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Abstract

We investigate a set of Energy Exascale Earth System Model Multi-scale Modeling Framework (E3SM-MMF) simulations that

vary the dimensionality and momentum transport configurations of the embedded cloud-resolving models (CRMs), including

unusually ambitious 3D configurations. Issues endemic to all MMF simulations include too much ITCZ rainfall and too little

over the Amazon. Systematic MMF improvements include more on-equatorial rainfall across the Warm Pool. Interesting

sensitivities to CRM domain are found in the regional time-mean precipitation pattern over the tropics. The 2D E3SM-MMF

produces an unrealistically rainy region over the northwestern tropical Pacific; this is reduced in computationally ambitious

3D configurations that use 1024 embedded CRM grid columns per host cell. Trajectory analysis indicates that these regional

improvements are associated with desirably fewer tropical cyclones and less extreme precipitation rates. To understand why and

how the representation of precipitation improved in 3D, we propose a framework that dilution is stronger in 3D. This viewpoint

is supported by multiple indirect lines of evidence, including a delayed moisture-precipitation pickup, smaller precipitation

efficiency, and amplified convective mass flux profiles and more high clouds. We also demonstrate that the effects of varying

embedded CRM dimensionality and momentum transport on precipitation can be identified during the first few simulated days,

providing an opportunity for rapid model tuning without high computational cost. Meanwhile the results imply that other less

computationally intensive ways to enhance dilution within MMF CRMs may also be strategic tuning targets.
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Key points: 13 
1. Dimensionality of CRMs in the E3SM-MMF exhibits a striking effect on mean state 14 

precipitation patterns in subregions of the tropics. 15 
2. MMFs tend to produce too many precipitating events but the use of 3D leads to fewer and 16 

is associated with signals of enhanced dilution. 17 
3.  Fast precursors of these climatological sensitivities are found that point to calibration 18 

targets for convection permitting global models. 19 
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 20 
Abstract 21 

 22 
We investigate a set of Energy Exascale Earth System Model Multi-scale Modeling Framework 23 
(E3SM-MMF) simulations that vary the dimensionality and momentum transport configurations 24 
of the embedded cloud-resolving models (CRMs), including unusually ambitious 3D 25 
configurations. Issues endemic to all MMF simulations include too much ITCZ rainfall and too 26 
little over the Amazon. Systematic MMF improvements include more on-equatorial rainfall 27 
across the Warm Pool. Interesting sensitivities to CRM domain are found in the regional time-28 
mean precipitation pattern over the tropics. The 2D E3SM-MMF produces an unrealistically 29 
rainy region over the northwestern tropical Pacific; this is reduced in computationally ambitious 30 
3D configurations that use 1024 embedded CRM grid columns per host cell. Trajectory analysis 31 
indicates that these regional improvements are associated with desirably fewer tropical cyclones 32 
and less extreme precipitation rates. To understand why and how the representation of 33 
precipitation improved in 3D, we propose a framework that dilution is stronger in 3D. This 34 
viewpoint is supported by multiple indirect lines of evidence, including a delayed moisture-35 
precipitation pickup, smaller precipitation efficiency, and amplified convective mass flux 36 
profiles and more high clouds. We also demonstrate that the effects of varying embedded CRM 37 
dimensionality and momentum transport on precipitation can be identified during the first few 38 
simulated days, providing an opportunity for rapid model tuning without high computational 39 
cost. Meanwhile the results imply that other less computationally intensive ways to enhance 40 
dilution within MMF CRMs may also be strategic tuning targets. 41 
 42 
 43 
Plain Language Summary 44 
 45 
The resolution of current climate models is not sufficient to resolve cloud and convective 46 
processes. Global cloud-resolving models (CRMs) have resolutions fine enough to represent 47 
individual cloud events but require too much computing power to be practical for large ensemble 48 
multi-decadal climate projection. Multi-scale modeling framework (MMFs) is an approach to 49 
simulate climate by embedding thousands of small CRMs interactively in each grid column of a 50 
planetary model. Trade-offs in how CRM is configured can affect the emergent behavior– we 51 
investigate this, including unusually ambitious 3D CRM configurations. Results show some 52 
interesting differences in the regional precipitation over the tropics. The 2D MMF produces an 53 
unrealistically rainy region over the northwestern tropical Pacific. Such biases are significantly 54 
reduced in 3D due to fewer tropical cyclones. To understand why and how the representation of 55 
precipitation improved in 3D, we propose a framework that mixing being stronger in 3D is a 56 
major part of the story. This is hard to prove directly but a few lines of circumstantial evidence 57 
support the case. Another upshot is that rapid effects of mixing that can be diagnosed in the first 58 
few days of global cloud resolving simulations should become tuning targets for optimizing 59 
longer-term statistics.  60 
 61 
 62 
 63 
 64 
 65 
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1. Introduction 66 
Precipitation is a fundamental component of the Earth system, linked to clouds, moisture 67 
transport, and the global atmospheric circulation via latent heat release. Extreme precipitation 68 
events, for example hurricanes, floods, and droughts, can be life-threatening, and often lead to 69 
extensive socioeconomic losses. A number of studies have suggested that precipitation intensity 70 
will increase as the atmospheric moisture increases under a warming climate (Allen and Ingram, 71 
2002; Donat et al., 2016; Norries et al., 2019; Sun et al., 2007; Trenberth et al., 2003;). Despite 72 
the socioeconomic importance of precipitation, the correct representation of precipitation is still 73 
a challenging task in climate models. Therefore, accurate knowledge of precipitation and how it 74 
can be realistically simulated is essential for understanding global and regional water and energy 75 
balances. 76 
 77 
Global climate models (GCMs) capably simulate many features of the climatological spatial 78 
pattern of precipitation, although sometimes due to an incorrect combination of precipitation 79 
frequency and intensity (Dai et al. 1999; Sun et al. 2006). It has been reported that GCMs tend to 80 
produce an unrealistically high precipitation frequency but low intensity, even though 81 
precipitation amounts are realistic (Dai and Trenberth, 2004; DeMott et al., 2007; Zhou et al., 82 
2008). Dai (2006) and Huang et al. (2017) also suggested that extreme precipitation is generally 83 
underestimated in most climate models. This is not surprising since precipitation is a result of 84 
processes that are mostly parameterized in current climate models, a difficult task due to their 85 
complexity. For example, cloud organization at mesoscales (Houze, 2004) can account for much 86 
of the Earth’s precipitation and produce severe weather events and flooding. Lin et al. (2017) and 87 
Moncrieff et al. (2017) suggested that the conspicuous summer warm and dry bias over the 88 
central United States in one climate model is associated with the failure of that climate model in 89 
simulating mesoscale convective systems. However, no existing GCMs include a satisfactory 90 
parameterization of mesoscale cloud circulation. In other words, simulated precipitation in 91 
current models is still fairly incomplete and thus more understanding is required to correctly 92 
represent important mechanisms driving precipitation changes. 93 
 94 
Cloud resolving models (CRMs) are attractive in this context as they have resolutions fine 95 
enough to represent individual cloud events, providing a wealth of information on cloud 96 
processes. While such models can be run globally for multiple months (Stevens et al. 2022) this 97 
is still impractical for the multi-decadal simulations required for most numerical climate science, 98 
pending additional increases in computing power or the capacity to better exploit it. Meanwhile, 99 
another promising approach to improve the representation of these small-scale processes is to use 100 
super-parameterization (SP), better known as the multi-scale modeling framework (MMF) 101 
approach to climate simulation, where the convective parameterization is replaced with a small, 102 
laterally periodic, and usually two dimensional (2D) CRM domain in each GCM grid column 103 
(Grabowski and Smolarkiewicz, 1999; Grabowski et al., 2001; Khairoutdinov et al., 2005; 104 
Khairoutdinov, 2016; Randall et al. 2003). While not without its own idealizations, MMF has 105 
shown significant improvement in simulating precipitation variability and statistics, such as the 106 
diurnal cycle of precipitation (Khairoutdinov et al., 2005; Pritchard and Somerville,2009), 107 
regional mesoscale convective system properties (Lin et al., 2021; Pritchard et al., 2011; Zhang 108 
et al., 2017), and rainfall intensity and extreme precipitation (Demott et al., 2007; Kooperman et 109 
al., 2016; Li et al., 2012). Furthermore, a number of studies have demonstrated the ability of 110 
MMF to improve intraseasonal-to-seasonal scale variability, such as the Madden-Julian 111 
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oscillation (Benedict and Randall, 2009), the South Asian Monsoon (Krishnamurthy et al., 112 
2014), and the El Niño Southern Oscillation (Stan et al., 2010). 113 
 114 
The MMF strategy discussed herein can be used with either 2D or 3D embedded CRMs in each 115 
GCM grid cell. In the classical 2D MMF, one issue is how to align the subgrid model within 116 
each large-scale model (i.e., east-west or north-south). Tulich (2015) suggested that tropical 117 
rainfall bias can be sensitive to the choice of CRM orientation.  Khairoutdinov et al. (2005) 118 
suggested that the simulations based on the 2D MMF tend to produce an unrealistically humid 119 
and rainy region over the tropical western Pacific during the boreal summer, which was partially 120 
reduced through the use of the 3D MMF.  121 
 122 
As the MMF approach exits its infancy and begins to be explored for potential operational use by 123 
major climate modeling centers (Hannah et al. 2020) it is important to understand the physical 124 
underpinnings of these chronic rainfall biases. Given their unique positioning to simulate climate 125 
with an approximation of convective processes that involves fewer assumptions relative to 126 
models with parameterized convection, a well-tuned MMF could be of interest for making 127 
climate predictions complementary to standard CMIP6 models.  128 
 129 
But tuning MMF rainfall is an unfamiliar art especially regarding the novel knobs of CRM grid 130 
structure, dimensionality and formulation of momentum feedback. Currently, it is not clear why 131 
applying a 3D embedded model, which requires much more computational cost than a 2D 132 
embedded model and thus trades off against important throughput and cost constraints, can be 133 
useful to reduce the large precipitation bias over the tropical northwestern Pacific. Another 134 
under-explored issue is the effect of convective momentum transport (CMT), which on the one 135 
hand can impact the mean climate and the intraseasonal variability (Deng and Wu, 2010; Kim et 136 
al., 2008; Richter and Rasch, 2008; Wu and Yanai, 1994) but on the other hand is typically 137 
neglected in the implementation of most 2D versions of SP GCMs.  138 
 139 
In this context, the goal of this study is to investigate the effects of varying embedded CRM 140 
dimensionality and momentum transport on the simulated precipitation in a state-of-the-art SP 141 
model. Practically, we hope to understand how to optimize the representation of tropical mean 142 
climate and its variability in MMFs. In the process, we seek new insight into the multi-scale 143 
physics that produce these emergent effects on the planetary water cycle, where the causality can 144 
become complicated when convection is made explicit.   145 
 146 
The rest of this paper is organized as follows. Section 2 describes the simulations and 147 
observational data. Results in Section 3.1 we begin by comparing the climatology of seasonal 148 
precipitation climatology across MMF configurations and observations, followed by a trajectory 149 
analysis of precipitating events to understand variability behind the time mean, in section 3.2. 150 
Then, section 3.3 formulates a hypothetical explanation for a striking effect of dimensionality on 151 
the mean precipitation pattern. Section 3.4 and 3.5 present supporting evidence for the 152 
hypothesis. Finally, section 4 draws the conclusion and discusses the potential application and 153 
limitations of our results. 154 
 155 

2. Data and Method 156 
2.1 Model Simulations 157 
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The Energy Exascale Earth System Model MMF (E3SM-MMF) is a climate model, originally 158 
adapted from the SP Community Atmosphere Model (SP-CAM; Khairoutdinov et al., 2005), in 159 
which a CRM, here the System for Atmosphere Modeling (Khairoutdinov and Randall, 2003), is 160 
embedded within each grid cell of the E3SM atmosphere model (EAM; Rasch et al., 2019). In 161 
the conventionally parameterized EAM, turbulence, shallow cumulus cloud, and stratocumulus 162 
cloud are parametrized using the Cloud Layer Unified by Binormals (CLUBB) parametrization 163 
(Bogenshutz et al., 2013; Golaz et al., 2002). Deep convection is based upon the Zhang-164 
McFarlane (ZM) scheme (Zhang and McFarlane, 1995) and cloud microphysics is parameterized 165 
using Morrison and Gettelman (MG2; Gettelman et al., 2015). Aerosol concentration and sea 166 
surface temperature are prescribed with present-day values. In the E3SM-MMF the convection 167 
and boundary layer turbulence parameterizations are replaced by embedded CRMs whose grid 168 
structure is not constrained by the grid spacing of the host GCMs. For 2D CRM configurations 169 
we use 32 CRM grid columns aligned in the north-south direction while the 3D has 32 x 32 grid 170 
columns with a grid spacing of 2 km. More details of the E3SM-MMF can be found in Hannah et 171 
al. (2020). All configurations of this study use a spectral element dynamical core on a cubed 172 
sphere geometry with 45 elements along each cube edge (ne45). Physics calculations, including 173 
the CRM of E3SM-MMF, are performed on a finite volume grid with 2x2 cells per element 174 
(ne45pg2). The physics grid is slightly coarser than the dynamics grid, but more closely matches 175 
the effective resolution of the dynamics grid (Hannah et al., 2021) and reduces the grid 176 
imprinting issue reported in Hannah et al. (2020). The simulations described here also utilize the 177 
CRM variance transport scheme of Hannah and Pressel (2022), which remedies an unphysical 178 
checkerboard pattern identified by Hannah et al. (2022).  179 
 180 
Ten-year (2001-2010) E3SM-MMF 2D and 3D simulations are conducted for this study with 181 
climatological input data averaged over 1995-2005, such as solar forcing, aerosol concentration, 182 
and land surface types. For the 3D configuration this is a nontrivial computational expense that 183 
has only become approachable due to the advent of GPU supercomputing and recent efforts of 184 
the US Department of Energy (DOE) Exascale Computing Project to port the MMF’s CRMs to 185 
run on GPU architectures.  186 
 187 
To investigate the role of CMT, we conduct a pair of simulations with momentum coupling 188 
activated in 2D and 3D E3SM-MMF, respectively. Note that CMT in the 2D CRM is represented 189 
using the “explicit scalar momentum transport” (ESMT) scheme of Tulich (2015), while 190 
momentum feedback in the 3D CRM is directly handled by the MMF coupling scheme similar to 191 
other prognostic fields (Khairoutdinov et al., 2005). We also run another 10-year simulation with 192 
E3SMv2 (non-MMF) simulation for comparison. In summary, five simulations are used in this 193 
study hereafter non-MMF, 2D, 2D with CMT (2DM), 3D, and 3D with CMT (3DM). 194 
 195 

2.2 Reanalysis and Observational Datasets 196 
To assess the performance of E3SM-MMF’s precipitation events, we use the fifth generation of 197 
reanalysis (ERA5) produced by the European Centre for Medium-Range Weather Forecasts 198 
(ECMWF; Hersbach et al., 2020) and the Global Precipitation Measurement Integrated Multi-199 
satellitE Retrievals (IMERG). ERA5 provides hourly products near the surface and 37 pressure 200 
levels, with a horizontal resolution of 0.25°. Since reanalysis precipitation can be corrupted by 201 
the model-data fusion process intrinsic to data assimilation, we also include data from IMERG, 202 
which utilizes most of the GPM satellite constellation of passive microwave radiometers and 203 
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geostationary spaceborne infrared sensors in the passive microwave-sparse regions to produce 204 
half-hourly, 0.1° x 0.1° global precipitation products (Huffman et al., 2019). In order to compare 205 
directly with the model simulations, we regridded both the ten-year (2001-2010) ERA5 and 206 
IMERG data onto the same grid as E3SM output. 207 
 208 

3. Results 209 
3.1 Climatology of seasonal precipitation  210 

Fig. 1 shows the mean global distribution of boreal summer (June-July-August, JJA) 211 
precipitation from observations and E3SM simulations. The solid and dashed lines in Fig. 1b-1f 212 
represent large positive and negative precipitation anomalies relative to observation (Fig. S1). To 213 
highlight the difference across MMF simulations, several strategic mean JJA precipitation 214 
difference maps are shown in Fig. 2.  215 
 216 
In general, the E3SM-MMF models share some common local problems that are not seen in non-217 
MMF simulations, such as too intense peak time-mean rainfall in the Pacific and Atlantic 218 
Intertropical Convergence Zone (ITCZ), and not enough over the northern Amazon (Fig. 1b-f). 219 
The boreal summer wet bias in the tropical Pacific and dry bias in Amazon are also reported by 220 
Kooperman et al. (2016) using the Community Earth System Model (CESM). However, the 221 
western Pacific bias is improved with SP-CAM in Kooperman et al. (2016), while it is only true 222 
in 3D E3SM-MMF (Fig. 1e and 1f). MMF increases equatorial rainfall over the Indian Ocean 223 
and western tropical Pacific, where it is too dry in non-MMF. 224 
 225 
Interesting sensitivities to CRM dimensionality are found in specific subregions of the tropical 226 
Pacific (Fig. 2d, 2f) where a positive rainfall bias in excess of 2 mm/day occurs in both 2D MMF 227 
configurations (Fig. S1b, c) over the north western tropical Pacific (Fig. S2) and eastern tropical 228 
Pacific (0-20°N, 120-150°E). This problem has been noted in many published 229 
superparameterized simulations that use prescribed sea surface temperatures (e.g., DeMott et al., 230 
2007; Kim et al., 2011; Khairoutdinov et al. 2005; Luo and Stephens, 2006), for reasons that 231 
remain poorly understood. Luo and Stephens (2006) suggested that the positive rainfall bias is 232 
related to an enhanced convective-wind-evaporation feedback because of the 2D geometry of 233 
CRM. However, Kim et al. (2011) demonstrated that similar precipitation bias appears in models 234 
with conventional parameterization. This wet bias over the northwestern tropical Pacific is 235 
largely removed with the use of a large, 3D CRM domain (Fig. S1d, e). Compared to the effects 236 
of CMT (Fig. 2c and 2e), the dimensionality has a much larger impact on the precipitation 237 
pattern (Fig. 2d and 2f). 238 
 239 

3.2 Tropical cyclone tracking      240 
As discussed above, dimensionality has a striking effect on the mean-state precipitation in JJA. 241 
The question naturally arises as to why, and whether a fundamental change in the characteristics 242 
of precipitating events, or their frequency, is responsible. It is well-known that tropical cyclones 243 
can account for a significant fraction of total precipitation. Therefore, it is possible that CRM 244 
dimensionality affects the characteristics of tropical cyclones. In this section, we use a 245 
Lagrangian feature-tracking approach to investigate the performance across MMF 246 
configurations, following events via their maximum relative vorticity at 850 hPa utilizing the 247 
TempestExtremes algorithm (Ullrich and Zarzycki, 2017; Ullrich et al. 2021). We use relative 248 
vorticity as an indicator of tropical cyclones because it focuses on smaller spatial scales than 249 
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pressure. To capture as many of the cyclones as possible, we perform event tracking over the 250 
entire tropics and the extra-tropics. Here we only consider storms lasting for more than a day (24 251 
hours) to eliminate the detection of short-lived cyclones.  252 
 253 
The overall pattern of cyclone trajectories in E3SM-MMF qualitatively resembles observations 254 
(Fig. S3), which reassures that the tracking algorithm is valid to use for model intercomparison. 255 
Track densities are shown in Fig. 3 for quantitative comparison. Note that due to a non-256 
negligible Coriolis force required to maintain the cyclonic circulation, no storm tracks are near 257 
the equator where there exists large precipitation bias across E3SM-MMF simulations. Track 258 
density is calculated by counting the number of cyclones in each 1x1° grid point in the 3-hourly 259 
tracks for both model simulations and ERA5 reanalysis. The black contour lines represent the 260 
positive 2 mm/day precipitation anomaly compared to IMERG, which delineates the 261 
northwestern Pacific mean rainfall bias in the 2D MMF configurations (Fig. 2b, c). Consistent 262 
with the reduction of the tropical wet bias in this region, the population of tropical cyclones in 263 
3DE3SM-MMF has dramatically decreased. Moreover, the dramatic decrease of tracked tropical 264 
cyclones over the western Pacific is coincident with reduced precipitation bias in 3D relative to 265 
2D (Fig. S2d and 2f).  266 
 267 
Fig. 4 shows the distribution of tracked cyclones aggregated spatially across 20°S-20°N. The 268 
number of tropical cyclones in all E3SM-MMF simulations is overestimated through all the 269 
lifetimes, compared to observations. However, this bias is reduced with both 3D and CMT, with 270 
dimensionality having a larger effect than the inclusion of CMT. This implies that a better 271 
understanding of the effect of dimensionality on precipitating event frequency may help reduce 272 
the precipitation bias in E3SM-MMF. The normalized histogram of storm durations (Fig. 4b) 273 
shows that all model configurations overestimate shorter-lived storms (duration < 8 days), and 274 
struggle to maintain longer-lived cyclones (duration > 9 days), but that neither momentum 275 
transport nor dimensionality dramatically affect these characteristics of tracked events.  Similar 276 
conclusions can be drawn from extending the analysis to the 35°S-35°N band, with different 277 
magnitudes.  278 
 279 
Fig. 5 shows the comparisons of other properties of tracked tropical cyclones, including relative 280 
vorticity at 850 hPa, precipitation rate, total column water, and relative humidity averaged over 281 
the area of 3 degrees of each track storm throughout all the lifetime. Precipitation that is 282 
associated with tropical cyclones is generally overestimated (Fig. 5a). The E3SM-MMF tends to 283 
produce too few weakly precipitating and too many strongly precipitating tropical cyclones, 284 
independent of its configuration. The magnitude of the precipitation bias for each precipitation 285 
rate is generally the same across all simulations. However, we note that rainfall from the heaviest 286 
precipitation events is reduced in 3D in comparison to 2D. A higher fraction of weaker vortex 287 
but a lower fraction of stronger vortex in all E3SM-MMF than in ERA5 is consistent with the 288 
finding that the E3SM-MMF struggles to maintain longer-lived tropical cyclones (Fig. 5b).  289 
Interestingly, the 3D simulations are characterized by higher total column water vapor and higher 290 
relative humidity than 2D, suggesting an important change in mean state. The relationship 291 
between column water vapor and precipitation will be further discussed in section 3.4. 292 
 293 
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In summary, so far our analysis of tracked vorticity events has shown that the interesting 294 
reduction in tropical northwest Pacific mean rainfall when 3D is used in place of 2D is driven, in 295 
part, by a strong reduction in the frequency of occurrence of precipitating events in this region.  296 
 297 

3.3 Dilution hypothesis  298 
The above analysis makes it clear that dimensionality has a striking effect on the mean state 299 
precipitation but has not resolved why. Signal in the column water vapor for tracked tropical 300 
cyclones offer a first clue. We suspect a dependence of the way cloudy and clear sky air mix 301 
with each other on CRM dimensionality. Petch et al. (2008) suggested that below 2 km, updrafts 302 
in 3D CRMs mix with the environment significantly more than updrafts in 2D CRMs, with 303 
updrafts in 3D CRMs both entraining and detraining larger fractions of their mass than in 2D. 304 
This matters given that dilution by entrainment of dry environmental air reduces updraft 305 
buoyancy, which can limit the development of convection in relatively dry columns. Petch et al. 306 
(2008) posed that a plume in three dimensions experiences larger fractional mixing than a plume 307 
of the same width in two dimensions because it has a greater surface area than a plume of the 308 
same width in two dimensions, and this leads to larger dilution by entrainment. This argument 309 
assumes that localized interfacial mixing and mass exchange is the same between 2D and 3D 310 
clouds, which may or may not be true. Additionally, a 3D updraft can diverge in more directions 311 
than a 2D updraft with the same mass flux, which would naturally cause more fractional 312 
detrainment and lead to more evaporation of cloud water and a lower precipitation efficiency. 313 
From this view, higher free-tropospheric humidity might be required to produce the same surface 314 
precipitation rate in a 3D CRM.  315 
 316 
In the following section we will present evidence that suggests (although does not directly prove) 317 
that updrafts in the 3D MMF configurations exchange more mass with the environment than 318 
updrafts in 2D: A moisture-precipitation pickup that is shifted to higher background vapor, a 319 
smaller precipitation efficiency, and amplified convective mass flux profiles and high cloud 320 
fraction. 321 
 322 

3.4 Evidence supporting a dimensionality-dilution framework 323 
 324 

a. 3D shifts precipitation onset to a higher water vapor path  325 
A well-known relationship between the column water vapor and precipitation has been identified 326 
by many studies (e.g., Bretherton et al., 2004; Muller et al., 2009; Peters and Neelin, 2006; 327 
Wolding et al., 2020), and dilution by entrainment processes has been revealed to be 328 
instrumental in explaining this relationship due to the differences in buoyancy between diluted 329 
and moist air (Kuo et al., 2017).  330 
 331 
Fig. 6 shows the precipitation rate as a function of total vertically integrated precipitable water, 332 
or column water vapor (CWV) based on 3-hourly output from 10-year simulations. The critical 333 
CWV threshold (henceforth, “pickup”), at which there is a rapid increase of precipitation with 334 
CWV, occurs at different values in each simulation. The non-MMF exhibits a much earlier 335 
pickup than all the E3SM-MMF configurations.  336 
 337 
The main point to take from Fig. 6 is that the precipitation pickup is shifted to higher background 338 
vapor in the E3SM-MMF simulations with 3D CRMs compared to 2D. This could be viewed as 339 
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consistent with our suspicion that there is weaker dilution by entrainment in 2D since convection 340 
that mixes less with its environment is less limited in its ability to produce precipitation by a 341 
drier free troposphere.  342 
 343 

b. 3D reduces Precipitation efficiency 344 
A corollary of the idea that more water vapor is required for the same amount of precipitation 345 
under a condition with more mixing is that precipitation efficiency is expected to be lower to 346 
overcome the stronger dilution barrier in 3D. Wilson and Toumi (2005) suggested that 347 
accumulated precipitation can be described as a triple product, in which precipitation can be 348 
expressed as proportional to three independent variables, including the mass flux, the specific 349 
humidity and the precipitation efficiency. Therefore, we define precipitation efficiency (PE) here 350 
as precipitation rate divided by the mass-weighted vertically integrated mass flux from CRM and 351 
specific humidity from 1000 to 5 hPa, which is derived from 10-year monthly outputs. Fig. 7 352 
displays the box plot of PE values based on monthly output from ten-year E3SM-MMF 353 
simulations. Lines at each box represent (from bottom to top) the minimum, the 25th, 50th 354 
(median), 75th, and the maximum values. The open circles indicate the outliers. Consistent with 355 
our expectation, PE is lower in 3D, meaning that 2D precipitation is more than 3D for a given 356 
mass advection from the surrounding regions, in agreement with the stronger dilution hypothesis 357 
in 3D. Although dimensionality has a larger effect on this statistic than convective momentum 358 
transport, it is interesting to note the secondary sensitivity that E3SM-MMF with CMT in both 359 
2D and 3D simulations have a higher PE than without momentum coupling.  360 
 361 

c. 3D amplifies convective mass flux profiles and high cloud amounts.  362 
Another line of evidence of increased entrainment and detrainment in 3D can be found in the 363 
statistics of the updraft mass flux by using 10-year monthly outputs (Fig. 8a). The updraft 364 
mass flux is obtained by multiplying the updraft speed greater than 2 m/s with air density 365 
when non-precipitating cloud water and ice content is greater than 1 g/kg. The larger low-366 
level (around 700 hPa) peak in updraft mass flux in 3D indicates more sub-cloud entrainment 367 
than in 2D. Additionally, the difference between the low-level peak in updraft mass flux and 368 
the mid-tropospheric minimum around 400 hPa is larger in 3D than in 2D, indicating more 369 
detrainment in those simulations. This occurs despite a reduced boundary layer cloud liquid 370 
amount (Fig. 8c).  371 
 372 
Jeevanjee and Zhou (2022) demonstrated that cloud resolving simulations with stronger mixing 373 
tend to also produce more high clouds, and this is also consistent with our simulations. Both 3D 374 
configurations of the MMF produce systematically higher cloud fraction and ice concentrations 375 
above 400 hPa (Figs. 8b, d). It is also interesting to note that something unusual occurred leading 376 
to extremely top-heavy convection and anomalously large high cloud fractions in just the 3D 377 
simulation that did not use convective momentum transport. It is interesting, but beyond the 378 
scope of this paper to investigate, that CMT modulated the high cloud amount so strongly in the 379 
3D configuration, while having minimal impact in the 2D configuration.  380 
 381 
Even though we cannot directly measure or assess dilution by entrainment in the current version 382 
of E3SM-MMF, multiple indirect lines of evidence have pointed to a change in it with 383 
dimensionality. As sketched in Fig. 9, 3D updrafts exchange more mass with the environment 384 
than 2D updrafts, leading to a stronger dilution by entrainment and more water vapor required 385 
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for convection to occur.  Meanwhile, stronger dilution in 3D can result in more evaporation and a 386 
lower precipitation efficiency, leading to larger mass flux and more high clouds. 387 
 388 

3.5 Fast-time scale effects during initialization & a connection to extremes. 389 
We have provided quantitative support of the mechanism proposed in Fig. 9, namely that 390 
stronger dilution by entrainment in 3D leads to a higher rain pickup, a smaller PE, an increased 391 
updraft mass flux, and more anvil clouds. We now turn to a practical question as to whether 392 
these consequences of dimensionality could have been anticipated in just the first few days of 393 
sensitivity tests.  394 
 395 
Fig. 10 shows comparison of the total grid-box liquid water path (boxplots summarize the 396 
geographic distribution of temporal snapshots) and the 99th percentile of vertical velocity at 500 397 
hPa during the initialization of each simulation across MMF configurations. During the first day 398 
of the simulation, 2D produces more liquid water path than 3D (Fig. 10a), suggesting the fast 399 
response of dimensionality impact. We interpret the enhanced liquid in the 2D configuration as 400 
the signal of a system that is struggling less against mixing with its environment to maintain low 401 
level liquid water clouds. Moreover, the notable initial difference in the liquid path between 2D 402 
and 3D persists after one month (Fig. 10b). This implies that the long-term climatology of 403 
precipitating events can be predicted by these fast-time scale effects, providing an opportunity 404 
for rapid model tuning and optimization using short integrations without the high computational 405 
cost.  406 
 407 
Fig. 10 also reveals an interesting response of extreme statistics to rainfall. Extreme grid point 408 
storms are more intense when a 2D CRM domain is used. Like the liquid cloud response, this 409 
geographic extreme signal is immediately detectable within the first simulated day, with the 410 
difference persisting over the subsequent month. Stronger extreme updrafts in 2D are consistent 411 
with the stronger tails of extreme precipitation that we noted in Fig. 5a. This is not immediately 412 
easy to reconcile as a consequence of entrainment and we do not attempt to explain the causal 413 
origins of the extreme response, other than to emphasize that two important aspects of a global 414 
cloud resolving simulation worth calibrating – time mean rainfall and extreme statistics – may 415 
both be controllable through the domain dimensionality of an MMF and might be possible to 416 
think about through a unified entrainment framework.  417 
 418 

4. Concluding Discussion 419 
In this study, we examined the representation of precipitation from a set of modern E3SM-MMF 420 
simulations that use different dimensionality and momentum transport, namely non-MMF, 2D, 421 
2D with CMT, 3D, and 3D with CMT. Compared to previous MMF generations for whom 422 
computational limitations prohibited testing the effects of using ambitious 3D domains, the 423 
GPU-accelerated E3SM-MMF has penetrated new frontiers.  424 
 425 
Compared to non-MMF, the E3SM-MMF produces too intense rainfall in ITCZ, and not enough 426 
rainfall over the northern Amazon. However, robust improvements due to MMF include 427 
increased on-equatorial rainfall over the Indian Ocean and western tropical Pacific, where it is 428 
too dry in non-MMF.  Most interestingly, the results reveal some distinct differences in the 429 
mean-state precipitation pattern over subregions of the tropics across the multiple MMF 430 
configurations. For instance, the 2D MMF produces an unrealistically rainy region over the 431 
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northwestern and eastern tropical Pacific, while these regional biases are significantly reduced 432 
when a large, 3D CRM is used in E3SM-MMF. In comparison to the striking effect of 433 
dimensionality, impacts of convective momentum transport (CMT) are minor in reducing this 434 
precipitation bias. Trajectory analysis indicates that these regional improvements of time-mean 435 
precipitation simulation in the northwestern and eastern tropical Pacific are associated with fewer 436 
tropical cyclones in 3D E3SM-MMF, rather than a fundamental change in their character.  437 
 438 
In attempting to understand why and how the representation of precipitation is improved in 3D 439 
E3SM-MMF, we have proposed a framework – that dilution by entrainment is stronger in 3D 440 
relative to 2D. Conceptually, this is rooted in two simple geometric ideas: an updraft in 3D has 441 
more surface area to mix with the environment than an updraft of the same width in 2D, and a 442 
3D updraft can diverge in more directions than a 2D updraft with the same mass flux. 443 
Empirically, it can be connected to multiple sensitivities we observed across our experiments. 444 
Stronger dilution of dry air reduces updraft buoyancy and suppresses convection until the lower 445 
troposphere is sufficiently moistened, meaning more water vapor is required for rain pickup; 446 
delayed rainfall pickup is seen in our 3D MMF configurations (Fig. 6). An associated reduced 447 
precipitation efficiency requires a larger convective mass flux, resulting in more high clouds 448 
(Fig. 9). Consistent with fewer barriers to low cloud liquid content from environmental mixing, 449 
the 2D MMF also initially generates and then sustains more cloud liquid water during the 450 
initialization. The 3D simulations also have reduced extreme rainfall rates and grid point storm 451 
magnitudes.  452 
 453 
We demonstrate that precursor signals suggestive of the significant difference in the mean state 454 
precipitation and extreme tail behavior across E3SM-MMF configurations can be identified even 455 
in the first few simulated days of output. This may provide an opportunity for rapid model tuning 456 
to improve precipitation representation in the climate model and advance the understanding of 457 
mechanisms driving precipitation events. 458 
 459 
The findings of this study raise a number of questions and potential future research topics. Wet-460 
ITCZ and dry-Amazon biases appear to be a recurring bias in the current generation of E3SM-461 
MMF; it will be interesting to discover whether ocean coupling impacts these signals, or whether 462 
tuning strategies can address them. An obvious limitation of our analysis is that no direct 463 
observations of entrainment or dilution exist for quantitative confirmation. Rather, the proposed 464 
dilution framework is supported by mechanisms that are associated with the dilution by 465 
entrainment as displayed in the summary diagram (Fig. 9). Nevertheless, our results are generally 466 
consistent with other studies (Jeevanjee and Zhou, 2022; Petch et al., 2008; Phillips and Donner, 467 
2006; Tompkins and Semie, 2017). For example, Tompkins and Semie (2017) explored the role 468 
of entrainment in convection organization. They argued that the strength of updraft dilution by 469 
entrainment controls the onset of convective organization. With cloud-resolving simulations, 470 
Jeevanjee and Zhou (2022) indicate that an increase in cloud fraction with horizontal resolution 471 
can be traced back to enhanced horizontal mixing, which increases evaporation of condensed 472 
water and decreases precipitation efficiency, consequently resulting in an increased mass flux 473 
and more high cloud. The consistency of our results with previous studies using different models 474 
imply that the findings of this study are not model dependent. 475 
 476 
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Another considerable caveat of this work is that the impact of CMT remains unclear, and we 477 
have not focused on it, despite some interesting evidence of impact especially in 3D. Several 478 
results of this study suggest that the influence of CMT on the mean-state precipitation and 479 
extreme precipitation is not as significant as the dimensionality. However, momentum coupling 480 
is implicated in some intriguingly strong sensitivities of the 3D E3SM-MMF. Without CMT, 3D 481 
MMF tends to exhibit a much later rain pick-up, a large increase in high cloud amount and 482 
associated convective mass flux, and lower values of PE. This highlights the importance of CMT 483 
in the more accurate representation of precipitating events in climate models. We note that the 484 
3D E3SM-MMF that includes CMT compared best against rainfall observations in our initial 485 
analysis. 486 
 487 
Finally, the notable difference between 2D and 3D during the initiation implies that the first 488 
week or month of simulation can be treated as a forecast for longer-term behavior. Initial signals 489 
like low cloud liquid content and extreme storm development may be helpful precursors for 490 
tuning longer term regional rainfall anomalies, and could be viewed as consistent through a 491 
dilution framework. If confirmed, this could provide an additional constraint in quick model 492 
validation and comparison across different configurations. The 3D MMF configurations explored 493 
in this study were not trivial to compute, but made possible by GPU supercomputing through the 494 
Exascale Computing Project. With global storm resolving simulations remaining expensive yet 495 
increasing in popularity, precursor signals that can be linked to climatological calibration targets 496 
of mean rainfall and extreme skill are of high interest today.  497 
 498 
Finally, a preliminary investigation of convection size during the first month of model initiation 499 
suggested that convection can develop into more organized convection in 3D. As shown in Fig. 500 
S4, precipitation events tend to be larger in 3D than in 2D, with the mean volumetric rain (a 501 
product of precipitation area and the mean rain rate) smaller. Given the importance of 502 
precipitation to global and regional water and energy balances, further exploration of how 503 
dimensionality and momentum affect convection organization seems warranted.504 
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