz, 2010a), but questions remain about their relevance to56

the real ocean.57

Ekman pumping/suction resulting from the horizontal divergence of the Ekman trans-58

port is thought to be the primary mechanism behind the spin-down of interior flows in the ocean59

(Garrett et al., 1993). The drag exerted at the seafloor is also estimated to be an important source60

of energy dissipation (Wunsch & Ferrari, 2004; Sen et al., 2008). Reduced bottom stress and61

weakening turbulence in sloping BBLs could therefore have profound implications for our un-62

derstanding of the global oceanic circulation and energy budget (Ruan, Wenegrat, & Gula, 2021).63

Umlauf et al. (2015) developed a theoretical framework to understand the energetic pathways64

during the process of Ekman arrest in a 1D BBL, which they then validated using simulations65

with a second order turbulence closure model. An interesting finding was that buoyancy ad-66

justment in a BBL is very effective at converting the kinetic energy of the along-slope flow67

to available potential energy. In particular, for a downwelling (upwelling) BBL, the amount68

of energy stored as available potential energy after Ekman arrest (defined by the authors as69

bottom stress reducing below a threshold value) is as large as 40% (70%) of the energy lost70

to dissipation during the active adjustment process. Crucially, this means that during relaxation71

from an arrested state, this available potential energy stored in the BBL can be converted to72

turbulent kinetic energy and eventually dissipated. The implication is that the observation of73

a partially arrested BBL in some region along the seafloor does not preclude the same region74

from being a hotspot of dissipation in a different observational window.75
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Figure 1. (Adapted from Figs. 1, 4 of Jagannathan et al., 2021, c© American Meterological Society. Used

with permission.) Encounter of a barotropic inflow with an elongated racetrack shaped ridge. Green lines

are bathymetric contours at z = 0.14hm, z = 0.37hm and z = 0.9hm. The inflow is from south to north. (Top)

Normalized, time-averaged boundary stress |τbτbτb|/(C∗dρ0V 2
0 ), with a value C∗d = 0.0022 (Sen et al., 2008; Arbic

et al., 2009), along with selected barotropic streamlines (in black). Dark colors indicate stress reduction. Note

that the colormap is saturated at 10−1. (Bottom) Instantaneous snapshots of normalized depth integrated

vertical vorticity. Small scale NPV instabilities are visible as banded patterns of vorticity on the anticyclonic

side. Values of the parameter ĥ are indicated inside each panel. Observe that the instability is trigerred further

and further upstream for increasing ĥ (Note: The vortices appear distorted as the figure is not to scale)

–4–
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Some of the best available observational evidence for reduced bottom stress, or ‘partial76

arrest ’ over topography is described in Lentz and Trowbridge (2001). These authors analyzed77

moored current observations in the Northern California mid-shelf during the fall/winter period78

in 5 different years between 1981 and 1991. Among their findings is that isopycnals slope down-79

ward near the bottom and that the flow is close to a state of thermal wind balance through-80

out the water column. The near-bottom along-shelf currents, and hence bottom stress are thus81

found to be substantially weakened.82

Complete Ekman arrest nevertheless remains elusive in oceanic observations of the BBL83

(Armi & Millard Jr, 1976; Armi, 1978; Armi & D’Asaro, 1980). Some recent studies provide84

clues on why this may be the case. Using LES simulations with doubly periodic boundary con-85

ditions in the cross- and along-slope directions, Ruan et al. (2019) showed that the BBL al-86

ways relaminarizes before Ekman arrest can be achieved. The relaminarization, or turbulence87

collapse, in their solutions is clearly evident in Hovmöller diagrams that show negligible TKE88

within the BBL at later times (Fig. 12 in Ruan et al. (2019) and Fig. 6 in Ruan, Thompson,89

and Taylor (2021)). Once the BBL relaminarizes, subsequent evolution toward an arrested state90

can only proceed via non-turbulent molecular mixing, which is a relatively slow process. Wenegrat91

and Thomas (2020) further demonstrate how the arrest process can be delayed due to the on-92

set of negative potential vorticity (NPV) instabilities.93

To date, most numerical studies on Ekman arrest have focussed on the temporal adjust-94

ment problem in 1D (e.g. Brink & Lentz, 2010a, 2010b) and more recently, periodic 2D do-95

mains (e.g. Ruan et al., 2019; Wenegrat & Thomas, 2020). In the real ocean, however, buoy-96

ancy adjustment on continental shelf slopes or isolated islands, evolves spatially in the along-97

slope direction. Moreover it does not occur in isolation and is often complicated by other pro-98

cesses like vorticity generation, waves, and three dimensional instabilities. In the present work99

we analyze a set of idealized numerical simulations to examine how buoyancy adjustment, and100

consequently the bottom stress, evolve in a 3D slope-current encounter. This is a follow-up101

study to an earlier paper Jagannathan et al. (2021) in which we investigated the mechanism102

of vertical vorticity generation during the interaction of a boundary current with a topographic103

ridge. The key finding in that paper was that much of the irreversible vertical vorticity is gen-104

erated during the early encounter of the flow with the ridge, through the so-called bottom stress105

divergence torque (BSDT). The simulations analyzed here are those described in Jagannathan106

et al. (2021) along with an additional set of simulations in which we vary the ridge curvature107

in the along-slope direction.108
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Fig. 1 depicts the essential dynamics involved along with the basic flow and ridge con-109

figuration. The elongated ridge is well-suited to explore buoyancy adjustment amidst the full110

complexity of 3D motions including ageostrophic NPV instabilities (Wang et al., 2014), vor-111

ticity generation, flow separation and secondary circulations. In the following sections we de-112

scribe the numerical model setup, analyze the buoyancy adjustment and BBL evolution in our113

solutions, along with its energetics, and discuss these results in the context of 1D and 2D the-114

ories of Ekman arrest on a slope.115

2 Numerical setup116

2.1 Basic model configuration117

The simulations are performed using the Regional Ocean Modelling System (ROMS)118

(Shchepetkin & McWilliams, 2003), a terrain following model that solves the Boussinesq prim-119

itive equations under the hydrostatic approximation. The flow configuration is identical to that120

described in Jagannathan et al. (2021). For the sake of brevity, we confine our description here121

to the most essential aspects of the setup and refer the reader to Jagannathan et al. (2021) for122

further details.123

A uniform barotropic inflow with speed124

V0(x,y = 0,z) = 0.105ms−1 (1)

and approximately uniform stratification N is incident on a ridge of height hm. We consider125

two different ridge configurations. The first is the ridge considered in (Jagannathan et al., 2021).126

This ridge is elongated in the y direction, with bathymetry contours resembling a racetrack (Fig.127

1),128

h = hme−x2/a2

1+ tanh
(

y−y1
σy

)
2

1+ tanh
(

y2−y
σy

)
2

 . (2)

The second is an elliptical ridge with varying aspect ratio β = b/a, where b is the half-length,129

h = hme
−
(

x2

a2 +
y2

b2

)
. (3)

The ridge is centered in a computational domain that is 240 km long and 90 km wide.130

A zero-gradient condition is imposed on the barotropic (vertically-averaged) component of ve-131

locity and potential temperature at the lateral and outflow boundaries, while the Orlanski ra-132

diation condition (Orlanski, 1976) is specified for the baroclinic component. In all the sim-133

ulations, the water depth H = 1000 m, the ridge height hm = 400 m and its half-width a =134
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3.5 km. The length of the elongated ridge is fixed at b = y2 − y1 = 144 km and the extent135

of the initial adjustment region over which the ridge elevation increases to hm is given by σy =136

12 km.137

2.2 Buoyancy adjustment on finite ridges with varying topographic slope138

The critical dimensionless parameter (Srinivasan et al., 2019; Jagannathan et al., 2021)139

is the non-dimensional height140

ĥ =
Nhm

f a
, (4)

where f is the Coriolis frequency. In the Ekman arrest literature where the slope tanθ is typ-141

ically chosen to be constant, the slope Burger number is defined as142

Bu = N tanθ/ f ≈ Nθ/ f , (5)

for θ� 1 (Brink & Lentz, 2010a; Wenegrat & Thomas, 2020). The parameter ĥ in our sim-143

ulations may thus be regarded as analogous to a slope Burger number, with θ = hm/a being144

an average measure of the varying topographic slope.145

Compared to earlier 1D and 2D solutions of buoyancy adjustment on a slope, our setup146

has two significant novelties. One is the non-constant slope and the other is the three dimen-147

sionality which introduces the possibility of flow separation, topographic waves and secondary148

horizontal circulations. To more precisely isolate the 3D effects, one may be tempted to sep-149

arately consider the non-constant slope problem in 2D before attacking the 3D problem. How-150

ever in practice we found that it is challenging to maintain a steady barotropic forcing in ROMS151

for the 2D slope current configuration. To see why this is the case, recall that the flow is ini-152

tialized with a constant sea-surface gradient that geostrophically balances a barotropic inflow153

(Jagannathan et al., 2021). In 3D, specifying the sea surface height at the inflow boundary and154

the lateral boundaries is found to be sufficient to maintain a steady barotropic velocity every-155

where downstream. However in the 2D configuration, once the flow is initialized, the only way156

to hold the barotropic inflow fixed as the flow evolves is by nudging either the sea surface height157

or the barotropic velocity itself. Both of these represent strong external forcing of the flow and158

introduce artefacts to the solution. For this reason, we directly consider the more realistic 3D159

problem without imposing any artificial constraints on the evolution of the along-slope flow.160

The long straight section of the elongated ridge helps to isolate the buoyancy adjustment161

process and facilitates comparison with 1D and 2D model predictions. We focus here on the162
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solutions with ĥ= 1.6,3.2,6.4 and 12.8. As described in Jagannathan et al. (2021), ĥ in these163

simulations is varied by changing the stratification N while keeping the other parameters un-164

changed. The Coriolis frequency f is fixed at a value of 7×10−5 s−1 and N ranges from ×10−3 s−1
165

in the ĥ = 1.6 run to 8×10−3 s−1 in the ĥ = 12.8 run.. For the elliptical ridge, ĥ is fixed at166

3.2 and the semi-major length b is varied between 3.5 km and 56 km, so that the ellipse as-167

pect ratio β spans values ranging from 1 to 16. Note that outside of the tropics, values of ĥ>168

2 are rare in the ocean. However the local value of ĥ, defined as Nlθl/ f , where Nl and sl are169

respectively the local value of the stratification and slope, can often be quite large, especially170

in locations where the thermocline intersects topography. For example, the slope angle in the171

Florida straits is as high as 3◦ in the stretch prior to when the Gulf Stream separates (Gula172

et al., 2015). Using a mid-latitude value of f = 7× 10−5s−1 and typical thermocline strati-173

fication N ≈ 10−2s−1 then gives ĥ ≈ 7.5. Furthermore, as demonstrated in Srinivasan et al.174

(2019) and Perfect et al. (2018), when ĥ> 1 the flow outside the BBL is largely on horizon-175

tal planes, meaning that the local ĥ value effectively controls the cross-slope BBL dynamics.176

Therefore idealized simulations with large ĥ can yield useful insight into the dynamics of buoy-177

ancy adjustment on realistic continental slopes.178

2.3 Bottom stress parameterization and grid resolution179

The bottom stress in ROMS is parameterized using the quadratic drag law180

τττb = ρ0Cduuub||uuub||. (6)

where ρ0 is the constant reference density, uuub is the velocity in the bottommost σ layer and181

Cd is the drag constant182

Cd = [κ/log(∆zb/zob)]
2. (7)

κ = 0.4 in Eq. (7) is the Von-Karman constant, ∆zb is the thickness of the bottommost σ -layer183

and zob is the roughness length which we set to 1 cm. Substituting these parameters in Eq. (7),184

along with the observed range of values of ∆zb in our runs of 0.9-1.1 m, we find that Cd ranges185

from 0.0076 over the flat bottom to 0.0083 over the ridge crest.186

Previous experience with ROMS suggests that NPV phenomena such as forced symmet-187

ric instability (Wenegrat et al., 2018) are captured to some degree even in moderately coarse188

hydrostatic simulations (500 m in Wenegrat et al. (2018)). In all our simulations we employ189

a grid spacing of 300 m in the horizontal and 110 σ− levels, to resolve submesoscale and BBL190

processes. With vertical grid stretching the near bottom vertical resolution is as fine as 0.9 m191
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over the ridge crest and 1.1 m over the flat bottom. Vertical mixing in the BBL is parameter-192

ized using KPP (Large et al., 1994; McWilliams et al., 2009). The model also implicitly con-193

tains horizontal hyperviscosity and hyperdiffusivity via the third-order upwind-biased scheme194

(Shchepetkin & McWilliams, 2003, 2005). Time-averages, where shown, are obtained by av-195

eraging the relevant quantities over 50 inertial periods.196

3 Review of 1D and 2D model predictions197

In the northern hemisphere, the Ekman transport in a bottom Ekman layer is to the left198

of the interior geostrophic current. On a slope where the current is prograde, i.e. in the direc-199

tion of a coastal Kelvin wave, the cross-slope transport results in downwelling of lighter wa-200

ter underneath heavier water, leading to a statically unstable state. Convective mixing then pro-201

duces a mixed layer which continues to expand in thickness with time (Trowbridge & Lentz,202

1991; MacCready & Rhines, 1991). As the BBL thickens, horizontal buoyancy gradients in-203

tensify and the bottom stress weakens due to the thermal wind shear. In classical 1D models204

of slope currents, the BBL continues to deepen until complete Ekman arrest occurs (Garrett205

et al., 1993). In an upwelling Ekman layer, thermal wind shear similarly acts to reduce the bot-206

tom stress. The main difference with respect to the downwelling side is that the upslope ad-207

vection of buoyancy makes the BBL increasingly stable, and as a result, thinner than on a flat208

bottom. All the theoretical predictions reviewed in this section assume a constant value of the209

slope so that ĥ below connotes a slope Burger number.210

Assuming that in the steady state, the BBL is perfectly well-mixed, Trowbridge and Lentz211

(1991) derive an estimate for its thickness212

HDW
a =

V0

Nĥ
, (8)

where the superscript denotes ‘downwelling ’. However the same authors note that the BBL213

formed through convective mixing of a downwelling Ekman flow typically tends to be weakly214

stratified rather than perfectly well-mixed. Brink and Lentz (2010a) derive an arrest time scale215

for such a weakly stratified BBL assuming a constant gradient Richardson number,216

T DW
a =

V0
2(1+ ĥ2)Π(ĥ)

2u∗0
2Nĥ3

, (9)

where u∗0
2 is the flat-bottom stress in the absence of buoyancy arrest,217

Π(ĥ) =
1+
√

1+4Ricĥ2

2
, (10)

and Ric is the critical gradient Richardson number, averaged over an inertial period.218
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2D simulations (Wenegrat & Thomas, 2020) show that the destruction of the BBL strat-219

ification through convective mixing is accompanied by a negative flux of potential vorticity220

(PV) through the bottom which drives the PV below 0 in the BBL. Here the PV is defined as221

q =ΩΩΩa ·∇∇∇b (11)

where b = −gρ/ρ0 is the buoyancy and ΩΩΩa = f k̂kk+∇∇∇×uuu is the three-dimensional absolute222

vorticity.223

The q< 0 state is susceptible to NPV instability modes, which then return the flow to224

marginal stability. Wenegrat and Thomas (2020) further demonstrate that the onset of insta-225

bility delays, but does not stop the progression to an arrested state. Their modified arrest time226

scale is given by227

T NPV
a =

V0
2(1+ ĥ2)

2

2u∗0
2Nĥ3

. (12)

The extra factor (1+ ĥ2) in Eq. (12) comes from substituting Ric = 1+ ĥ2 in Eq. (10), which228

is the condition of marginal stability with q= 0 (Allen & Newberger, 1996) . The correspond-229

ing expression for the arrest height is230

HNPV
a =

V0(1+ ĥ2)

Nĥ
. (13)

Thus both the arrest time and arrest height are amplified by a factor of (1+ ĥ2) relative to 1D231

models in which NPV instabilities are absent. Note that the modification in the arrest height232

prediction follows directly from the requirement that q = 0 in the BBL.233

In the upwelling regime, the upslope advection of dense water tends to stabilize the BBL,234

making it shallower relative to the downwelling. The numerical experiments of Brink and Lentz235

(2010a) show two different end states, depending on the value of ĥ. For ĥ> 1, their solutions236

produce a uniformly stratified BBL connecting smoothly to the stratified interior. The BBL237

height corresponding to arrest is238

HUW
a =

V0

Nĥ
γ(ĥ), (14)

where the superscript denotes ‘upwelling ’ and γ(ĥ) is given by the functional form239

γ(ĥ) =
−1+

√
1+4RiUW ĥ2

2
. (15)

Brink and Lentz (2010a) further find that RiUW = 0.4 produces a satisfactory fit to their nu-240

merical experiments, using either a Mellor-Yamada 2.0 closure or k−ε model. The correspond-241

ing arrest time scale for the upwelling favorable regime is then obtained as242

TUW
a =

V 2
0 (1+ ĥ2)γ(ĥ)

2u∗0
2Nĥ3

. (16)

–10–
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On the other hand, when ĥ< 1, the vertical structure is characterized by a weakly strat-243

ified BBL, capped by a strongly stratified pycnocline (Brink & Lentz, 2010a). Buoyancy ad-244

justment times are much longer than for ĥ > 1. In the limit ĥ� 1, the BBL characteristics245

approach those of a flat bottom Ekman layer. Interestingly, in their recent LES study, Ruan,246

Thompson, and Taylor (2021) note that capped BBLs are not observed. The authors attribute247

this to relaminarization of the BBL, which does not occur in simpler turbulence closures. For248

more details on the capped BBL we refer the reader to Brink and Lentz (2010a).249

In one and two dimensional models of slope currents, buoyancy adjustment is a defin-250

ing aspect of the solutions in both the ĥ > 1 and ĥ < 1 regimes. The only difference is the251

considerably longer adjustment time when ĥ< 1. This can be seen by inspecting Eqs. (9) and252

(12) where in the limit ĥ� 1, T NPV
a varies as ĥ3 and TUW

a as 1/ĥ. By contrast, in the case253

of an isolated 3D ridge, the ĥ< 1 regime is quasi-geostrophic (QG) (Schär & Davies, 1988),254

with strong cross-isobath flow and vortex stretching effects dominating the dynamics (Srinivasan255

et al., 2019; Hogg, 1973; Schär & Davies, 1988). For this reason, we do not consider this regime256

here. Focusing on the ĥ > 1 regime, we will see that the evolution toward Ekman arrest in257

a topographic encounter problem has important differences from the lower dimensional tem-258

poral spin up problems. In particular, nonlinear straining plays an important role, both in weak-259

ening the ageostrophic BBL shear during the initial encounter with the ridge, as well as the260

subsequent evolution of the BBL towards thermal wind balance.261

4 Results262

4.1 Bottom Stress Evolution on the Slopes263

We define the anticyclonic (cyclonic) side of the ridge as the side where uphill is to the264

right (left) of the incident flow. Note that, in our flow configuration (Fig. 1) with the Corio-265

lis frequency f > 0, the bottom Ekman layer is downwelling-favorable on the anticyclonic side266

and upwelling-favorable on the cyclonic side. In the discussion that follows, the BBL height267

on the cyclonic side refers to the region of active turbulence where shear driven entrainment268

and mixing are occuring. This is also the quantity explicitly computed in ROMS using the KPP269

formulation McWilliams et al. (2009).270

On the anticyclonic side, a dynamically consistent definition of the BBL height needs271

to account for convective mixing produced by the downwelling Ekman layer as well as sec-272

ondary NPV instabilities. Allen and Newberger (1996) show that, in a downwelling Ekman273
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layer, symmetric instability partially restratifies the BBL so that its stratification at marginal274

stability (q= 0) is given by N2ĥ2/(1+ ĥ2). Thus for values of ĥ greater than 1, the BBL can275

retain substantial stratification. This is well supported by recent observations in the Orkney276

passage (Garabato et al., 2019) where the measured ĥ is about 1.8 and the BBL stratification277

is around two-thirds of the interior value. The solutions analyzed here have ĥ values ranging278

from 1.6 to 12.8 and as we shall see below, are unstable to NPV instabilities on the anticy-279

clonic side.280

One choice of definition for the BBL height therefore is as the depth over which the ver-281

tical buoyancy gradient is less than N2ĥ2/(1+ ĥ2). However our 3D solutions depart from the282

2D assumptions implicit in Allen and Newberger (1996) in some important respects: first, the283

stratification is not constant in the BBL and so the BBL is never uniformly in a state of marginal284

stability; second, as we will see later, the instabilities that develop are not pure symmetric modes285

but rather hybrid modes that draw energy from both the mean vertical shear and horizontal286

shear. Thus we simply define the BBL height as the height from the bottom where the strat-287

ification first exceeds αN2ĥ2/(1+ ĥ2), where α is some constant slightly larger than 1, here288

taken to be 1.1. A 10% variation in α (say α = 1.2 rather than 1.1) does not lead to a ma-289

terial difference in the computed BBL heights.290

The incident flow on the flat bottom has a well-mixed, turbulent BBL, capped by a strongly291

stratified pycnocline. The characterstics of the flat bottom Ekman layer have been previously292

described by other authors (e.g. Taylor & Sarkar, 2008). The upper panel of Fig. 1 shows the293

evolution of the bottom stress as this flat bottom Ekman layer encounters the topography. The294

stress values have been normalized by ρ0C∗dV 2
0 , the expected stress on a flat bottom with far-295

field velocity V0. The value of the drag coefficient C∗d when this formula is used, is typically296

in the range 0.002-0.003 (Sen et al., 2008; Arbic et al., 2009). Note that C∗d is different from297

Cd used to parameterize the bottom stress in ROMS because the latter is multiplied by V 2
b (Vb298

is the velocity in the bottom-most σ -layer) and not V 2
0 to get the bottom stress (see Eq. 7).299

Here we find that C∗d = 0.0022 yields a non-dimensional stress around 1 away from the to-300

pography and use this value henceforth in our scalings for stress, energy production and dis-301

sipation.302

The sustained weakening of the stress on the slopes is apparent in Fig. 1. To better vi-303

sualize its downstream evolution in a slope-averaged sense, we compute the average stress across304

the set of barotropic streamlines depicted in Fig. 1, separately on each side of the ridge, and305
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CyclonicAnticyclonic

(a) (b)

CyclonicAnticyclonic

(d)(c)

Figure 2. (Top panel) Streamline-averaged evolution of the time-averaged bottom stress shown in Fig. 1

for different values of ĥ. (a) Anticyclonic and (b) Cyclonic. (Bottom panel) Evolution of the bottom stress

as a function of time. Here Tadv = (s − s0)/V0, where s is the distance travelled along the mean streamline

starting from the inflow location y = 0, and s0 is the value of s where the streamline intersects the ridge con-

tour h(x,y) = hm exp(−2). Thus Tadv is an advective time representative of the transit time of the flow along

the ridge slopes. (c) Anticyclonic and (d) Cyclonic. T NPV
a is the time scale for arrest in the presence of NPV

instabilities, as derived in Wenegrat and Thomas (2020) (Eq. (12) above) and TUW
a is the Brink and Lentz

(2010a) time scale for arrest in the upwelling-favorable regime (Eq. (16) above).
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(a) (b)

Figure 3. Downstream evolution of the Ekman transport (defined in Eq. (18)) at different downstream

locations given by the non-dimensional distance y/a, on and immediately adjacent to the ridge slopes. The

values have been normalized by the average Ekman transport over the flat bottom far from the ridge. The ĥ

values are indicated inside each panel.

plot this as a function of along-streamline distance (Figs. 2a,b). The bottom stress starts to de-306

crease within a short distance of the well-mixed BBL encountering the ridge. The reduction307

is stronger for larger ĥ, approaching more than an order of magnitude for ĥ= 3.2 and higher308

(Fig. 2).309

On the anticyclonic (downwelling) side, the mean streamlines in Fig. 1 show that the310

current remains largely attached to the slopes throughout the encounter. As a result, along-stream311

fluctuations are muted. By contrast, there are large oscillations on the cyclonic side associ-312

ated with the separation and reattachment of eddies during the early encounter (Fig. 1). Af-313

ter the early reduction, the stress exhibits a slow increasing tendency downstream.314

We plot the quasi-temporal evolution of the stress along the barotropic streamlines by315

defining an advective time316

Tadv =
s− s0

V0
. (17)

Here s is the along-streamline distance measured from the inflow location y= 0, averaged across317

the barotropic streamlines shown in Fig. 1. Note that the averaging is performed separately318

on each side of the ridge. s0 is the value of s where the streamline intersects the ridge con-319

tour h(x,y)= hm exp(−2). That is, the clock starts ticking where the mean streamline encoun-320

ters the ridge and Tadv represents the transit time of the flow on the slopes. We use T NPV
a and321

TUW
a respectively to scale the advective time Tadv on the anticyclonic and cyclonic sides. Note322
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that for all the values of ĥ considered here, T NPV
a is significantly longer than TUW

a . Figs. 2c,d323

show that the bottom stress slumps by an order of magnitude over O(1) arrest time scale (T NPV
a )324

on the anticyclonic side and between O(1)−O(10) arrest time scales on the cyclonic side.325

Plugging in V0 = 0.105ms−1, u∗0
2 =C∗dV 2

0 , with C∗d = 0.0022 (Sen et al., 2008; Arbic et al.,326

2009), and N and ĥ for each solution in Eqs. (12) and (16), we find that this corresponds to327

O(1) inertial periods on each side. As we shall show in section 4.2 in our analysis of the ver-328

tical shear equation Eq. (19), this initial rapid stress reduction is not due to buoyancy adjust-329

ment, but rather a consequence of 3D, nonlinear straining effects when the flow first encoun-330

ters the ridge.331

In response to the diminishing bottom stress, the cross-slope Ekman transport in the BBL332

UE =
∫ −H+hbbl

−H
u dz (18)

at the upper slopes |x/a|< 0.5, approaches zero within a short distance downstream (Fig. 3).333

As the current accelerates around the sides, the bottom stress and hence Ekman transport are334

enhanced near the lower reaches (|x/a|> 0.5) of the ridge. The resulting zonal divergence in335

Ekman transport drives Ekman pumping through a secondary upwelling circulation. Vortex stretch-336

ing due to Ekman pumping is responsible for intensifying and redistributing the BBL gener-337

ated vertical vorticity in the interior (Jagannathan et al., 2021).338

The flow on the anticyclonic side develops a spatial instability mode which grows to fi-339

nite amplitude downstream. This is manifest by the emergence of a banded pattern of small340

scale vortices in the lower panel of Fig. 1. The instability begins further and further upstream341

for increasing values of ĥ. Below we will identify these as belonging to a general class of NPV342

instabilities. In the 2D simulations of Wenegrat and Thomas (2020), the flow continues to evolve343

toward an arrested state even after the onset of NPV instabilities. From Eq. (12), we would344

expect that this 2D arrest time scale T NPV
a is approximately 7.8 inertial periods for the case345

ĥ= 1.6 and 4.3 inertial periods for ĥ= 12.8. The encounter time in our solutions is around346

16 inertial periods on the anticyclonic side (Fig. 2c,d). Thus the 2D expectation of buoyancy347

adjustment ( e.g. Fig. 16 of Wenegrat and Thomas (2020)) is a monotonic decay of the bot-348

tom stress toward zero before the flow separates from the ridge. Yet in Fig. 2, the bottom stress349

exhibits a much slower decay than expected for ĥ= 1.6. For the two intermediate values of350

ĥ, there is a slight increase after the initial slump, followed by a plateauing of the stress. Like-351

wise, the bottom stress on the cyclonic side plunges sharply during the initial encounter but352

starts to rebound to higher values over O(10) arrest time scales. The observations above are353
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Figure 4. Downstream evolution of the time-averaged vertical shear overlain with the flow isopycnals (top)

geostrophic vertical shear ∂vg
∂ z /N and (bottom) the ageostrophic shear ∂vag

∂ z /N for the ĥ = 3.2 solution. The

ridge centerline is at y/a = 30.9.

indicative of the fact that other 3D effects besides buoyancy adjustment exert a strong influ-354

ence on bottom stress evolution, and hence turbulent bottom dissipation over topographic ridges.355

We will examinine these in detail below.356

4.2 Vertical Shear Balance and the Role of Strain357

The theoretical state of Ekman arrest is characterized by collapse of the BBL on the slopes358

and the establishment of a deep boundary layer in a state of thermal wind balance. To assess359

the degree of arrest in our solutions, we decompose the time-averaged vertical shear into its360

geostrophic and ageostrophic components. Note that the ageostrophic component here encom-361

passes not only shear due to vertical mixing in the BBL but also that due to nonlinear advec-362

tive effects such as strain (see Eq. (19) below).363
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Fig. 4 is a representative plot of the component-wise decomposition of the vertical shear364

for the case ĥ= 3.2. Over the flat bottom (|x/a|> 3) the shear in the BBL is purely ageostrophic365

and is positive except near the pycnocline (see also Taylor & Sarkar, 2008). Shortly after the366

current-ridge encounter, at y/a= 10, both the geostrophic and ageostrophic components are367

significant. Furthermore, on the anticyclonic side, the two components are clearly seen to be368

opposite-signed, with the ageostrophic shear being negative. At y/a= 17 the ageostrophic com-369

ponent of vertical shear has weakened drastically (Fig. 4). It continues to weaken downstream370

and by y/a= 27, the clear dominance of the geostrophic component signals approach toward371

a partially arrested state. Interestingly, the rightmost panel of this figure shows that the geostrophic372

shear itself has relatively weakened by y/a= 43. As we shall see in section 4.3 this reflects373

partial restratification of the BBL following the onset and growth of NPV instabilities.374

Writing the squared vertical shear as ||uuuz||2 = u2
z + v2

z , its Lagrangian evolution equa-375

tion can be written as (Srinivasan et al., 2021)376

1
2

D||uuuz||2

Dt
=−

(u2
z ux + v2

z vy)+uzvz(uy + vx)︸ ︷︷ ︸
−Λh

+ ||uuuz||2wz︸ ︷︷ ︸
−Λv


︸ ︷︷ ︸

Λnl

−(bxuz +byvz)︸ ︷︷ ︸
Λb

+D(uuuz)︸ ︷︷ ︸
Λmix

, (19)

where Λnl =Λh+Λv represents nonlinear horizontal and vertical straining effects, Λmix is the377

shear generation/destruction due to the combined effect of parameterized vertical momentum378

mixing and implicit horizontal hyperdiffusion, and Λb is the geostrophic production term. We379

plot each of the tendency terms on the RHS of Eq. (19) for the three solutions ĥ= 1.6, 3.2380

and 6.4 in Fig. 5. The terms are averaged across-slope and over the local BBL depth on the381

anticyclonic side. We do not show an equivalent plot for the cyclonic side as the flow there382

separates early, and consequently there is no obvious trend to be discerned from examining383

Eq. (19).384

Before the flow encounters the ridge, turbulent vertical mixing is the primary source of385

vertical shear generation in the BBL. This ageostrophic shear is neutralized by nonlinear strain-386

ing processes during the early flow adjustment over the topography. Examining Fig. 4 along-387

side the middle panel of Fig. 5 one can infer that the negative ageostrophic shear over the an-388

ticyclonic slopes at y/a = 10 comes largely from nonlinear straining effects Λnl . Buoyancy389

adjustment and strain then combine to bring the flow downstream progressively closer to a state390

of geostrophic balance. Downstream of y/a≈ 12, note that the total tendency remains slightly391

negative. This is consistent with the observed reduction in the intensity of the geostrophic ver-392

tical shear at y/a = 43 (rightmost panel of Fig. 4).393
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Figure 5. (Anticyclonic) Tendency terms of the time-averaged squared vertical shear equation Eq. (19).

Λnl represents nonlinear straining effects, Λmix is the shear generation/destruction due to the combined effect

of parameterized vertical momentum mixing and implicit horizontal hyperdiffusion in ROMS, and Λb is the

geostrophic production term. Each term is normalized by NV 2
0 h−2

m and averaged over the local BBL depth

and in the across-slope direction. ĥ values are indicated inside each panel. The zero line is shown dashed for

clarity.
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Note that the peaks and troughs of all the tendency terms shift upstream with increas-394

ing ĥ, reflecting faster adjustment times for higher ĥ (Eqs. (9), (12)). A comment on the bot-395

tommost panel of Fig. 5 showing the tendency terms for ĥ= 6.4: interestingly, the combined396

effect of λnl and Λmix produces two prominent troughs in the total vertical shear tendency. The397

exact reason for this pattern is not clear; however the relatively large negative value of the to-398

tal tendency downstream of y/a= 15 is consistent with the expected strong restratifying ef-399

fects in the BBL for high ĥ (Allen & Newberger, 1996) which will substantially weaken the400

geostrophic vertical shear.401

Strong nonlinear, 3D straining motions during the initial flow adjustment over the ridge402

thus strongly influence the dynamics of buoyancy adjustment on the slopes. In particular, the403

strain term neutralizes the ageostrophic BBL shear of the incident flow, and then acts in con-404

cert with the geostrophic production term Λb to produce a more rapid initial stress reduction405

(Fig. 2c,d) than predicted by 1D or 2D models where strain effects are absent. Note that this406

is a rather different phenomenological sequence compared to 1D models where buoyancy ad-407

justment alone acts to convert ageostrophic shear to geostrophic shear.408

4.3 BBL instabilities, energetics and dissipation409

The conversion from ageostrophic to geostrophic vertical shear in the BBL is associated410

with an expanding region of negative PV. Figs. 6a,b show the evolution of the stratification411

and PV over the anticyclonic slope for the ĥ = 3.2 solution. A well-mixed BBL with q≈ 0412

encounters the topography. The lower part of the BBL initially develops NPV due to convec-413

tive overturning (Fig. 6b). The region of weak stratification deepens and the pycnocline is even-414

tually destroyed further downstream (Fig. 6a). As the gesotrophic vertical shear is established,415

the NPV layer becomes increasingly deeper.416

The q< 0 state is susceptible to instability, which can be categorized in different ways417

depending on the the dominant energy conversion terms (Wang et al., 2014; Thomas et al., 2013).418

Fig. 6c shows that the horizontal component qh≈−vzbx contributes substantially to the neg-419

ative PV in the mixed layer, hinting at the possibility of symmetric instability (Thomas et al.,420

2013). To gain further insight into the nature of the instability here (visible as bands of insta-421

bility on the anticyclonic side in the bottom row of Fig. 1), we compute the production terms422

of the eddy kinetic energy (EKE) equation. Energy is transferred from the mean flow to the423
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(a)

(c)

(b)

Figure 6. Downstream evolution of the time-averaged vertical buoyancy gradient and PV on the anticy-

clonic side for the ĥ = 3.2 solution. Over the ridge, each of the quantities is averaged across the slope and

plotted as a function of height from the ridge bottom. On the flat bottom before the encounter, the color con-

tours displayed are for the centerline x/a = 0 values. (a) ∂b/∂ z normalized by the background squared Brunt

Vaisala frequency N2. (b) Normalized potential vorticity q/ f N2 and (c) the horizontal component of potential

vorticity qh/ f N2.
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eddies through the vertical and horizontal Reynolds stress work, defined respectively as424

V RS =−(u′w′uz + v′w′vz), (20)

and425

HRS =−(u′u′ux +u′v′uy + v′v′vy +u′v′vx), (21)

where the overbar (·) denotes a time average and primed quantities (·)′ are preturbations about426

the average. Reversible exchange of available potential energy between the mean and eddy fields427

also occurs through the vertical buoyancy flux428

V BF = w′b′. (22)

All the production terms are normalized by C∗dV 3
0 , a commonly used scaling (Sen et al.,429

2008; Arbic et al., 2009; Ruan, Wenegrat, & Gula, 2021) for energy dissipation within a flat430

bottom turbulent BBL with bottom stress ρ0C∗dV 2
0 , where C∗d is again taken to be 0.0022. Fig.431

7 shows that conversion of energy from the mean flow to the eddies on the anticyclonic side432

is accomplished primarily by VRS and VBF at ĥ= 1.6, and through a combination of VRS,433

HRS and VBF at ĥ= 3.2. In the dynamical framework of Thomas et al. (2013) and Wenegrat434

and Thomas (2020), the former may be classified as a hybrid symmetric/gravitational insta-435

bility and the latter a hybrid symmetric/centrifugal/gravitational instability. The instability tends436

to restratify the BBL, bringing the flow back toward a state of marginal stability q≈ 0 (Fig.437

6b,c). VBF is primarily responsible for the restratification, converting available potential en-438

ergy to EKE in the process. Note that the large VBF contribution well downstream of the ridge439

centerline may also indicate the presence of a hybrid baroclinic mode on the anticyclonic side.440

The restratification in the BBL and the corresponding reduction in the geostrophic vertical shear441

can be seen in the last panel of Fig. 4 (y/a= 43). For the larger ĥ cases, partial restratifica-442

tion of the BBL following the onset NPV instabilities manifests as a net sink in the Lagrangian443

vertical shear equation (black line in bottom panel of Fig. 5).444

On the cyclonic side, EKE production is overwhelmingly from HRS, and is substantially445

more intense compared to the anticyclonic side. This is strongly indicative of a horizontal, in-446

flectional point instability of the mean flow, similar to that seen, for example, in submesoscale447

and BBL resolving simulations of topographic wakes in the Southwestern Pacific (Srinivasan448

et al., 2017). VBF, which acts as minor sink of EKE, represents conversion from EKE to avail-449

able potential energy resulting from the upslope advection of buoyancy. Fig. 7 also shows that450

HRS conversion commences further upstream for the ĥ= 3.2 case compared to ĥ= 1.6. The451
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(a)

(b)

Figure 7. Time-averaged, vertically integrated EKE production terms (Eqs. (20), (21) and (22) for (a)

ĥ = 1.6 and (b) ĥ = 3.2. A Gaussian filter has been applied to VBF to remove grid scale noise downstream of

the ridge. All quantities are non-dimensionalized by C∗dV 3
0 , with C∗d = 0.0022, and the colomap is saturated at

6×10−1.

–22–



manuscript submitted to JGR: Oceans

Cyclonic

(b)(a)

Anticyclonic

Figure 8. (a) Evolution of the cross-slope averaged BBL depth hbbl as a function of the advective time Tadv.

Recall that Tadv = (s − s0)/V0 is the along-streamline distance expressed as a time scale. (a) On the anticy-

clonic side, normalized by the Wenegrat and Thomas (2020) prediction for the arrest height (Eq. (13)) when

NPV instabilities are active. (b) On the cyclonic side, normalized by the Brink and Lentz (2010a) prediction

(Eq. (14)) for an upwelling Ekman layer

onset of horizontal barotropic instability on the topographic slopes could partly explain why452

the strip of cyclonic vorticity generated through the Bottom Stress Divergence Torque (Jagannathan453

et al., 2021) detaches from the slopes further upstream compared to the anticyclonic side. As454

seen in Fig. 2b,d, for all ĥ considered, the early separation reverses the decaying trend of bot-455

tom stress on the cyclonic side, past s/a≈ 20 (where s is the along-streamline distance).456

As in the case of observations by Garabato et al. (2019) and solutions of Wenegrat and457

Thomas (2020), the BBL on the downwelling (anticyclonic) side remains substantially strat-458

ified in our solutions (Fig. 6a). Recall the definition of the BBL on the downwelling side as459

the height from the bottom where the stratification first exceeds 1.1N2ĥ2/(1+ ĥ2) (see sec-460

tion 4.1). In Fig. 8a we show the downstream evolution of the across-slope averaged BBL thick-461

ness hbbl on the anticyclonic side. The values are non-dimensionalized using the predicted value462

of NPV instability - modulated arrest height in Wenegrat and Thomas (2020) (Eq. (13)). The463

BBL deepens downstream as the flow evolves along the slopes, but in all cases, its depth is464

less than the predicted value when the current separates off the slopes. On the cyclonic side,465

the stabilizing effect of upslope buoyancy advection is expected to shrink the boundary layer466

thickness, relative to the upstream flat-bottom value (Brink & Lentz, 2010a). Fig. 8b shows467

that hbbl decreases sharply during the initial encounter, even beyond the value predicted in Brink468
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and Lentz (2010a). Further downstream, hbbl slowly approaches HUW
a . However, as noted ear-469

lier, the separation of the current from the slopes and the slow increase observed in the bot-470

tom stress (Fig. 2b,d) are indicative of the BBL not being fully arrested.471

The loss of energy due to dissipation can be partitioned into that from the mean kinetic472

energy (MKE) of the parameterized BBL turbulence, ε̄ , and that due to the forward cascade473

initiated by the ageostrophic instabilities, ε ′. Recall that eddy dissipation in ROMS occurs through474

both the parameterized vertical Reynolds stress τττz as well as a horizontal hyperdiffusion term475

that is implicit in the third order upwind biased scheme for computing horizontal advection.476

To quantify the influence of the topography on dissipation, ε̄ and ε ′ are defined here as area477

averages over the sloping sides of the ridge. For example on the anticyclonic side,478

ε̄ =

∫∫
A
∫ −H+hbbl
−H ūuu ·

(
τττz +DHuuu

)
dzdydx∫∫

A dydx
(23a)

479

ε
′ =

∫ 0
−∞

∫
∞

−∞

∫ η

−H u′u′u′ ·
(
τττ ′z +DHu′u′u′

)
dzdydx∫∫

A dydx
, (23b)

where η is the sea surface elevation, DH denotes the horizontal hyperdiffusion term on the480

RHS of the horizontal momentum equations. A is the region bounded by the y-axis and some481

low-level bathymetric contour, here taken to be the contour on which the ridge height decays482

to exp(−2) of its maximum value hm,483

A = {x,y |x≤ 0; h(x,y)> hm exp(−2)}, (24)

The dissipation fractions ε̄ and ε ′ and slope region A are defined analogously for the cyclonic484

side.485

Eq. (23a) represents the area-averaged MKE dissipation from the BBL over the slop-486

ing sides of the ridge. The ‘slope effect ’on BBL dissipation is visible when we plot ε̄ nor-487

malized by C∗dV 3
0 (Fig. 9a) for each ĥ solution. For ĥ= 1.6, the dissipation rate of MKE on488

the anticyclonic side is around 75% of that expected from the flat-bottom scaling C∗dV 3
0 , re-489

flective of moderate bottom stress reduction. As ĥ increases, the normalized ε̄ decreases, falling490

to as low as 0.1 for ĥ = 12.8. The diminished ε̄ is indicative of partial arrest of the BBL.491

The numerator of Eq. (23b) is the volume integral of the EKE dissipation over the to-492

tal fluid volume on the anticyclonic side and not just within the BBL as is the case in Eq. (23a).493

This choice reflects the fact that the instabilities spawned on the slopes give rise to eddies which494

generally dissipate over a broad wake region rather than locally (c.f. Srinivasan et al., 2021).495

Dividing the total eddy-induced dissipation by
∫∫

A dydx thus specifically captures the effect496
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CyclonicAnticyclonic

(b)

CyclonicAnticyclonic

(a)

Figure 9. Barplot showing separate contributions of ε̄ and ε ′, defined in Eqs. (23a) and (23b), to the energy

dissipation on each side of the ridge. The integrals have been normalized by C∗dV 3
0 with C∗d = 0.0022, the

usual scaling for the depth integrated dissipation rate in a turbulent BBL with far-field velocity V0 (Sen et

al., 2008; Arbic et al., 2009). (a) Elongated ridge with varying ĥ and (b) Elliptical ridge at fixed ĥ = 3.2 and

varying aspect ratio β .

of the slope-current encounter on energy dissipation. That is, it tells us how much EKE dis-497

sipation occurs as a result of slope-current interactions over a unit area on the anticyclonic side498

of the ridge. Wenegrat and Thomas (2020) predicted using theoretical scalings that in a 2D499

downwelling BBL undergoing arrest, NPV instabilities offset exactly half of the reduction in500

the energy dissipation caused by Ekman arrest. Here we find that ε ′ on the anticyclonic side501

increases from around 0.05 at ĥ= 1.6 to around 0.2 at ĥ= 12.8. Thus while dissipation due502

to SI/CI amounts to between 5% and 20% of the expected flat-bottom BBL dissipation, it is503

nevertheless considerably smaller in our solutions compared to the Wenegrat and Thomas (2020)504

scaling.505
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On the cyclonic side, ε̄ is below 0.1 for all ĥ while ε ′ is around 0.3 at the largest ĥ. Thus506

dissipation resulting from the horizontal inflectional point instability outstrips that due to the507

bottom drag for all but the lowest ĥ considered. In conclusion, on both sides of the ridge, EKE508

dissipation compensates a fraction of the reduction in dissipation resulting from partial arrest509

of the turbulent BBL on the slopes — between 5% and 20% on the anticyclonic side and up510

to 30% on the cyclonic side, depending on the value of ĥ.511

A caveat to the above observations regarding NPV and dissipation concerns the horizon-512

tal resolution used (300 m). Note that locally, we can estimate the horizontal scale of sym-513

metric instability modes from Taylor and Ferrari (2009) as514

L = hbbl/θiso, (25)

where θiso is the isopycnal slope within the BBL. In Fig. 10, we display the absolute values515

of the isopycnal slope on the anticyclonic side for the case ĥ = 3.2. Note that at y/a = 27,516

which is around where the NPV instabilities become prominent in snapshots of integrated vor-517

ticity (Fig. 1), |θiso| in the BBL is largely in the range of 0.1 or less, except very near the bot-518

tom where it approaches unity. The isopycnal slopes are very similar for the other ĥ and hence519

not shown.520

Substituting the values of V0, ĥ and N for our runs in Eq. 13 gives theoretical arrest heights521

ranging from ≈ 220 m for ĥ= 1.6, to ≈ 160 m for the ĥ= 12.8. From inspection of Fig. 8,522

this gives values of hbbl before separation from the ridge, of around 165 m for ĥ = 1.6, 65523

m for ĥ= 12.8 and around 90 m for each of the cases ĥ= 3.2 and 6.4. From Eq. (25), this524

implies a horizontal scale of the symmetric instability mode L≈ 1650 m for ĥ= 1.6, 900 m525

for ĥ = 3.2 and 6.4 and 650 m for the largest ĥ of 12.8 considered here. Thus with a hori-526

zontal resolution of 300 m, our simulations capture the onset of symmetric instability, but do527

not resolve their evolution to finite amplitude and subsequent equilibriation via secondary Kelvin-528

Helmholtz instability (Taylor & Ferrari, 2009). Consequently it is likely that the dissipation529

rates obtained here underestimate the true rate of energy dissipation in hybrid NPV, particu-530

larly for large ĥ.531

5 The effect of ridge curvature532

The elongated ridge (Fig. 1) was specifically chosen for this study as it represents a par-533

ticularly favorable configuration for observing 1D-like buoyancy adjustment in a 3D setting.534

With curvature and/or shorter ridge length, the evolution to Ekman arrest is expected to be vi-535
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Figure 10. Downstream evolution of the time-averaged isopycnal slope |θiso| on the anticyclonic (down-

welling) side where symmetric instability modes are present, for the ĥ = 3.2 solution.. Also overlain are

the mean flow isopycnals. Note that, except very close to the boundary, |θiso| is largely O(0.1) or smaller

adjacent to the ridge slope.

tiated by vortical dynamics and agesotrophic instabilities. To demonstrate how this may hap-536

pen, we have performed additional simulations for elliptical ridges with varying lateral aspect537

ratio β = b/a, where a and b are respectively, the cross-flow and along-flow dimensions of538

the ridge. ĥ is set to 3.2 in all these runs. Fig. 11 shows the time-averaged bottom stress and539

instantaneous snapshots of integrated vorticity for three cases corresponding to β = 1, 4 and540

16. Compared to the elongated ridge (Fig. 1), the bottom stress here exhibits less of a system-541

atic downstream pattern; rather stress reduction is patchy and spatially intermittent. As also542

seen in the former, bottom stress divergence torque (Jagannathan et al., 2021) acting on the543

slopes, generates vorticity, which upon flow separation leads to the emergence of highly co-544

herent vortical wakes.545

As we shall see below, for small-to-moderate aspect ratios β , the NPV instability on the546

anticyclonic side is dominated by centrifugal rather than symmetric modes, i.e. the NPV comes547

mainly from the vertical component of PV, qv = (ζ + f )bz, where ζ is the relative vertical548

vorticity. For this reason, the symmetric instability criterion of Allen and Newberger (1996)549

is not the most appropriate choice for defining the BBL height for the elliptical ridge solutions.550

To enable consistent comparison between the different β cases, we instead define the BBL height551

here as the depth over which the stratification is smaller than N2. The downstream evolution552

of the BBL height is shown in Fig. 12. For a circular ridge (β = 1), the encounter time along553
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Figure 11. Same as Fig. 1 but for elliptical shaped ridges with varying aspect ratio β , at a fixed ĥ = 3.2.

Note that the small scale eddying structures on the anticyclonic side for β = 16 case mirror similar structures

seen in the case of the elongated ridge (Fig. 1)
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Cyclonic

(b)(a)

Anticyclonic

Figure 12. Same as Fig. 8 but for the elliptical ridge solutions. (a) Anticyclonic side and (b) Cyclonic side.

the slopes is insufficient for sustained buoyancy adjustment to occur. For β = 4 and higher,554

the BBL on the anticyclonic side deepens downstream following a sharp contraction during555

the initial encounter with the ridge. The deepening BBL is evidence of convective mixing, sim-556

ilar to what occurs over the elongated ridge (Fig. 8); this is particularly evident for the β =557

16 case. On the cyclonic side, the evolution of the BBL is similar in most respects to that ob-558

served over the elongated ridge (Fig. 2). The BBL height shrinks on the slopes due to the sta-559

bilizing effect of upslope Ekman transport as predicted in Brink and Lentz (2010a) and seen560

in Fig. 8 above. In all cases the BBL subsequently rebounds toward its pre-encounter height.561

A notable aspect of these solutions concerns the EKE production and dissipation on the562

anticyclonic side. Fig. 13 reveals that the energy conversion terms are an order of magnitude563

larger in the case of β = 1 compared to β = 16. Focussing on the anticyclonic side, EKE pro-564

duction for β = 1 is predominantly due to HRS and occurs downstream of the ridge. Com-565

bined with the fact that the anticyclonic eddies are associated with NPV anomalies, this is in-566

dicative of centrifugal instability. By contrast, for β = 16, energy transfer from the mean flow567

to the eddies occurs through a combination of HRS, VRS and VBF. Furthermore, VRS pro-568

duction in this case begins on the slopes (Fig. 13), indicating that the instability emerges even569

as the BBL is evolving on the slopes. We identify this as a hybrid centrigual/symmetric/gravitational570

mode of instability, similar to that seen in the ĥ= 3.2 elongated ridge solution (Figs. 1,7). This571

hybrid mode is characterized by a smaller horizontal scale than the β = 1 solution, as is vi-572

sually evident (e.g. in Fig. 11).573
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(a)

(b)

Figure 13. Same as Fig. 7 but for the ellliptical ridge solutions. (a) β = 1 and β = 16. The EKE production

is much higher for β = 1; accordingly the colomap is saturated at 5×10−2 in (a) and 5×10−3 in (b).
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A direct consequence of the shifting EKE production patterns on the anticylonic side is574

on the zonally, and depth integrated dissipation rate of EKE
∫ 0
−∞

∫ η

−H u′u′u′ ·
(
τττ ′z +Du′u′u′

)
dzdx. As575

a function of aspect ratio, Fig. 14b shows that energy dissipation is highest for β = 1, decreases576

as β increases through to 8, and again increases for β = 16. From Fig. 13, we may interpret577

this result as follows. As the aspect ratio of the ridge increases from β = 1 to 8, there is a578

transition from a highly dissipative centrifugal instability to a more modestly disspative one.579

As the curvature decreases further (or the encounter length increases), there is more time for580

buoyancy adjustment on the slopes. The resulting increase in the geostrophic vertical shear581

renders the slow unstable to a hybrid centrifugal/symmetric/gravitational mode which enhances582

turbulent dissipation. For comparison, the EKE dissipation rate in the elongated ridge solu-583

tions (Fig. 14a) exhibits a monotonic increasing trend with ĥ.584

The overall contribution of ε ′ to the total energy dissipation is highest for the circular585

ridge (Fig. 9b). The normalized total dissipation rate in this case is over 3.5 in an area-averaged586

sense, with bottom drag dissipation ε̄ around 1.3 and 0.4 respectively on the anticyclonic and587

cyclonic sides — an indication that buoyancy adjustment effects are small. The bottom drag588

dissipation on the anticyclonic side is around 0.5 for β = 4 and higher and the total dissipa-589

tion rate itself also remains below 1. This is roughly in line with the recent findings of Ruan,590

Wenegrat, and Gula (2021) who find that geostrophic shear in the BBL reduces energy dis-591

sipation by at least 56% in a high-resolution model of the Atlantic. On the cyclonic side, the592

total dissipation rate ranges between 0.28 and 0.35 as β goes from 4 to 16, energy loss due593

to bottom drag is diminshed by as much as 90% relative to the flat bottom scaling and ε ′ com-594

prises a much larger fraction of the total dissipation compared to the anticyclonic side.595

6 Discussion596

6.1 Temporal Vs spatial evolution of buoyancy adjustment597

We have examined the process of bottom stress reduction and buoyancy adjustment within598

the BBL in a 3D setting of barotropic inflow encountering an elongated ridge. In section 4.1,599

we analyzed the quasi-temporal evolution of the bottom stress along the slopes by defining an600

advective time scale Tadv and scaling this with TaNPV and TUW
a . The implicit assumption be-601

hind this scaling was an approximate equivalence between the downstream evolution of the602

BBL along the ridge slopes, and temporal evolution in 1D and 2D (as in Brink & Lentz, 2010a;603

Wenegrat & Thomas, 2020). Using an idealized theoretical model with a linear bottom drag,604

–31–



manuscript submitted to JGR: Oceans

Elliptical ridge

(b)

Elongated ridge

(a)

Figure 14. Downstream evolution of the zonally, and depth integrated dissipation rate∫ 0
−∞

∫ η

−H u′u′u′ ·
(
τττ ′z +DHu′u′u′

)
dzdx of EKE corresponding to the eddying flow component on the anticyclonic

side. (a) elongated ridge solutions at different values of ĥ and (b) elliptical ridge solutions with varying β , at a

fixed value of ĥ = 3.2. The values have been normalized by C∗dV 3
0 a with C∗d = 0.0022, the expected dissipation

rate within a turbulent BBL over a horizontal width a.

Chapman and Lentz (1997) found that although this assumption does not strictly hold in the605

case of initially narrow currents, the evoution of a wide current over a sloping bottom is es-606

sentially 1D downstream, with along-isobath distance playing the role of time. Here we find607

that non-linear straining effects during the current-topographic encounter results in a rapid ini-608

tial adjustment of the BBL and significant stress reduction over advective times Tadv <T NPV
a609

(Fig. 2c and Fig. 5). Further, the quadratic bottom drag in our simulations, instabilities, sec-610

ondary circulations, and early flow separation (on the cyclonic side) mean that the evolution611

of the BBL in the downstream direction departs considerably from the expectation of quasi-612

temporal 1D evolution of Chapman and Lentz (1997).613

6.2 Sensitivity to choice of BBL parameterization614

Much of the previous work exploring buoyancy adjustment over slopes have utilized ei-615

ther a k−ε closure (Brink & Lentz, 2010a), 2.0 or 2.5 level Mellor-Yamada closure (Brink616

& Lentz, 2010a; Benthuysen et al., 2015) for parameterizing BBL turbulence. Recently, LES617

have also been employed for this purpose (Ruan et al., 2019; Ruan, Thompson, & Taylor, 2021;618

Wenegrat & Thomas, 2020). Wijesekera et al. (2003) carried out a systematic comparison of619

k−ε , Mellor-Yamada 2.5 and KPP mixing in modelling the structure of vertical mixing over620
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a continental shelf forced by either upwelling- or downwelling-favorable winds. Although they621

note some quantitative differences in the vertical profiles of eddy viscosity and diffusivity, the622

shape and structure of these mixing coefficients was similar across all three schemes, with lo-623

cal maxima in the surface and bottom boundary layers and a smooth connection to the inte-624

rior. In particular, they find that all three models produce a similar BBL thickness and ver-625

tical profiles of velocity and density. In another study, Bachman et al. (2017) found that when626

the shear instability component of KPP is included, the total turbulence production compares627

favorably with LES solutions even though individual components may sometimes be overes-628

timated. All the simulations here are performed with the shear instability component of KPP629

included and the critical Richardson number set to 0.45. Thus taking a statistical steady state630

view that turbulence production must equal dissipation in a volume integral sense, KPP is un-631

likely to be a major source of error in our dissipation calculations.632

6.3 Distinguishing Ekman arrest and turbulence collapse633

In their LES solutions with periodic boundary conditions in the cross- and along- slope

directions, Ruan et al. (2019); Ruan, Thompson, and Taylor (2021) observe that, both in the

downslope and upslope regime, the BBL always relaminarizes before an arrested state is reached.

This is a consequence of suppression of turbulence by the cross-slope buoyancy flux, a phe-

nomenon which the authors characterize using a so-called slope-Obukhov length scale, defined

as

Ls =
−u∗0

3

κUEN2θ
. (26)

In Eq. (26), θ is the slope angle and UEN2θ is the cross-slope Ekman buoyancy flux. Given634

a molecular viscosity ν , Ruan et al. (2019); Ruan, Thompson, and Taylor (2021) find that tur-635

bulence collapse occurs when Lsu∗/ν falls below a threshold, around 100. However in the 2D636

solutions of Wenegrat and Thomas (2020), where both submesoscale instabilities and the near-637

wall layer are adequately resolved, the onset of NPV instabilities appears to prevent a relam-638

inarized state from being attained.639

As shown in Flores and Riley (2011), turbulence collapse occurs when there is insuf-640

ficient scale-separation between the O(L) and O(ν/u∗) scales of turbulent motions in the dy-641

namic sublayer, where L is the Obukhov length and ν is the molecular viscosity. Here we do642

not expicitly resolve the dynamic sublayer, but rather rely on a turbulent bottom drag param-643

eterization. Thus turbulence collapse in our solutions, if it occurs, would imply u∗0→ 0. How-644
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ever since buoyancy adjustment itself leads to substantial reduction of the bottom stress, we645

note that it is difficult to distinguish Ekman arrest from turbulence collapse. Fully 3D LES or646

DNS solutions are needed to understand if and how BBL relaminarization manifests over 3D647

bottom topography. We note however that, because EKE production is enhanced on both sides648

of the ridge following the onset of NPV instabilities (anticyclonic) and barotropic (cyclonic)649

instability modes (Fig. 10 above and Fig. 16 of Jagannathan et al. (2021)), EKE suppresion650

as a proxy for identifying BBL relaminarization (as in as in Ruan et al. (2019), may not be651

as useful in 3D.652

7 Summary and conclusion653

We have examined the process of buoyancy adjustment on 3D topography by analyz-654

ing a set of idealized ROMS simulations of an initially uniform upstream flow past ridges with655

and without boundary curvature. Key metrics such as the extent of reduction of the bottom656

stress, the BBL height and the observed adjustment time scales are discussed in the context657

of the 1D and 2D Ekman arrest literature. BBL turbulence in our solutions is parameterized658

using the K-profile parameterization (KPP) and the 300 m horizontal resolution employed re-659

solves submesoscale motions, including the onset of NPV instabilities on the anticyclonic side.660

Analyzing the EKE budget, we further diagnose the nature of the instabilities that develop over661

the course of the downstream BBL evolution on each side of the ridge, and the dissipation re-662

sulting thereof.663

The evolution of the bottom stress in our solutions (Figs. 1 and 2) is to be contrasted664

with the 1D model runs of Brink and Lentz (2010a) and the more recent 2D simulations of665

Wenegrat and Thomas (2020) covering a range of slope Burger numbers. In their (constant-666

slope) solutions, buoyancy adjustment effects inexorably push the bottom stress towards zero.667

This occurs over a time scale corresponding to the time of mixed layer growth, either through668

upright or slantwise convection. For the ĥ values considered, the predicted arrest time scale669

T NPV
a in Eq. (12) for a constant slope, ranges from 4 to 8 inertial periods for ĥ = 12.8 and670

1.6 respectively, with the smallest theoretical arrest time scale corresponding to the largest ĥ671

and vice-versa. Although there is a significant reduction of the stress on the slopes over these672

time scales (Fig. 2), analysis of the vertical shear equation shows that, contrary to 1D and 2D673

solutions where the stress reduction is purely due to the thermal wind shear induced by cross-674

slope buoyancy advection, here 3D nonlinear straining effects during the early encounter have675

an important role in the adjustment process.676
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The state of the BBL before separation, in the elongated ridge solutions, is character-677

ized by suppression of the bottom stress by between 60% (ĥ= 1.6) to 95% (ĥ= 12.8) on the678

anticyclonic side with respect to the upstream flat-bottom value (Fig. 2a,c), and up to 80% re-679

duction on the cyclonic side (Fig. 2b,d) for all ĥ. On the anticyclonic side, the stress has ei-680

ther plateaued or is decaying only slowly when the current separates (Fig. 2a,c). This is pos-681

sibly due to the influence of secondary circulations that feedback into the interior along-slope682

flow, as was noted in Benthuysen et al. (2015). The depth of the BBL on the anticyclonic side683

also remains well below the 2D prediction of Wenegrat and Thomas (2020). On the cyclonic684

side, early separation reverses the decaying trend of bottom stress within a short distance down-685

stream of the encounter (Fig. 2b,d). Thus on either side of the ridge, we may characterize the686

BBL as being in a state of ‘partial arrest’.687

Our solutions demonstrate an inverse relationship between the drag-mediated energy dis-688

sipation rate and non-dimensional ridge height ĥ as well as lateral aspect ratio β (Fig. 9) —689

a consequence of increasing geostrophic BBL shear and reduced near-bottom velocities. This690

reduction in the bottom drag dissipation is somewhat compensated by dissipation arising from691

ageostrophic instabilities on either side, but to a lesser extent than predicted by Wenegrat and692

Thomas (2020). The exception is the circular ridge (β = 1) solution (Figs. 9b,14b) where the693

dissipation on both sides is significantly enhanced relative to the flat bottom BBL.694

The fact that the bottom stress, energy dissipation and Ekman transport weaken substan-695

tially on the slopes of the ridge (Figs. 1 and 3) would suggest that partial Ekman arrest may696

be a fairly common occurence in boundary currents adjacent to the continental shelf. Yet oceanic697

observations of Ekman arrest remain scarce, a notable exception being the Northern Califor-698

nia Shelf observations of Lentz and Trowbridge (2001). One possible explantion for this is that,699

on realistic bathymetry, curvature and irregular, small scale features such as headlands and bumps700

could trigger localized flow separation and reattachment events. This can be seen in the Cal-701

ifornia Undercurrent (CUC). For example, Fig. 5 of Molemaker et al. (2015) shows eddies roll702

up and separate all along the coast, but especially around Point Sur. If such events sporadi-703

cally punctuate the flow evolution on the slopes, they could potentially undermine the buoy-704

ancy adjustment process. Another plausible explanation for the paucity of observational data705

showing Ekman arrest, is the intrinsic temporal variability in the real ocean due to tides, wind-706

variability, coastally trapped waves and eddies impinging from offshore. In a 1D model with707

realistic broadband forcing, Brink and Lentz (2010b) find that the steady component of the708

flow undergoes Ekman arrest over time scales consistent with Eqs. (9) and (16), and further709
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that the bottom stress is also reduced across nearly all frequencies. Further studies with a well-710

resolved BBL are needed to understand how 3D effects like curvature, alongshore advection711

and realistic forcing influence the dynamics of Ekman adjustment in oceanic boundary cur-712

rents.713
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Wang, P., McWilliams, J. C., & Ménesguen, C. (2014). Ageostrophic instability in rotating,817

stratified interior vertical shear flows. J. Fluid Mech., 755, 397–428.818

Wenegrat, J. O., & Thomas, L. N. (2020). Centrifugal and symmetric instability during ek-819

man adjustment of the bottom boundary layer. J. Phys. Oceanogr., 50(6), 1793–1812.820

Wenegrat, J. O., Thomas, L. N., Gula, J., & McWilliams, J. C. (2018). Effects of the sub-821

mesoscale on the potential vorticity budget of ocean mode waters. J. Phys. Oceanogr.,822

48(9), 2141–2165.823

Wijesekera, H., Allen, J. S., & Newberger, P. (2003). Modeling study of turbulent mixing824

over the continental shelf: Comparison of turbulent closure schemes. J. Geophys. Res.825

: Oceans, 108(C3).826

Wunsch, C., & Ferrari, R. (2004). Vertical mixing, energy, and the general circulation of the827

oceans. Annu. Rev. Fluid Mech., 36, 281–314.828

–39–


