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Abstract 13 

As an important anthropogenic interference in the hydrologic cycle, reservoir operation 14 

behavior remains challenging to be properly represented in hydrologic models, thus limiting the 15 

capability of predicting streamflow under the interactions between hydrologic variability and 16 

operational preferences. Data-driven models provide a promising approach to capture 17 

relationships embedded in historical records. Similar to hydrologic processes that vary across 18 

temporal scales, reservoir operations manifest themselves at different timescales, prioritizing 19 

different operation targets to mitigate streamflow variability at a given time scale. To capture the 20 

interaction of reservoir operation across time scales, we proposed a hierarchical temporal scale 21 

framework to investigate the behaviors of over 300 major reservoirs across the Contiguous 22 

United States with a wide range of streamflow conditions. Data-driven models were constructed 23 

to simulate reservoir releases at monthly, weekly, and daily scales, where decisions at short-term 24 

scales interact with long-term decisions. We found that the hierarchical temporal scale 25 

configuration could compensate for the absence of key explanatory variables as model inputs, 26 

thereby efficiently capturing the release decisions of reservoirs situated in the west. Model-based 27 

sensitivity analysis shows that for more than one-third of the studied reservoirs, the release 28 

schemes, as a function of decision variables, vary at different time scales, suggesting that 29 

operators commonly face complicated trade-offs to serve multiple designed purposes. The 30 

proposed hierarchical temporal scale approach is flexible to incorporate various data-driven 31 

models and decision variables to derive reservoir operation rules, providing a robust framework 32 

to understand the feedbacks between natural streamflow variability and human interferences 33 

across time scales. 34 

1 Introduction 35 

Anthropogenic activities, such as reservoir operation (Haddeland et al., 2006; Döll et al., 36 

2009; Biemans et al., 2011; Zhao et al., 2021; Singh and Basu, 2022; Zeng and Ren, 2022), 37 

urbanization (Oudin et al., 2018; Li et al., 2020) and large-scale irrigation (Siebert et al., 2010; 38 

Ferguson et al., 2011; Condon et al., 2019; Wei et al., 2022), have become increasingly 39 

important or even dominant driving forces of hydrologic processes in many watersheds over the 40 

world. In these watersheds, the streamflow observed at gauging stations represents the 41 

interaction between hydrologic and anthropogenic driving forces, rather than the “natural” or 42 

“unregulated” flows simulated in hydrologic models (Clark et al., 2015; Blair and Buytaert, 43 

2016). Reservoirs are one of the key water infrastructures that directly regulate the streamflow 44 

timing and variability to fulfill various purposes including flood control, water supply, 45 

hydroelectricity generation, navigation and fluvial ecosystem services (Simonovic et al., 1992; 46 

Lehner et al., 2011; Ehsani et al., 2017; Moran et al., 2018; Boulange et al., 2021; Forsberg et al., 47 

2017; Ortiz-Partida, Lane, and Sandoval-Solis, 2016; Patterson and Doyle, 2018). In the US, the 48 

National Inventory of Dams reports that there are more than 90,000 reservoirs (defined as equal 49 

or exceed 25 feet in height and exceed 15 acre-feet in storage, or exceed 6 feet in height and 50 

equal or exceed 50 acre-feet storage) regulating the streamflow (DeNeale et al., 2019). These 51 

reservoirs altogether store freshwater resources equivalent to one year’s average natural runoff 52 

(Graf, 1999), generates about 6.3% of total electricity and 31.3% of renewable energy production 53 

(EIA, 2022), and protect hundreds of millions of populations from flooding. Meanwhile, the 54 

current reservoir operation policies are challenged by shifting flow conditions under climate 55 

change (Boulange et al., 2021), elevated risks due to aging infrastructure (Lane, 2007), 56 

increasing demand for water supply reliability, and need for aquatic habitat restoration (Tonkin 57 
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et al., 2018; Palmer et al., 2019). Understanding how reservoirs are operated and their interaction 58 

with hydrologic cycle is vitally important for assessing reliability and risks of reservoir 59 

functioning (Brekke et al., 2009), designing adaption strategies for future climate (Ho et al., 60 

2017), and mitigating the tradeoffs among conflicting operation targets (Suen et al., 2006; Chen 61 

et al., 2017; Giuliani et al., 2021) to achieve sustainable water resources management. 62 

Reservoirs are decision hubs that integrate the complex feedbacks between hydrologic 63 

variability and operational targets under various constraints, such as reservoir inflow, water 64 

storage capacity, hydroelectricity generation requirement and competitions among different 65 

operation purposes. Challenges remain for modeling the reservoir release decisions, which often 66 

involve complex and undocumented decision processes. Often, reservoir operation guidelines are 67 

based on predefined rule curves (Klipsch et al., 2007; Yates et al., 2005), which determine 68 

release decision based on water availability, which in turn, depends on inflow and storage (Chen 69 

et al., 2022). However, many reservoirs are actively managed, where the flow releases are 70 

determined by reservoir managers to account for the complex tradeoffs among different 71 

operation targets. This complicated decision-making process often cannot be described with 72 

simple operation rules. In addition, observations on reservoir operation (e.g., reservoir water 73 

level and release) are very limited due the complex ownership and regulations. 74 

As a result, reservoirs, as coupled natural-human systems (Liu et al., 2007), are not 75 

adequately represented in current hydrologic or hydraulic models. Compared to natural 76 

hydrologic processes that can be expressed by physical relationships, it remains unclear how 77 

reservoirs are operated to regulate streamflow, as observations on reservoir operation (e.g., 78 

reservoir water level and release) are very limited due the complex ownership and regulations. 79 

For example, the National Water Model is able to predict streamflow for over two million 80 

reaches in US, while a limited number of reservoirs are simulated by a simple level pool routing 81 

scheme (Gochis et al., 2018; Khazaei et al., 2021) where reservoir releases are passively 82 

determined by reservoir water level and spillway characteristics based on hydraulic laws (e.g., 83 

weir flow equations). However, the releases from actively managed reservoirs, which are crucial 84 

infrastructure involving multiple stakeholders and with significant downstream impacts, are 85 

regulated by gates and determined by reservoir managers based on a range of real-world 86 

constraints and trade-offs. 87 

Traditionally, reservoir operation rules have been derived using optimization techniques. 88 

These models aim to determine optimal releases to achieve predefined objectives (such as 89 

minimizing flood risk or maximizing water supply reliability) under various constraints (such as 90 

reservoir storage capacity and allowable downstream release). However, actual reservoir release 91 

usually deviates from the optimized prescription due to several limitations. First, the theoretical 92 

optimal reservoir releases are obtained under a small set of predefined objectives and constraints, 93 

which often do not capture the full spectrum of real-world operation conditions (Giuliani et al., 94 

2021). Second, reservoir characteristics (storage capacity vs water level relationship) or 95 

streamflow regime may be different from the conditions when optimal operation rule was 96 

derived. Third, optimization models assume that perfect streamflow predictions or a known 97 

streamflow prediction uncertainty, but it is not necessarily the case that streamflow prediction is 98 

available for operational purposes and whether reservoir managers utilize the streamflow 99 

prediction during the decision-making processes (Zhao et al., 2011). Therefore, with these 100 

deviations from assumptions, optimization model-derived reservoir operation rules may provide 101 



manuscript submitted to Water Resources Research 

 

valuable normative solutions for the large-scale hydrologic and water resource model, but often 102 

fail to yield satisfactory results for predicting streamflow downstream of reservoirs. 103 

Data-driven models (DDMs) offer a promising alternative to derive reservoir operation 104 

rules from historical records of hydrologic and reservoir data (Lin et al., 2006; Wei and Hsu, 105 

2008; Hipni et al., 2013; Aboutalebi et al, 2015; Yang et al., 2017; Zhang et al. 2018; Zhao and 106 

Cai, 2020; Turner et al., 2020a, b). Recent studies have demonstrated the capability of various 107 

machine learning techniques in capturing reservoir release decisions (Mateo et al. 2014; Coerver, 108 

Rutten, and Van De Giesen, 2018; Yassin et al. 2019; Chen et al. 2022; Gangrade et al., 2022; 109 

Dong et al., 2023). The rationale is straightforward: if a manager determines the reservoir 110 

releases based on some principles (either empirical or optimal) depending on hydroclimatic 111 

variation, data-driven models can recover the patterns of operation from the reservoir records and 112 

other hydroclimatic variables. In addition, compared to optimization models, DDMs are 113 

computationally efficient and readily coupled with hydrologic and hydraulic models. The 114 

primary motivation behind this study is to contribute to the development of simulation strategies 115 

that can enhance the representation of reservoirs in regional or national scale hydrological 116 

models, such as the National Water Model. 117 

In this study, we hypothesize that reservoir operation patterns vary across time scales, 118 

thus requiring a hierarchical temporal scale configuration of DDMs. First, reservoirs usually 119 

have multiple operation purposes that require decisions made at different time scales. For 120 

example, daily or hourly release decisions are made for hydroelectricity generation based on the 121 

demand from power grids, while the reservoir storage for agricultural water supply exhibits a 122 

slow-varying seasonal pattern. Even for reservoirs with one primary operation purpose, 123 

hydroclimatic variabilities at different time scales may lead to different operation decisions. A 124 

reservoir designed for flood control may be actively operated only during wet seasons to mitigate 125 

floods, and the storage may remain relatively stable during dry seasons. Second, release 126 

decisions for different operational purposes are made based on different information that changes 127 

with time scales. For example, flood control decisions may depend on current reservoir water 128 

level and streamflow forecast with leading time up to several days, while water supply reservoirs 129 

may ignore the short-term streamflow variability and focus on hydrologic seasonal dynamics 130 

such as snowpack. Third, operation decisions made at different scales interact with each other. 131 

The flood control hourly operations during a high flow event may be constrained water level set 132 

by seasonal water supply targets; flood control operations, in return, determine initial water level 133 

for water supply release for the next decision period. Based on these observations, capturing the 134 

reservoir operation decisions across time scales is essential to accurately represent the 135 

anthropogenic regulation on streamflow variability. 136 

Despite significant progress in data-driven reservoir modeling, current approaches 137 

typically rely on a single time scale for operations, with limited exploration of frameworks that 138 

account for multi-timescale interactions. For instance, Zhang et al., (2018) assessed the 139 

performances of various DDMs with different time resolution (e.g., hourly, daily, and monthly) 140 

for Gezhouba Dam, while neglecting the interactions of decision-making processes across time 141 

scales. Yang et al. (2021) provided a comprehensive comparison of different DDMs to simulate 142 

the daily reservoir outflow over the Upper Colorado Region using the daily inflow, storage, and 143 

calendar time as model inputs, which did not completely include decision variables at monthly 144 

scales. Turner et al., (2020b) built a daily scale DDM for reservoirs in the Columbia River basins 145 

with seasonally varying relations that specify water release as a function of prevailing storage 146 
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levels and forecasted future inflow. However, this approach is based on pre-assumed linear 147 

piecewise relations to represent the seasonality, which still needs to be specified based on the 148 

modeler’s assumption. While single-scale models may adequately serve the needs of reservoir 149 

operators, investors, and decision makers for simpler reservoir systems, multi-objective 150 

reservoirs and multi-reservoir systems demand greater attention to the full range of timescales 151 

for improved reservoir operation modeling. The study conducted by Hejazi et al. (2008) using 152 

weekly/monthly datasets revealed that the importance of hydrologic indicators varies across 153 

seasons and purposes (i.e., flood control, water supply, hydropower, and irrigation) for reservoirs 154 

located in the California and Great Plains regions. It highlighted the interdependence between 155 

decision variables, purposes and time scales in reservoir operations. The time-varying sensitivity 156 

analysis at daily scale for a multi-reservoir system in the Red River Basin further illustrated that 157 

effective operating policies adapt the utilization of information over time while coordinating it 158 

across multiple reservoirs (Quinn et al., 2019). The challenges arise when simulating regulated 159 

flow downstream of such complex reservoirs. A general and flexible framework is needed, 160 

which can effectively simulate the reservoir release decisions and capture trade-offs among 161 

multiple reservoir operation objectives, as well as the interactions between hydroclimatic 162 

conditions and human decisions across various time scales. Furthermore, this framework is 163 

expected to be readily compatible with large-scale hydrologic and water resource management 164 

models. 165 

This study develops a hierarchical temporal scale framework to model reservoir operation 166 

decisions across various time scales. The proposed framework exhibits generality in several 167 

aspects: (1) it does not require prior knowledge of reservoir operation objectives; (2) it supports 168 

the implementation of diverse data-driven modeling techniques; and (3) it utilizes commonly 169 

available datasets for training the machine learning models. The framework has the flexibility to 170 

(1) use time scale-specific inputs for DDMs to learn reservoir operation behaviors pertinent to 171 

each time scale, and (2) enable decisions at different time scales to interact with each other. We 172 

demonstrate the framework with a two-layer configuration, at monthly/weekly and daily scales, 173 

respectively. The framework is validated using the daily operational records of 327 major 174 

reservoirs in the United States regulated by the United States Army Corps of Engineers 175 

(USACE) and the United States Bureau of Reclamation (USBR). These reservoirs cover a wide 176 

spectrum of hydroclimatic conditions, reservoir characteristics and operation purposes, therefore 177 

can examine the robustness of the proposed hierarchical temporal scale framework. The 178 

monthly-/weekly-scale data-driven model learns reservoir decisions unaffected by short-term 179 

variability and provides constraints for the daily scale model which captures the event-scale 180 

operation rule that deviates from the monthly/weekly average. This framework is flexible to 181 

incorporate additional temporal layers (such as at hourly or seasonal scales). We further evaluate 182 

which variables are dominant for reservoir operations across various time scales and investigate 183 

the tradeoff between training variables and modeling temporal resolution in representing 184 

reservoir decisions. 185 

2 Methods 186 

2.1 Hierarchical temporal scale configuration of DDMs 187 

This study models reservoir release schemes at each temporal scale (e.g., daily, weekly, 188 

monthly) collectively under a set of hydroclimatic explanatory variables (e.g., streamflow, 189 
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precipitation). We separate the raw daily time series into a coarse time-scale averages (i.e., 190 

monthly as illustrated in the example in Figure 1) and a fine-scale “deviation”. The “deviation” 191 

𝑦̂(𝐷) between daily scale release 𝑦(𝐷) from the monthly scale release 𝑦(𝑀) is defined as 192 

𝑦̂(𝐷) = 𝑦(𝑀) − 𝑦(𝐷) 193 

The “deviation” 𝑦̂(𝐷) includes (1) true signals (systematic bias or structured error) resulted from 194 

fine time scale reservoir release deviating from a coarse time scale operation (e.g., operation for 195 

daily release for flood control constrained by monthly water storage target for water supply) and 196 

(2) unstructured random error (e.g., Gaussian type random noise from measurement error). We 197 

hypothesize that the structured error between different time scales of observed release contains 198 

information that is not adequately represented at a single time scale, which can be effectively 199 

modeled using a hierarchical approach. For example, we found that temporal autocorrelation of 200 

the deviations of reservoir releases between daily and weekly/monthly scales exists in most of 201 

the reservoirs, probably indicating that relying solely on monthly/weekly averages may not fully 202 

capture the intricacies of reservoir release dynamics. This study utilizes coarse-scale averages as 203 

a source of long-term information to compensate for the limited forward-looking capacity of 204 

fine-scale limited time steps. 205 

 206 
Figure 1. The hierarchical temporal scale framework with two layers shown for illustration. The 207 

top layer uses a monthly DDM to simulate monthly averaged release (𝑦(𝑀)), and the subsequent 208 

bottom layer uses a daily DDM to simulate the daily deviation 𝑦̂(𝐷), or the difference between 209 

daily 𝑦(𝐷) and monthly averaged 𝑦(𝑀) releases. 210 

The hierarchical temporal scale framework (shown in Figure 1) consists of multiple 211 

layers, where each layer has a DDM to learn the reservoir operation rules at the corresponding 212 

time scale (e.g., monthly, weekly, and daily). The configuration starts from the upper layer 213 

corresponding to a coarse time scale (i.e., monthly/weekly in this study) to capture the reservoir 214 

operation behaviors under slow-varying targets (e.g., storing water for growing season irrigation 215 

supply). Historical hydroclimate and reservoir records are aggregated to monthly/weekly time 216 

series to train a DDM. The lower layer refines the model to a fine time scale (i.e., daily scale in 217 

this study), and a second DDM is trained to simulate the “deviation”, defined as the difference 218 
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between the fine scale release and release simulated by the coarse time scale DDM. The 219 

deviation characterizes short-term deviations from release determined under long-term operation 220 

targets and may be caused by gaps between planned and actual situations and complicated 221 

tradeoffs between various purposes served in different periods. It is worth noting that the 222 

deviation 𝑦̂(𝐷) could be defined as the differences between observed releases at a coarse and a 223 

fine scale. The difference lies in the fact that the former, which defines the target deviation 𝑦̂(𝐷) 224 

as the difference between the observed daily release and simulated monthly/weekly release, to 225 

some extent, resembles the concept of a boosting algorithm, where the model is improved 226 

through the combination of multiple weak models to form a strong model, whereas the latter 227 

purely integrates multi-timescale information to generate the target fine-scale release. The effects 228 

of the two are considered equivalent when the model in the first layer is able to accurately 229 

predict the target release at the coarse scale (Figure S7 and S8 in Supplementary Materials). 230 

The hierarchical configuration of the framework is flexible to add layers as needed to 231 

represent operation decisions at coarser (e.g., seasonal) or finer time scales (e.g., flood control 232 

release or hydroelectricity generation under power grid demand) if reservoir operation record is 233 

available. In addition, the hierarchical framework allows models at each time scale to take 234 

different training variables since different operations decisions may depend on different 235 

information. For example, the operation for irrigation water supply may mainly depend on the 236 

crop water demand during the growing season, while operation for flood control may depend on 237 

current reservoir water level and upstream flow predictions for the next few days. By learning 238 

the deviations between water release at fine time scale and the coarse time scale average, the 239 

DDM can capture the interactions of operation rule at different time scales and represent the 240 

tradeoffs between various operation targets. For example, the release for flood control may be 241 

dependent on the current reservoir water level, which is affected by the storage target for water 242 

supply determined one month ago. The reservoir water level after flood control release may 243 

further affect water supply decisions in future time steps. Therefore, the deviation between two 244 

layers (i.e., two temporal scales) may represent the tradeoffs between various operation targets. 245 

Two distinct strategies can be employed to train the DDM in each layer: “iterative” and 246 

“detached”. The iterative strategy enables concurrent updates to all temporal layers throughout 247 

the model training process. For neural network-type models such as Multi-Layer Perceptron 248 

(MLP) and Recurrent Neural Networks (RNN), a loss function that spans all temporal scales or 249 

multiple loss functions for each temporal scale can be defined, and weight updates are executed 250 

in each training epoch. The detached approach involves a simple arithmetic summation or 251 

weighted aggregation of the outputs from all layers to generate the final simulations. In this 252 

study, we use the iterative strategy to train the DDM. 253 

2.2 Hydroclimatic and Reservoir Data 254 

We apply the proposed framework to 248 reservoirs operated by the United States Army 255 

Corps of Engineers (USACE) and 79 reservoirs operated by the United States Bureau of 256 

Reclamation (USBR) across the Contiguous United States (CONUS). These reservoirs are 257 

generally actively managed reservoirs with multiple designed purposes. The standardized 258 

database for historical daily reservoir levels and operations of USACE reservoirs is developed by 259 

(Patterson and Doyle, 2018), while that of USBR reservoirs is accessed via Reclamation 260 

Information Sharing Environment (RISE). We sourced some data from ResOpsUS, a 261 

comprehensive dataset on historical reservoir operations in the United States that was recently 262 
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published by Steyaert et al. (2022). These observed records include daily reservoir water 263 

elevation (feet, ft), storage volume (acre-feet, af), inflow (cubic feet per second, cfs) and release 264 

(cubic feet per second, cfs) for each reservoir, with different record lengths and intermittent gaps 265 

in the middle of the record due to data collection issues. All reservoirs with continuous records 266 

are included in this study. For some reservoirs with missing data during only a short period of 267 

time (less than five days), the nearest neighbor interpolation method is applied to fill in these 268 

gaps to obtain a continuous record. Overall, the continuous records have the average length of 30 269 

years. 270 

The reservoir release data is used as target (response variable) to train and test the DDMs, 271 

and water storage volume, reservoir inflow records and hydroclimatic data are used as inputs. 272 

The daily-scale meteorological forcing, including total precipitation rate (P, mm/day), potential 273 

evapotranspiration (PET, mm/day) and air temperature (T, ℃) are obtained from the North 274 

American Land Data Assimilation System (NLDAS-2) forcing (Xia et al. 2012). The 275 

hydroclimatic data are averagely aggregated over the catchment area upstream of the reservoir to 276 

encapsulate the local weather information relevant for reservoir operation. Specifically, the PET 277 

represents atmospheric demand for reservoir evaporative loss, which is substantial for reservoirs 278 

in the arid and semi-arid regions (Friedrich et al., 2018). The P may reflect the local runoff 279 

contribution to the reservoir, while the reservoir inflow represents the runoff from the larger 280 

upstream contributing area. The difference between P and PET captures the crop irrigation water 281 

demand (Le Page et al., 2020), which may provide important information for reservoirs with 282 

irrigation water supply purposes. The gridded snow depth (SD, mm) data retrieved from Broxton 283 

et al., (2019) is aggregated over the catchment area upstream of the reservoir to account for 284 

changes in snowmelt contributions over time. Depending on the specifics of a given reservoir, 285 

other information (e.g., hydroelectricity generation) can also be fed into DDMs as inputs. 286 

2.3 Experimental Setup 287 

Three groups of experiments are carried out to assess the performances of data-driven 288 

reservoir operation models with (1) under different time scale configurations and (2) different 289 

combinations of input variables (Table 1). The experimental setup is summarized in Table 1. The 290 

first group of experiments simulate reservoir release solely on a single daily scale (i.e., daily 291 

inputs are employed to model the daily release). This strategy is commonly implemented in 292 

existing machine-learning based reservoir models. The other two groups of experiments adopt a 293 

two-level hierarchical time scale configuration. The second group of experiments receives 294 

weekly-average input variables in the first layer to generate weekly average release, and then use 295 

daily inputs to model the deviation (difference between daily release and weekly average) in the 296 

second layer, herein referred to as “Weekly-Daily (WD)”. Similarly, the third group of 297 

experiments simulate monthly scale reservoir release in the first layer and refines reservoir 298 

release on daily scale in the second layer, referred to as “Monthly-Daily (MD)”. On the daily 299 

scale, we use the 7 days in the past of input variables to determine release on a given day. For the 300 

WD and MD models, the coarse-resolution input variables of the past 4 steps (weeks or months) 301 

are used to derive the release at the current time step, and the daily scale deviations are simulated 302 

with daily input variables of the past 7 days. While inflow forecasts have been proven to strongly 303 

influence the seasonal reservoir operations, particularly for the high-elevation reservoirs fed by 304 

snowmelt in the western United States (Turner et al., 2020a), this study only uses the observed 305 
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records in the past time steps, since it is difficult to acquire the actual streamflow forecasts for 306 

each reservoir in the historical period. 307 

To explore the importance of each input variable for predicting reservoir operation at 308 

various time scales, we developed six experiments by varying the combinations of input 309 

variables in the three groups (Table 1). In Experiment 1, daily observed reservoir inflow (I), 310 

water storage (S), hydroclimatic information (Met, including P, PET, SD and T) are all utilized to 311 

derive the release scheme. While other gain and loss terms in reservoir water budget (e.g., water 312 

diversion, seepage and evaporative loss) are unavailable for most reservoirs, the variables 313 

utilized in this study may contain information related to these factors. For example, reservoir 314 

evaporative loss is related to PET and water surface area, which in turn correlates with reservoir 315 

storage. Experiment 2 and Experiment 3 inputs exclude reservoir storage and inflow, 316 

respectively to evaluate the importance of reservoir information. Meteorological information is 317 

hidden in Experiment 4 to assess the impacts of meteorological forcing on reservoir release. 318 

Experiment 5 derives the release scheme only from the observed inflow records. Experiment 6 319 

explores whether the actual storage alone is able to capture reservoir release decisions. It is noted 320 

that based on the specified subset of inputs, DDMs will further infer the importance of these 321 

variables on predicting reservoir releases via the training process. Results of these experiments 322 

will be used to guide further sensitivity analysis based on models. 323 

 324 

Table 1. Experiments using DDMs with different time scale configurations and subsets of input 325 

variables, including inflow (I), storage (S), precipitation (P), potential evaporation (PET), snow 326 

depth (SD) and air temperature (T). 327 

 328 

Time Scale Experiment Training variables 

Daily (D) D-1 I, S, Met (P, PET, SD, T) 

 D-2 I, Met (P, PET, SD, T) 

 D-3 S, Met (P, PET, SD, T) 

 D-4 I, S 

 D-5 I 

 D-6 S 

Weekly-Daily 

(WD) 
WD-1 I, S, Met (P, PET, SD, T) 

 WD-2 I, Met (P, PET, SD, T) 

 WD-3 S, Met (P, PET, SD, T) 

 WD-4 I, S 

 WD-5 I 

 WD-6 S 

Monthly-Daily 

(MD) 
MD-1 I, S, Met (P, PET, SD, T) 

 MD-2 I, Met (P, PET, SD, T) 

 MD-3 S, Met (P, PET, SD, T) 

 MD-4 I, S 

 MD-5 I 

 MD-6 S 

 329 
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In all the experiments, we use the Long Short-Term Memory (LSTM, Hochreiter and 330 

Schmidhuber, 1997), as the DDM in each layer. As a powerful type of Recurrent Neural 331 

Networks (RNN), LSTM can learn temporal dependencies in both long and short terms and has a 332 

wide range of applications in hydrology and water resource management (Kratzert et al. 2018, 333 

2019; Shen, 2018; Zhang et al. 2018; Feng et al., 2020; Sit et al., 2020; Xu and Liang, 2021; 334 

Yang et al. 2021). The internal calculation of the LSTM cell in this study is summarized in 335 

Appendix. For the single-layer models (D1, …, D6), the LSTM model is trained by minimizing 336 

the mean square error of daily release. For hierarchical time scale models (WD, MD), we utilize 337 

the iterative training strategy as mentioned in Section 2.1 to gain the optimal weights and bias. 338 

The two LSTMs are trained together by minimizing the mean square errors of reservoir release at 339 

both time scales, then the optimal parameters can be obtained by 340 
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  341 

where 𝑦𝑡
(1)

 and 𝑦𝑡
(1)̂

 are the observed and simulated release at the monthly/weekly scales, 𝑦𝑡
(2)

 342 

and 𝑦𝑡
(2)̂

 are the observed and simulated release deviations at the daily scale, 𝑦𝑡 and 𝑦𝑡̂ are the 343 

observed and simulated release at the daily scale, 𝜃 represents the neural network parameters. 344 

The data at the coarse scale is remapped to the daily scale by resampling to ensure consistent 345 

lengths of data at both coarse and daily scales. 60% of time series data are used during the 346 

training process, 10% of them for validation, and the rest for testing. The Adam optimizer 347 

(Kingma and Adam, 2020) is applied for primary training and Stochastic Gradient Descent 348 

(SGD, Robbins and Monro, 1951) for finetuning. The number of training epochs and number of 349 

hidden units are found through trial-and-error. The learning rate during the pretraining process is 350 

10−4 to 10−5 and the number of training epochs does not exceed 100, while the learning rate 351 

schedule is more complex during the finetuning process. Early stopping is implemented to 352 

decrease the probability of overfitting. To ensure the fairness of subsequent comparisons, the 353 

total number of parameters for both single-layer (D) and hierarchical time scale models (WD, 354 

MD) is constrained to be identical. Specifically, the hidden size in the single-layer model is 355 

almost equivalent to the sum of hidden size in all DDMs in the two-layer model. Concretely, we 356 

set the hidden size of daily single models for all reservoirs as 10, 15 or 20 to avoid excessively 357 

complex DDM models, ensuring that the maximum total number of parameters in single and 358 

hierarchical models does not exceed 2,000. The hidden size in the first layer of the hierarchical 359 

models is 5, 10 or 15, and that in the second layer is correspondingly adjusted. The Nash-360 

Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) of daily reservoir release is used for 361 

assessing model performance in all experiments. To mitigate random effects arising during 362 

training, we initialize and train the models with different random seeds, calculating average 363 

performance metrics across the five trials. All the performances mentioned in the following 364 

sections are NSEs evaluated on the test sets. It is noted that the multi-layer configuration is 365 

flexible to use other data-driven algorithms. 366 
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3 Results 367 

3.1 Performance of DDMs with various time scale configurations and input variable 368 

combinations 369 

Results from the three groups of experiments revealed noticeable differences in reservoir 370 

release simulation accuracy when the models use various time scale configuration and 371 

combinations of input variables (Figure 2). In experiments employing the same training 372 

variables, DDMs at the daily scale are capable of simulating the dynamics of reservoir release., 373 

and the two-layer hierarchical model (WD) exhibits consistent superiority over the daily model 374 

(D) in terms of accuracy, as evidenced by the probability of NSE exceedance across all 375 

reservoirs (Figure 2). MD configuration proves capable of outperforming the daily single scale 376 

model in select cases, notably for the majority of reservoirs examined in Experiments 2, 3, 5, and 377 

6. In Experiment 1 with the most comprehensive input dataset, the median NSE for all reservoirs 378 

is 0.900, 0.831 and 0.872 for WD, MD and daily configuration, respectively. The WD 379 

configuration achieves NSE higher than 0.8 in more than 88% reservoirs, compared to 61% and 380 

77% for the MD and D configurations, respectively. The WD configuration generally 381 

outperformed the MD configuration in most experiments. This may be attributed to the fact that 382 

weekly scale data provides four times more information than monthly scale data, thereby 383 

enabling the DDMs to be trained on more samples, even though both are resampled to the daily 384 

scale. Additionally, the finer resolution of the weekly scale may more accurately capture the 385 

variability of release decisions compared to the coarser monthly scale. 386 

For all time scale configurations, reservoir inflow and storage are two key explanatory 387 

variables for modeling release behavior in most reservoirs, as indicated by the marginal 388 

performance gap between Experiments 1 and 4. With only reservoir inflow as model input in 389 

Experiment 5 (Figure 2e), the median NSE reaches 0.655, 0.826 and 0.762 for daily, WD and 390 

MD temporal configuration, respectively. The inflow provides most predictive power in 391 

reservoirs with relatively small storage and/or navigation purpose, particularly for run-of-river 392 

reservoirs located along the Columbia River or the Arkansas River, where there is a strong linear 393 

relationship between inflow and release at daily scale and the impact of storage can be 394 

negligible. Although the inflow-only models in Experiment 5 does not explicitly consider 395 

reservoir states, the LSTM architecture is expected to use the “hidden state” and “cell memory” 396 

to store accumulated inflow as a proxy for reservoir storage trend and use this information to 397 

simulate reservoir releases. However, due to the lack of other reservoir water budget terms such 398 

as water diversion, seepage and evaporative loss, the accumulated inflow cannot fully replace 399 

reservoir storage. Therefore, it is not ideal for a single time scale DDM to simulate the state of a 400 

reservoir system without storage as an important constraint, especially for reservoirs in the west 401 

mountainous regions usually designed for water supply and hydropower generation. Because 402 

reservoir storage is closely related to the operational purposes, and its seasonal variations 403 

typically reflect the consequences of the human interventions on the natural system, storage 404 

volume (or water level) is strongly recommended as an independent variable input into the 405 

reservoir operation model. 406 

 407 
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 408 
Figure 2. Probability of exceedance of NSE for all reservoirs resulting from single and 409 

hierarchical time scale models with different decision variables (Table 1). 410 

 411 

The DDMs with storage alone as input in Experiment 6 have slightly higher predictive 412 

power compared to inflow-only models in Experiment 5 (Figure 2f) and produce median NSE of 413 

0.711, 0.873 and 0.787 for Daily, WD and MD configuration, respectively. Using storage as the 414 

model input captures operation of reservoirs with relatively large storage capacity and/or 415 

reservoir with water supply purpose where the release largely depends on the reservoir water 416 

level. In addition, reservoir storage serves as a proxy for reservoir water level and water surface 417 

area (both can be retrieved from the reservoir characteristic curve). The reservoir storage 418 

together with PET may implicitly contain information regarding reservoir evaporative loss, 419 

which is important in arid and semi-arid regions. Storage-release rule curves are commonly used 420 

by reservoir operators (Yang et al. 2016), which covers the seasonal patterns of reservoir 421 

operation but the interannual variability of inflow are likely missing in such curves. At a monthly 422 

or seasonal scale, water control plans designed for specific purposes or hydroclimatic conditions 423 

that influence the upstream flow rate may exhibit low year to year variation within decades. At 424 

daily or sub-daily scale, however, reservoir inflow can vary a lot due to emergency events or 425 

weather fluctuations, especially for those reservoirs with complicated operational conflicts 426 

between multiple objectives or climate-sensitive reservoirs (such as reservoirs in the New 427 

England regions faced with potentially increasing flooding risks under the context of global 428 

warming). Although actual rule curves implemented by reservoir operators could provide 429 

substantial information to understand the decision-making process of water resource 430 

management, it does not adequately represent the operation tradeoffs under various inflow 431 

conditions. Reservoir inflow should be considered as a paramount input while building data-432 

driven operation models. Combining the inflow and storage in Experiment 4, the median NSE 433 

improves to 0.877, 0.902 and 0.836 for daily, WD and MD temporal configuration, respectively. 434 
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The performance improvement from including hydroclimatic variables (e.g., P, PET, SD 435 

and T) is investigated by comparing accuracies of DDMs in Experiment 1 vs. 4, Experiment 2 vs. 436 

5, and Experiment 3 vs. 6. When both inflow and storage are used (Experiment 1 vs. 4), the 437 

improvement from additional hydroclimatic forcing is negligible (mean NSEs increase no more 438 

than 0.05). For DDMs with only inflow (Experiment 2 vs. 5) or storage (Experiment 3 vs. 6), 439 

adding hydroclimatic information slightly enhances the model performance, which is not 440 

unexpected as data-driven models typically benefit from more input information. Nevertheless, it 441 

may also underscore the potential of incorporating hydroclimatic conditions in reservoir release 442 

modeling (Denaro et al., 2017), particularly in regions where reservoir operation records are 443 

scarce. 444 

3.2 Effect of DDMs hierarchical temporal configuration on capturing reservoir operation 445 

behavior 446 

Figure 3 further illustrates the improvement of the hierarchical framework for reservoir 447 

operation modeling and the nuances of such improvement with/without hydroclimatic 448 

information at different time scales. Hierarchical temporal scale models work for some cases, 449 

although they do not always perform better than the models constructed on the single time scale 450 

under the same experiment settings. When one of the dominant explanatory variables (e.g., 451 

inflow or storage) is missing, a better organization (i.e., hierarchical temporal configuration) of 452 

the explanatory variables further enhances the performance. For example, in Experiment 2, 3, 5 453 

and 6, more than 60% of reservoirs benefit from re-arranging the training data in hierarchical 454 

configuration (WD and MD) compared to the single daily scale configuration, although the 455 

DDMs in this experiment contain the same amount of information. This highlights the benefits of 456 

incorporating the multi-temporal scale of reservoir behaviors into the configuration of DDM to 457 

capture the reservoir operation under various targets, in particular when hydrometeorological 458 

information or reservoir operational records are limited. 459 

Regardless of the experimental settings, WD consistently outperforms another two-layer 460 

hierarchical model MD in simulating reservoir release decisions. Specifically, in Experiment 6 461 

(Figure 3f) with the reservoir storage only as model inputs, performances of about 80% of 462 

reservoirs have been improved by hierarchical framework (WD), and it is more prominent than 463 

the MD where the first layer simulates the reservoir release on the monthly scale. It probably 464 

indicates that sub-monthly operational information and hydroclimatic forcing, which shows 465 

significant short-term variability, may provide a substantial portion of the information needed for 466 

accurate reservoir operation modeling. By incorporating information on moderate and fine time 467 

scales, WD DDM can well capture the complex dynamics of reservoir operations and yield 468 

highly accurate predictions, which may help inform the development of more effective and 469 

efficient reservoir management strategies in the face of increasing hydroclimatic variability. 470 
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 471 

Figure 3. Improvement of NSE by hierarchical time scale framework (𝛥𝑁𝑆𝐸 = 𝑁𝑆𝐸ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙 472 

– 𝑁𝑆𝐸𝑠𝑖𝑛𝑔𝑙𝑒) in a) Experiment 1 b) Experiment 2 c) Experiment 3 d) Experiment 4 e) 473 

Experiment 5 f) Experiment 6. 𝑁𝑆𝐸ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙 represents the performances of hierarchical time 474 

scale models (WD, MD), while the 𝑁𝑆𝐸𝑠𝑖𝑛𝑔𝑙𝑒 is the performance of a single time scale model 475 

(D). 476 

3.3 Spatial pattern of DDM reservoir operation under various temporal configurations 477 

Figure 4 shows the spatial distribution of average NSE improvement by WD and MD 478 

from Daily configuration for all six experiments, respectively. When the dominant explanatory 479 

variables (i.e., inflow and storage) are fed as model inputs (Experiments 1, 4), most reservoirs 480 

across the CONUS do not benefit significantly from the hierarchical temporal scale framework 481 

(Figure 4a, d). This can be attributed to the fact that the daily single model performs well for 482 

most reservoirs (Figure S1 in Supplementary Materials) with a median NSE higher than 0.85 483 

(Figure 2a, d), which demonstrates the efficacy of data-driven models for reservoir release 484 

simulations. When the most relevant variables are sufficiently represented in the data, additional 485 

methods for regulated flow simulation refinement may not be necessary. Hierarchical models 486 

face challenges in improving the accuracy of models for reservoirs that primarily serve a single 487 

purpose or are predominantly operated at a single time scale. For instance, the hierarchical time 488 

scale model does not improve and even degrades release modeling of run-of-river reservoirs. In 489 

the New England district, where many reservoirs have limited storage capacity and are primarily 490 

used for flood control during flood seasons and recreation during non-flood seasons, hierarchical 491 

models are less effective across all experiments (Figure 4). This highlights the importance of 492 

identifying the appropriate modeling resolution to match the time scale at which reservoir release 493 

decisions are made. 494 
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 495 

Figure 4. Spatial distribution of average NSE improvement 𝛥𝑁𝑆𝐸 from Daily scale to 496 

hierarchical time scale configuration of DDMs in a) Experiment 1 b) Experiment 2 c) 497 

Experiment 3 d) Experiment 4 e) Experiment 5 f) Experiment 6. The circles with black solid 498 

edges represent reservoirs labelled as “lock & dam”. 499 

Hierarchical models send positive signals for reservoirs in the Midwest. The hierarchical 500 

DDM improves NSE over Daily scale in many reservoirs in the western United States as shown 501 

in Figure 4, and the magnitude of improvement in model performance varies across different 502 

experiment setups. For experiment 1 and 4 that includes both inflow and storage as model inputs, 503 

the average NSE improvement 𝛥𝑁𝑆𝐸 is subtle (about 0.1~0.25) for some reservoirs in Montana, 504 
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Utah, New Mexico and Texas (Figure 4a, d). It implies that the hierarchical model is effective in 505 

capturing reservoir release behavior in western regions, at least to a comparable degree as the 506 

daily single model. For experiment 2 and 5 that does not contain storage fed into models, release 507 

simulations are boosted by hierarchical temporal scale framework for reservoirs on the High 508 

Plains (e.g., Texas, Oklahoma, Kansas), highlighting the signature of seasonal cycle of water 509 

supply operation in these reservoirs. Reservoirs that provide water for agricultural irrigation or 510 

municipal/industrial use often base release decisions on the water level or storage status. In 511 

situations where operational records of storage are unavailable, comprehensive utilization of 512 

inflow data across various temporal scales may serve as a compensatory mechanism. Many 513 

water-supply reservoirs maintain nearly constant storage volume at the start and end of an 514 

operational year, resulting in a nearly balanced inflow and release volume at a certain temporal 515 

scale (monthly, seasonally, or annually). Thus, it becomes feasible to detect reservoir behavior 516 

when changes in inflow over the preceding months or weeks are known. It would facilitate 517 

accurate estimate of regulated flow regimes in the absence of readily available datasets on water 518 

level or storage under future scenarios. In the case of reservoirs located in the Rocky Mountains 519 

and the Colorado River basin, the hierarchical model consistently enhances the accuracy of 520 

release modeling, regardless of whether inflow or storage is excluded as explanatory variables 521 

(Experiment 2 and 5; Experiment 3 and 6). As stated in Section 3.1, inflow generally reflects 522 

short-term variability or the effects of fine-scale weather fluctuations, while storage represents 523 

the cumulative hydrologic response during past periods. The absence of either of these dominant 524 

factors results in a loss of vital information for accurate release modeling. Hence, the behavior of 525 

reservoirs in the west cannot be fully captured by DDMs at a single temporal scale (Figure S1c, 526 

d, e, f in Supplementary Materials). Among the observational records analyzed in this study, 216 527 

reservoirs serve at least 3 purposes and 79 out of 327 serve at least 5 purposes. In spite of 528 

accounting for multiple time scales may not be imperative for simpler reservoirs that serve fewer 529 

purposes or operate under less complex conditions, it is crucial for effectively modeling multi-530 

purpose reservoirs and multi-reservoir systems. 531 

In summary, our analysis indicates that reservoir release modeling can be enhanced by 532 

leveraging the availability of adequate information, with particular emphasis on key explanatory 533 

variables. The inclusion of meteorological forcing data may also be beneficial for accurate 534 

simulation. In situations where the records of reservoir inflow or storage are inaccessible, the 535 

comprehensive utilization of multiple temporal scales can lead to improved modeling outcomes. 536 

3.4 Dominant variables of reservoir release across time scales 537 

Although DDMs frequently achieve remarkable results in model performance, further 538 

sensitivity analysis would help to diagnose and interpret the empirical relations captured by the 539 

“black-box” DDMs. Different data-driven models have individual strengths and weaknesses in 540 

simulating the reservoir release, and few single models could consistently outperform others 541 

(Yang et al. 2021). Performances of different data-driven models can vary widely by the 542 

modeling schemes, by the ways of training data structure, as well as by the statistical 543 

measurement used. Model interpretability benefits further improvement in performance and 544 

providing insights on anthropogenic behaviors under hydroclimatic variabilities. The hierarchical 545 

configurations of DDMs allow us to explore whether reservoir operation depends on different 546 

variables and how the dominant variables change across time scales, thus providing an 547 

interpretable avenue to enhance the understanding of reservoir behavior. 548 
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A prevalent method for enhancing interpretability is to analyze variable importance. 549 

Many approaches can be taken to assess feature importance of machine learning models. Wei et 550 

al. (2015) conducted a comprehensive review of various techniques for variable importance 551 

analysis in different disciplines and analyze their relative merits. Recently, Quinn et al. (2019) 552 

used time-varying sensitivity analysis to open the black box of multi-reservoir operation models. 553 

Additionally, Shapley Additive Explanations (SHAP) (Lundberg and Lee, 2017) and permutation 554 

feature importance (Breiman, 2001; Fisher, Rudin, and Dominici, 2018) have gained popularity 555 

in recent years. In this study, we used well-trained data-driven models to conduct a variable 556 

importance analysis that explores the impact of decision variables on reservoir release schemes 557 

across different time scales. We employed the permutation feature importance method to 558 

measure variable importance, which involves randomly permuting feature values in the input 559 

data and examining the effect on model performance, as measured by a specific metric (such as 560 

NSE in our study). The extent of the decrease in performance reflects the relative importance of 561 

the feature, with a greater decline in performance indicating a more influential feature in the 562 

model. Then the variable that leads to the largest change is referred to as the most important 563 

variable, or dominant factor. 564 

 565 
Figure 5. Spatial distribution of dominant factors across daily, weekly and monthly scales. The 566 

circles with black solid edges represent reservoirs labelled as “lock & dam”. The inset at the 567 

bottom left corner depicts the number of reservoirs in which a certain variable (inflow, storage, 568 

precipitation or potential evapotranspiration) is identified as the dominant factor influencing 569 

release decisions. 570 

 571 
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Figure 5 displays the most important variable for each reservoir across CONUS on the 572 

different time scales (daily, weekly and monthly) of Daily, WD and MD configurations in 573 

Experiment 1 that contains all the variables (inflow, storage, precipitation, PET, snow depth and 574 

air temperature) as model inputs. For half of reservoirs (163 out of 327), the same variable has 575 

critical influences on the release on all time scales (daily, WD-weekly, MD-monthly, WD-daily, 576 

MD-daily), likely implying the consistency of their operating strategies and trade-offs on various 577 

time scales, and there may be a primary purpose that dominates the operation process throughout 578 

the year. For 120 of these reservoirs, inflow plays a decisive role in reservoir release at all time 579 

scales, while storage volume is the most instructive variable for 42 of these. Daily models with 580 

good performance (e.g., reservoirs labeled as “lock & dam” along the Arkansas River and 581 

Columbia River) generally identify inflow as the primary variable, as inflow exhibits high short-582 

term variability and can effectively inform the daily release decision. Reservoirs located on the 583 

High Plains, where water level is a crucial factor in release operations, consistently show storage 584 

as the dominant factor influencing release decisions. The findings of variable importance in 585 

California and the High Plains differ slightly from those reported by Hejazi et al. (2008) (e.g., 586 

many reservoirs in these two regions reported by Hejazi et al., 2008 do not consider storage as 587 

the dominant factor), who investigated the dependency of operators’ release decisions using the 588 

method of information theory based on weekly/monthly operational records. It should be noted 589 

that Hejazi et al. (2008) included past release as a decision variable, while this study did not 590 

consider it as a model input. Furthermore, the operational dataset utilized in this study is updated 591 

to 2016, which may account for this discrepancy. Martis Creek Lake, located in the Sierra 592 

Nevada Mountains outside the town of Truckee, serves the dual purpose of flood control and 593 

recreation, with precipitation (P) being the most predictive variable for reservoir inflow at all 594 

timescales. The lake is situated in a headwater watershed with a small contributing area, which 595 

further supports the use of P as a reliable proxy for inflow prediction. It is worth mentioning that 596 

for two reservoirs, the Elephant Butte Reservoir in New Mexico and the Moon Lake in Utah, 597 

PET has a major effect on reservoir release at the daily, WD-weekly, and MD-monthly scales 598 

(maps along the diagonal shown in Figure 5), which could involve considerable reservoir 599 

evaporation and water use for agricultural irrigation in the arid, semi-arid western mountains. 600 

These results of model-based sensitivity analysis further validate the findings given by the 601 

comparison of Experiments 1 and 4. That is, reservoir inflow or storage volume has a paramount 602 

influence on the release decision rather than hydroclimatic forcing. Only for very few reservoirs, 603 

hydroclimatic forcing directly dominates the reservoir release. 604 

It is interesting to notice that more than one third of (117 out of 327 for WD; 108 out of 605 

327 for MD configuration) reservoirs vary in their dependency on decision variables at different 606 

time scales (shifted from weekly to daily in the WD; from monthly to daily in the MD 607 

configurations), suggesting that reservoir operators consider different information at different 608 

time scales to fulfill multiple designed purposes. For MD shown in Figure 5, at the monthly 609 

scale, operations of 214 reservoirs primarily depend on the reservoir inflow, and 91 reservoirs 610 

rely more on storage volume. At the daily scale, the number of reservoirs with major dependency 611 

on inflow decreases to 175 and that of reservoirs relying more on storage volume increases to 612 

174. From the coarse scale to the fine scale, nearly 20% reservoirs (64 out of 327) shift their 613 

primary dependence from inflow to storage volume. As mentioned in Section 3.3, many 614 

reservoirs tend to maintain nearly constant water level or storage at the beginning and end of an 615 

operational year, which can result in a balance between the total volume of inflow and release at 616 

certain time scales (e.g., annually, seasonally). Consequently, it is not surprising that for almost 617 
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two-thirds of the reservoirs studied, inflow exhibits the strongest relation with release at the 618 

monthly scale. At the daily scale, operators tend to give greater weight to current or recent 619 

storage status (or water levels) when making release decisions, since reservoir storage is a crucial 620 

factor in determining the availability of water for downstream users or for maintaining water 621 

levels within acceptable limits. Although neither snow depth nor temperature is detected as the 622 

dominant factor at any of the reservoirs, it would be premature to dismiss these two factors as 623 

unimportant. This is probably on the ground that the variable importance analysis used in this 624 

study is model-based rather than based on observational data, which sometimes might produce 625 

misleading results due to inadequate feature selection or inappropriate model configuration, 626 

particularly when snow depth or air temperature is tightly linked to other explanatory variables 627 

such as P or PET. It is important to exercise caution in interpreting the results. Additionally, we 628 

merely focus on the most important variables in this study, but snow depth and air temperature 629 

are likely to play a substantial role in snow-dominated, high-altitude mountain reservoirs.  630 

3.5 Reservoir release behaviors across time scales 631 

Compared to attempts to capture reservoir operation at a fixed time scale, the hierarchical 632 

temporal configuration in this study demonstrates improved model performance while utilizing 633 

the same input information, particularly when essential decision variables such as inflow or 634 

storage are inaccessible. In addition, the sensitivity analysis suggests that operation in many 635 

reservoirs depends on different information at different time scales. In the following paragraphs, 636 

we picked the multi-purpose Belton Lake reservoir to elaborate how various operation targets 637 

manifest their signatures at different time scales, thus requiring hierarchical temporal 638 

configuration to fully capture the tradeoffs among multiple operation targets. 639 

The Belton Lake (TX00002) is located on Leon River in Texas with 536.8 million cubic 640 

meter (or 435,500 acre-feet) conservation capacity (Texas Water Development Board, 2015) and 641 

the maximum storage volume of around 1440 million cubic meters. The 192-feet high dam 642 

maintains the water level at elevation between the conservation pool elevation of 594 feet and 643 

the crest elevation of 631 feet, with flood control, water supply and irrigation as listed operation 644 

targets under the management of U.S. Army Corps of Engineers. The annual mean inflow 645 

volume is 641.5 million cubic meters. The Belton Lake provides an example with large storage 646 

capacity in humid subtropical climate. The DDM in Experiment 5 (with inflow only) has NSE of 647 

0.848, 0.969, 0.920 for Daily, WD and MD configuration, respectively. The DDM identifies 648 

reservoir storage as the dominant variable on release at Daily, WD, and MD scales, respectively. 649 

Figure 6 shows the scatter plots of release vs. inflow and storage vs. inflow at various 650 

time scales. At the annual time scale (Figure 6d), the outflow is highly correlated with inflow, 651 

suggesting the reservoir has seasonal flow regulating capacity. The slightly lower annual release 652 

than the inflow (Figure 6d) indicates water balance is roughly held on annual time average. 653 

Water supply withdrawals made through pumping or diversion have a limited impact on the mass 654 

balance. The randomness between monthly inflow and release (Figure 6c) shows a wide range 655 

during different seasons indicating the seasonal buffering capacity of the reservoir storage. The 656 

storage vs. release scatter plot shows reconcilable patterns starting from monthly scale. 657 
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 658 

  659 
Figure 6. Relationship between inflow and release at a) daily, b) weekly, c) monthly, d) annual 660 

scale and; Relationship between reservoir storage and release at e) daily, f) weekly, g) monthly, 661 

h) annual scale of Belton Lake (TX00002). 662 

Figure 7a shows the flow duration curves of Belton Lake inflow and releases simulated 663 

by different DDM configurations. The Daily, WD and MD achieve similar predictability to 664 

capture the regulation during medium to high flow conditions (i.e., flow larger than 20% 665 

exceedance probability). The Daily scale DDM overestimates the low to medium flow range 666 

(i.e., flow less than 40% exceedance probability) with given inflow only, and the MD scale 667 

DDM slightly overestimates the medium flow (i.e., flow between 25% and 45% exceedance) and 668 

underestimates the low flow range (i.e., flow less than 60% exceedance probability). The WD 669 

scale DDM reproduces the flow duration curve for almost all flow conditions although not 670 

perfectly. 671 

The hydrograph of Year 2002 in Figure 7b shows the seasonal pattern and short-term 672 

variation produced by different DDM configurations. The Daily Scale DDM tends to exhibit a 673 

faster decay in release following flood events, since the daily scale model is sensitive to the daily 674 

input and lacks the long-term information. The WD scale configuration demonstrates superior 675 

performance in capturing both seasonal water supply and flood control release at the Belton 676 

Lake. As an illustration, in November 2002, when the daily model produces a false release 677 

response while the hierarchical models do not. It exposes the shortcomings of a single daily scale 678 

model for multi-purpose reservoirs that consider reservoir storage as an influential factor. Many 679 

large reservoirs in Texas adhere to a general strategy based on minimizing the risk and 680 

consequences of releases contributing to downstream flooding in the flood seasons, while 681 

ensuring the maximum design water surface is never exceeded (as shown in Figure 6e). Release 682 

decisions are contingent upon the flood control pool storage capacity. In the non-flood seasons, 683 

these reservoirs strive to maximize water levels within the conservation pool, without surpassing 684 

its upper limit (i.e., the top of conservation pool). When storage information is not explicitly 685 

provided as an input, it can be challenging for a daily single model to consistently and accurately 686 

respond to inflow information. Although data-driven models are expected to derive storage 687 

information from the physical constraints (e.g., water balance equation) and the accurately 688 

simulated release time series (Figure 7c and Figure S9 in Supplementary Materials), challenges 689 

remain due to the inaccurate simulation in release, error accumulations, missing water budget 690 
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terms, etc. If only reservoir inflow is given, which typically represents short-term hydrologic 691 

variability, the long-term target may be overlooked by a daily single time scale model due to the 692 

absence of long-term hydrologic indicator. An example from Figure 7c illustrates that from 693 

September to November in 2002, the water level (storage status) fell below the target 694 

conservation capacity, resulting in the reservoir not releasing water in response to inflow events 695 

during this period. Storage is recognized as the dominant factor that determines the reservoir 696 

release decision at both daily and weekly scales during this period (Figure 7d, e). In the absence 697 

of the storage that can reflect long-term hydrologic variability, the Daily model fails to capture 698 

the implicit long-term patterns inherently embedded in the absent key variable. This “short sight” 699 

explains the erroneous response observed in Figure 7b (gray line), further emphasizing the 700 

importance of fully utilizing multiple temporal scales of information. In contrast, the hierarchical 701 

model with multiple time scales can better incorporate the complex dynamics of the reservoir 702 

system, which can lead to more reliable and robust simulation results. 703 

 704 

 705 
Figure 7. Experiments exploring the dominant factors and simulated outputs of Belton Lake 706 

(TX00002) in Texas. Comparisons of observed and simulated release in Experiment 5 (only 707 

inflow as inputs) shown in a) Flow Duration Curve (FDC) and b) hydrograph during the calendar 708 



manuscript submitted to Water Resources Research 

 

year 2002 (test period); c) Conservation capacity, observed storage, and simulated storage during 709 

the calendar year 2002, where the simulated storage is derived from the water balance equation, 710 

inflow, and simulated release; Time-varying dominant factors from Experiment 4 (both inflow 711 

and storage as model inputs) shown in d) daily model, e) weekly layer of WD model, and f) daily 712 

layer of WD model during the calendar year 2002. The sub-axis presents the computed absolute 713 

variable importance values obtained through the application of Shapley Additive Explanations 714 

(SHAP) method (Lundberg and Lee, 2017). The dominant factors, characterized by the highest 715 

absolute variable importance values, are denoted by different colors. 716 

These observations highlight the importance of appropriately organizing training data at 717 

various time scales in order to enable machine learning techniques to capture the underlying 718 

relationships inherent at each time scale. We also used other machine learning techniques (e.g., 719 

Random Forest, see Figure S4, S5, S6 in Supplementary Materials) to configure the hierarchical 720 

DDM and achieved satisfactory results, suggesting the predictability is not limited by the choice 721 

of specific machine learning model. From the perspective of effectively training the machine 722 

learning models, hierarchical temporal configuration not only yields better predictability, but 723 

also provides more meaningful interpretation of the DDM. 724 

4 Discussion 725 

4.1 Strategies and limitations of data-driven reservoir operation modeling 726 

In this study, we employed LSTM networks to simulate reservoir release decisions, 727 

primarily due to their similarities to traditional hydrological models to some extent — for 728 

example, current hydrological fluxes are determined by current inputs and past states. The 729 

strength of LSTM networks lies in their ability to learn nonlinear patterns and long-term 730 

dependencies, making them ideal for simulating reservoirs where the hydrological behavior may 731 

change over time. LSTMs are expected to be suitable for modeling when the decision variables 732 

(or model inputs) exhibit temporal dependence. While LSTM networks have become widely 733 

used in the hydrology community, barriers may exist due to the requirement of a large amount of 734 

training data and careful finetuning processes to achieve accurate results. In addition, the 735 

measurement of feature importance in neural networks is not so straightforward and make it lack 736 

interpretability. It is essential to acknowledge that LSTM networks may not be the optimal 737 

choice for simulating reservoir operations all the time, especially in cases where actual operation 738 

rules are explicit. For instance, in some highly engineered watersheds in the western United 739 

States, which are equipped with a large number of dams, the reservoir release patterns can 740 

deviate considerably from the natural flow characteristics of the system. These deviations are a 741 

result of the complex interactions between the reservoir operations and the hydrological 742 

processes, which can be influenced by a range of factors such as climate change, water demand, 743 

and land use change. In these cases, other white-box models such as Classification and 744 

Regression-Tree (CART) or Random Forest (RF), which are more intuitive for decision-makers 745 

and excel in capturing patterns from various features, may be more appropriate (e.g., Yang et al., 746 

2016). Moreover, a notable drawback of LSTM and other RNN-based models typically pertains 747 

to their dependence on data continuity, particularly when the lookback or look forward window 748 

is extensive. For instance, in the context of rainfall-runoff or models involving surface-749 

groundwater interaction, such a window may span as much as 180, 270, or 365 days (e.g., 750 

Kratzert et al., 2019). While preprocessing techniques can handle missing data to create a 751 



manuscript submitted to Water Resources Research 

 

continuous time series as inputs, the usefulness of models needing continuous data might be 752 

limited in situations where reservoir operation records are scarce. 753 

Unlike many well-established data-driven models for reservoir operations, such as those 754 

developed by Turner et al. (2021), Chen et al. (2022), Dong et al. (2023), and Brunner et al. 755 

(2023), this study omits reservoir storage simulation, which is a frequently pursued research 756 

objective in the development of reservoir operation models. It is because this study aims at 757 

investigating the significance of multi-timescale information in data-driven reservoir operation 758 

modeling. Specifically, this study seeks to examine the impact of incorporating multiple 759 

temporal scales of decision variables in the construction of models for reservoir release and 760 

aspires to contribute to the ongoing effort to enhance the performance and robustness of data-761 

driven regulated flow simulations. It is noteworthy that the interdependency between reservoir 762 

inflow, storage, and release across various time scales (as pointed out in Section 3.3 and the 763 

example shown in Figure 6) can be leveraged to extract informative features for input into white-764 

box models (i.e., feature engineering considering multiple scale temporal information), with the 765 

potential to enhance the balance between model performance and interpretability. By exploiting 766 

the rich temporal dynamics of reservoir operations data, it can facilitate a more comprehensive 767 

and interpretable representation of the underlying processes. 768 

The feasibility of data-driven reservoir simulations can be further boosted through the use 769 

of hybrid strategies that combine rule-based or conceptual operation schemes with machine 770 

learning techniques (Gangrade et al., 2022; Dong et al., 2023). By leveraging expert knowledge 771 

in the form of appropriate feature engineering (Yang et al., 2016, 2017), and by incorporating 772 

reservoir storage dynamics derived from a range of advanced sensing techniques (Eilander et al., 773 

2014; Van Den Hoek et al., 2019; Chen et al., 2022; Sorkhabi et al., 2022), it is possible to use 774 

data-driven models to better reconstruct downstream flow in data-sparse regions, using 775 

meteorological forcing and inflow generated by hydrological models. 776 

4.2 Hierarchical nature of anthropogenic decisions 777 

DDMs are generally not constrained by the complexity of the training dataset and can 778 

achieve better prediction with more training variables. However, the results illustrated in Figure 779 

4 suggest that in an identical experimental setup, employing congruent variables and model 780 

architecture while maintaining consistent model complexity (as indicated by an equivalent total 781 

parameter count), the hierarchical timescale model—which encompasses both coarse and fine 782 

scales and is anticipated to acquire an augmented amount of temporal data—does not invariably 783 

surpass the performance of a single-timescale model. It indicates that reservoir operation 784 

decisions under different operation targets are associated with different time scales and require 785 

different information. Therefore, simply including more variables into the training datasets or 786 

increasing the hierarchical layers does not guarantee better predictability. This observation 787 

highlights the importance of providing appropriate information that matches the temporal 788 

resolution to capture reservoir release behavior under various targets. 789 

Although the scaling issue in hydrologic processes has been well recognized by the 790 

hydrologic community, there are few studies to investigate the scaling of decision making in 791 

water resources management. In representing anthropogenic components (by either simulation or 792 

optimization approach) in hydrologic models, the decision makings are generally based on one 793 

single time scale. For example, farmers’ irrigation decisions depend on soil moisture conditions. 794 
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The reservoir operation policy is optimized to balance the tradeoff between water supply benefits 795 

and flood risk based on daily streamflow. The hierarchical temporal scale configuration of DDM 796 

in this study explicitly shows that the single temporal scale model cannot fully capture the 797 

reservoir release under various operation targets. Different operation targets are associated with 798 

different temporal scales and require corresponding hydroclimatic information. For example, the 799 

reservoirs in the Colorado River Basin use the seasonal snowpack condition to forecast the water 800 

supply (Xiao et al., 2018; Bureau of Reclamation, 2022), while the hydroelectric generation is 801 

based on hourly demands from power grids. 802 

Beside the dependence on cross-scale information, anthropogenic decisions also interact 803 

at different scales. Short-term decisions (e.g., operation of water resources infrastructure) are 804 

constrained by long-term decisions (e.g., planning of water resources infrastructure), and the 805 

objectives of decisions at different scales may require tradeoffs. For example, given the same 806 

amount of agricultural water supply, farmers can tradeoff between crop type and irrigated area 807 

(decisions made before growing season) and the actual irrigation intensity (decisions made 808 

during growing season), which results in different water release amount and frequency. The 809 

hierarchical temporal configuration of DDM in this study recognizes the cross-scale interaction 810 

feature and handles this feature by simulating the daily release deviation from the 811 

weekly/monthly release. For traditional optimization formulation in water resources 812 

management, we believe the hierarchical optimization (Yeo et al., 2007; Karsanina et al., 2018) 813 

would be a promising configuration to represent interaction of decisions made across scales. 814 

As hydrologic models and observations continue to improve and provide better 815 

prediction, the ultimate question is how hydrologic prediction (and what types of prediction) can 816 

be effectively utilized to improve the operation of reservoirs. There are efforts to forecast 817 

informed reservoir operation (FIRO) (Delaney et al., 2020; Zarei et al., 2021). Hydrologic 818 

predictions at different time scales are based on different processes (e.g., seasonal projection 819 

based on snow water storage, short-term prediction based on weather forecast) and subject to 820 

various level of uncertainty. In addition, different forecast products have different lead-time 821 

(ranging from hours by short-term weather forecast to seasons by climate models), a better 822 

understanding of hydrometeorological factors at various time scales affecting reservoir operation 823 

would facilitate FIRO to select the forecast products suitable for a specific reservoir. 824 

5 Conclusions 825 

In this study, we proposed a hierarchical temporal scale framework to improve the data-826 

driven reservoir release modeling. When the dominant explanatory variables observed inflow or 827 

storage are unavailable as inputs, more than 60% of reservoirs across the CONUS gain the 828 

improvement in model performances, while modeling of 80% of them can be more accurate by 829 

this framework if the first layer is constructed at weekly scale. The proposed framework 830 

accounts for the influence of multiple temporal-scale variability to accurately predict reservoir 831 

release behavior, which may have inspiring implications for data-driven reservoir release 832 

modeling in regions where operating records are incomplete or limited in availability. 833 

This hierarchical framework is not model specific and therefore has broad applicability. 834 

By further adjusting the primary states simulated on the first coarse scale, which is partially 835 

similar to the operating process of reservoir managers in response to the daily inflow 836 

corresponding to the predefined water control plans, the hierarchical architecture is conducive to 837 

improve both the performances and the interpretability of data-driven models, and can be further 838 
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adapted to be closely integrated with the decision-making of managers. It also demonstrates the 839 

similarity of a natural-human system and hydrologic processes across temporal scales. In future 840 

work, data-driven reservoir components that comprehensive utilization of multi-timescale 841 

information could be incorporated into physics-based models to improve the accuracy of 842 

hydrological process simulations. 843 

Results of different experiment settings reveal that reservoir inflow and storage volume 844 

have a paramount influence on the release strategies. Model-based sensitivity analysis proves it, 845 

and further illustrates that variable importance can vary in time periods and across multiple time 846 

scales. For nearly 1/3 reservoirs across the CONUS, reservoir operations mainly depend on 847 

different decision variables at different time scales, and for several reservoirs, such as some in 848 

the Upper Colorado, hydroclimatic forcing still has major influence on the release, addressing 849 

more demands on the assessment and planning of reservoir status and accurate forecasting of 850 

hydroclimatic forcing. 851 

Appendix 852 

The Long-Short Term Memory (LSTM) computations are expressed as 853 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ⋅ 𝑥𝑡  + 𝑊ℎ𝑖 ⋅ ℎ𝑡−1 + 𝑏𝑖) 854 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ⋅ 𝑥𝑡 + 𝑊ℎ𝑓 ⋅ ℎ𝑡−1 + 𝑏𝑓) 855 

𝑔𝑡 =𝑡𝑎𝑛ℎ (𝑊𝑥𝑔 ⋅ 𝑥𝑡 + 𝑊ℎ𝑔 ⋅ ℎ𝑡−1 + 𝑏𝑔) 856 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜 ⋅ 𝑥𝑡 + 𝑊ℎ𝑜 ⋅ ℎ𝑡−1 + 𝑏𝑜) 857 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡 858 

ℎ𝑡 = 𝑜𝑡 ⊙𝑡𝑎𝑛ℎ (𝑐𝑡) 859 

where 𝑊𝑥𝑖, 𝑊𝑥𝑓, 𝑊𝑥𝑔 and 𝑊𝑥𝑜 are learnable weights of inputs 𝑥𝑡, 𝑊ℎ𝑖, 𝑊ℎ𝑓, 𝑊ℎ𝑔 and 𝑊ℎ𝑜 are 860 

learnable weights of the previous hidden states ℎ𝑡, and 𝑏𝑖, 𝑏𝑓, 𝑏𝑜 and 𝑏𝑔 are biases of the four 861 

gates, respectively. 𝜎 means sigmoid function, tanh is hyperbolic tangent function, and ⊙ 862 

represents element-wise multiplication. 863 
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