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Abstract

The estimation of the slope (b-value) of the frequency magnitude distribution of earthquakes is usually based on a formula

derived decades ago under the hypothesis of continuous exponential distribution of magnitudes. However, as the magnitude is

provided with a limited resolution (one decimal digit usually), its distribution is not continuous but discrete. In the literature

this problem is solved mostly by applying an empirical correction to the minimum magnitude of the dataset depending on the

binning size, but a recent paper recalled that this solution is only approximate and proposed an exact formula. The same paper

further showed that the b-value can be estimated also by considering the positive magnitude differences (which are proven to

follow an exponential discrete Laplace distribution) and that in this case the estimator is more resilient to the incompleteness

of the magnitude dataset. In this work we provide the complete theoretical formulation including the derivation of i) the means

and standard deviations of the discrete exponential and Laplace distributions; ii) the estimators of the decay parameter of the

discrete exponential and trimmed Laplace distributions by the methods of the mean as well as of the maximum likelihood; and

iii) the corresponding formulas for the parameter b. We further deduce iv) the standard confidence limits for the estimated b.

Moreover, we are able v) to quantify the error associated with the formula including the Utsu minimum-magnitude correction.

We tested such formulas on simulated synthetic datasets including cases with a certain amount of incompleteness.
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Key points:

• Estimators of decay parameter of the discrete exponential and trimmed
Laplace distributions by methods of the mean and maximum likelihood.

• Formulas for estimating the parameter b and the standard confidence limits
for the estimated b.

• Test of such formulas using simulated set with or without incompleteness.

 

Abstract

The estimation of the slope (b-value) of the frequency magnitude distribution
of earthquakes is usually based on a formula derived decades ago under the
hypothesis of continuous exponential distribution of magnitudes. However, as
the magnitude is provided with a limited resolution (one decimal digit usually),
its distribution is not continuous but discrete. In the literature this problem is
solved mostly by applying an empirical correction to the minimum magnitude
of the dataset depending on the binning size, but a recent paper recalled that
this solution is only approximate and proposed an exact formula. The same
paper further showed that the b-value can be estimated also by considering
the positive magnitude differences (which are proven to follow an exponential
discrete Laplace distribution) and that in this case the estimator is more resilient
to the incompleteness of the magnitude dataset. In this work we provide the
complete theoretical formulation including the derivation of i) the means and
standard deviations of the discrete exponential and Laplace distributions; ii)
the estimators of the decay parameter of the discrete exponential and trimmed
Laplace distributions by the methods of the mean as well as of the maximum
likelihood; and iii) the corresponding formulas for the parameter b. We further
deduce iv) the standard confidence limits for the estimated b. Moreover, we
are able v) to quantify the error associated with the formula including the
Utsu minimum-magnitude correction. We tested such formulas on simulated
synthetic datasets including cases with a certain amount of incompleteness.

Plain language summary
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The frequency distribution of the sizes (magnitudes) of earthquakes is partic-
ularly relevant for seismic hazard and forecasting. In particular, the slope (b-
value) of linear relation existing between the magnitude and the logarithm of
the earthquake frequency has been proposed as an index of the state of stress
within the Earth’s interior and then of the state of preparation of a future dam-
aging earthquake. In this work we provide a thorough formulation and detailed
discussion of the methods by which the b-value and its uncertainty can be cor-
rectly estimated when the magnitudes of earthquakes are given with a limited
resolution and discretised in equal-size bins. The performance of the different
methods is compared using simulated datasets including cases when a certain
number of earthquakes are randomly eliminated from the datasets so that to
reproduce the incompleteness observed in real data.

1 Introduction

The b-value of the frequency-magnitude distribution (FMD) (Gutenberg and
Richter, 1944)

log10 𝑁 = 𝑎 + 𝑏𝑀 (1)

is indicated by some researchers as a proxy of the level of differential stress within
the Earth (Scholz, 1968, 2015, Amitrano, 2003) and thus as an index of the state
of preparation of future strong earthquakes (Gulia and Wiemer, 2010, 2018,
2019, 2020). Some papers demonstrated that the b-value is negatively correlated
with the rake of the focal mechanism (Shorlemmer et al. 2005, Petruccelli et al.,
2018, Petruccelli et al., 2019a) and with the source depth (Spada et al., 2013,
Petruccelli et al., 2019b), although these results are controversial and others
argued that b-value variations are statistically insignificant as they are due to
artifacts of the methods used to determine it (Kagan 1999, 2002, 2003, Bird and
Kagan, 2004).

One of the most critical aspects in b-value computations is the determination of
the magnitude completeness threshold for the seismic dataset used (e.g. Woess-
ner and Wiemer, 2005, Mignan and Woessner, 2012) as an underestimation of
the threshold might bias (lowering) the estimated b-value, whereas an overes-
timation might reduce the size of the sample too much for a reliable b-value
determination.

Aki (1965), assuming a continuous exponential distribution of magnitudes, de-
duced the formulas for the estimation of the b-value and of its standard confi-
dence interval by the maximum likelihood method as
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𝑏 = 1
ln(10)(𝑀−𝑀𝑐) (2)

𝑏 = 1
ln(10)(𝑀−𝑀𝑐) (2)

𝜎𝑏 = 𝑏√
𝑁 (3)

where 𝑀 is the average magnitude, 𝑀𝑐 is the minimum (completeness) mag-
nitude and N is the number of magnitudes in the sample. Eq. (2) was also
derived by Utsu (1965) by the method of moments. Utsu (1966) evidenced that
the value estimated by eq. (2) is biased (higher) when magnitudes are binned
(usually to one decimal digit) and proposed an approximate correction to the
original formula

𝑏 = 1
ln(10)(𝑀−𝑀𝑐+𝛿) (4)

where 𝛿 is one half of the binning size (e.g. 0.05).

Studying in detail the statistical distribution of b, Shi and Bolt (1982) derived
a more accurate formula for the confidence interval

𝜎𝑏 = ln (10)𝑏2√ ∑𝑁
𝑖=1(𝑀𝑖−𝑀)2

𝑁(𝑁−1) (5)

Actually, if the magnitude data are binned, their distribution is not continuous
anymore, but discrete and this implies changes in the estimators. Marzocchi et
al. (2020) suggested that, when data are binned, the b-value computed through
the Utsu formula (4) has to be corrected by

𝑏corrected = 1
2� ln(10) ln [ 1+𝑏𝛿 ln(10)

1−𝑏𝛿 ln(10) ] (6)

Van der Elst (2021) showed that in case of discretized data, the exact formula
for estimating b is

𝑏 = 1
� ln(10) coth−1 [ 1

𝛿 (𝑀 − 𝑀𝑐 + 𝛿)] (7)

where coth−1is the inverse of the hyperbolic cotangent function. He also showed
that the b-value can be consistently computed by the absolute magnitude dif-
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ferences |Δ𝑀| (which follow the exponential discrete Laplace distribution) by

𝑏 = 1
2� ln(10) csch−1 [ 1

2𝛿 |Δ𝑀|] (8)

where csch−1 is the inverse of the hyperbolic cosecant and |Δ𝑀| is the average
of the absolute magnitude differences.

We point out that, in order to compute magnitude differences, one can proceed
essentially in two ways: in the first case, one computes the difference between
the second and the first magnitudes and then between the third and the second
and so on up to the last one:

|�𝑀|𝑖 = |𝑀𝑖+1 − 𝑀𝑖| , 𝑖 = 1, 2, … , 𝑁 − 1 (9)

This maximizes the number of data (in all N -1), but the differences are not
independent from one another, and this might produce some statistical bias. In
the second way, one computes the difference between the second and the first
magnitudes and then between the fourth and the third and so on up to the last
one

|�𝑀|𝑖 = |𝑀2𝑖 − 𝑀2𝑖−1| , 𝑖 = 1, 2, … , 𝑁/2 (10)

This grants that the differences are all independent from one another, but it
halves the number of data.

As incompleteness also affects the Laplace distribution of magnitude differences,
van der Elst (2021) suggested discarding all Δ𝑀 = 0 and then only to consider
absolute differences not lower than the binning size Δ𝑀 ′

𝑐 = 2𝛿. In this case
he showed that the b-value estimator becomes formally equivalent to that of
binned magnitudes of eq. (7):

𝑏 = 1
� ln(10) coth−1 [ 1

𝛿 (|Δ𝑀| − Δ𝑀 ′
𝑐 + 𝛿)] (11)

provided that |Δ𝑀| and Δ𝑀 ′
𝑐 replace 𝑀 and 𝑀𝑐 respectively. Van der Elst did

not derive any expressions for the confidence intervals but suggested computing
them by means of the bootstrap method (Hurvich and Tsai, 1989). He also
asserted that the estimation of b-value is more stable and robust if only positive
magnitude differences are used in eq. (11).

As van der Elst (2021) did not give much detail on his formulations, in this paper,
we provide (see Appendices A-H) i) the complete theoretical derivation of the
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first two moments of the discrete exponential distribution, ii) the estimators of
the decay parameter of the discrete exponential as well as of the discrete Laplace
distributions, even in case of distribution trimming, and iii) the corresponding
formulas for estimating the parameter b. Moreover, we further deduce iv) the
standard one-sigma confidence limits for the estimated b as

𝑏1 = 1
2𝛿 ln(10) ln [ 𝑐+√ 𝑐

𝑁
1+√ 𝑐

𝑁
] (12)

𝑏2 = 1
2𝛿 ln(10) ln [ 𝑐−√ 𝑐

𝑁
1−√ 𝑐

𝑁
] (13)

where

𝑐 = exp (2𝛿 ln(10)𝑏) = 102𝛿𝑏 (14)

In Appendix F, we provide also the formulas given here below involving only
natural logarithm functions:

𝑏 = 1
2𝛿 ln(10) ln ( 𝑀−𝑀𝑐+2𝛿

𝑀−𝑀𝑐
) (15)

𝑏 = 1
2𝛿 ln(10) ln ⎡⎢

⎣

2𝛿+√4𝛿2+(|∆𝑀|)2

|∆𝑀|
⎤⎥
⎦

(16)

𝑏 = 1
2𝛿 ln(10) ln ( |∆𝑀|−∆𝑀′

𝑐+2𝛿
|∆𝑀|−∆𝑀′𝑐

) (17)

They are fully equivalent respectively to eqs. (7), (8) and (11), proposed by
van der Elst, but do not include inverse hyperbolic functions that might be
unavailable in some computational environments.

In Appendix F, we demonstrate the remarkable result that v) the Utsu correc-
tion (4) coincides with the expansion of the exact formula (15) truncated at the
second order.

We stress also that our theoretical analysis allows us to show a further result
(see Appendix I), that is that the correct eq. (15) coincides with the eq. (6)
proposed by Marzocchi et al. (2020).

In order to show the efficiency of the various 𝑏-value estimators, we perform
a number of numerical simulations, with particular attention given to cases of
incomplete magnitude datasets. The details on how we produce complete and
incomplete synthetic datasets are given in Appendix L.

2 Comparing the b-values computed by different formulations

We first compare the various estimators of eqs. (2), (4), (7), (8), (11), (15), (16)
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and (17) on complete datasets simulated by eq. (L1b) and binned by eq. (L2).
In Table 1 we report the average b-values and their standard deviations 𝜎𝑏 com-
puted on a set of 10000 simulated datasets each including N=1000 magnitudes,
with binning size 2�=0.1 and with b=1. We also report the significance level p
of the two-sided Student’s t-test, testing the equality of the average b-value 𝑏
to the theoretical one 𝑏𝑠,

𝑡 = ∣𝑏−𝑏𝑠∣
𝜎𝑏

(18)

with 𝑁 −1 degrees of freedom, being 𝑁 the average number of data used for the
estimation in the magnitude datasets. This test is not fully rigorous because it
assumes that the distribution of b-values is Normal and this is reasonably true
only for large samples (with more than about 2000-5000 data). The correct test
to be applied should be somehow similar to that proposed by Utsu (1966), which
does not make any assumption on the statistical distribution of b. Unfortunately,
the Utsu (1966) test is designed to compare the b-values of two samples, not
to test if a sample mean corresponds to a given value. Furthermore, we use in
the test average values of standard deviations and number of data, taken over
the 10000 datasets, instead of values referring to a specific single dataset. Our
approximate approach may provide anyway some sort of quantitative evaluation
of the ability of each estimator to reproduce the simulated b-value, particularly
when the p value is very small (e.g. «0.01, allowing to safely discard the H0
hypothesis and thus suggesting that 𝑏 ≠ 𝑏𝑠) or when it is very large (e.g. »0.1,
suggesting to not discard the H0 hypothesis and then that 𝑏 ≈ 𝑏𝑠).

The results shown in Table 1 allow us to assert that most methods reproduce
the true b-value (𝑏𝑠 =1) reasonably well with the exception of the simple Aki
(1965) formula (2) for which the estimated b-value is significantly different from
the true one. These results are confirmed even by varying the number of data
N (100, 1000, 10000) and the theoretical b-value (0.7, 1.0, 1.5) (see Tables S1
to S9 in the supplementary material).

Table 1 – Estimates from complete simulated sets with N=1000,
2�=0.1 and b=1

Estimator Eq. b �b N p
Aki (1965) (2) 1.125526 0.040110 1000 0.001802
Aki (1965), Utsu (1966) (4) 0.996282 0.031422 1000 0.905831
Van der Elst (2021), magnitudes (7) 1.000699 0.031843 1000 0.982485
Van der Elst (2021), absolute differences by eq. (10) (8) 1.001422 0.044977 500 0.974800
Van der Elst (2021), absolute differences by eq. (9) (8) 1.001103 0.041072 999 0.978578
Van der Elst (2021), trimmed absolute differences by eq. (10) (11) 1.001801 0.048492 443 0.970397
Van der Elst (2021), trimmed absolute differences by eq. (9) (11) 1.001455 0.044096 885 0.973682
This paper, magnitudes (15) 1.000699 0.031843 1000 0.982485
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Estimator Eq. b �b N p
This paper, absolute differences by eq. (10) (16) 1.001422 0.044977 500 0.974800
This paper, absolute differences by eq. (9) (16) 1.001103 0.041072 999 0.978578
This paper, trimmed absolute differences by eq. (10) (17) 1.001801 0.048492 443 0.970397
This paper, trimmed absolute differences by eq. (9) (17) 1.001455 0.044096 885 0.973682

As eqs. (7), (8) and (11) are exactly equivalent to eqs. (15), (16) and (17)
respectively, in the following we will consider only the latter ones. It is worth
stressing that the approach used to compute magnitude differences (eq. 9 or
10) does not affect much the estimated b-value. However, we will see that it
influences significantly the confidence intervals estimated by eq. (12) and (13).

In Table 2 for different simulated complete datasets, we report b-values com-
puted by eq. (15) and confidence intervals estimated using various methods
from the literature and also by eqs. (12) and (13) introduced in this paper.
For all cases, the estimates based on eqs. (12) and (13) well correspond to the
standard deviation 𝜎𝑏 computed from the simulated datasets and to confidence
limits computed by other methods.

In Table 3 we report b-values computed for trimmed magnitude differences by
eq. (17) and confidence intervals computed by eqs. (12) and (13), when dif-
ferences are computed using eqs. (9) and (10). It is to note that confidence
intervals estimated by independent differences (eq. 10) well correspond to the
standard deviation 𝜎𝑏 computed from simulated datasets, whereas when using
non independent differences computed by eq. (9) there is an underestimation
by about 22%. The latter might be related to some sort of data correlation that
reduces the number of “effective” independent data in the difference dataset.
Then, we conclude that to compute differences it is always preferable to use eq.
(10), and this will be our choice in the following computations.

Table 2 – One-sigma confidence intervals for complete simulated sets

b-
value

N b �b Aki
eq.(3)

Shi-
Bolt
eq.(5)

b−b1
eq.(12)

b2−b
eq.(13)

1
2 (b2−b1)

Table 3 – One-sigma confidence intervals for complete simulated sets

b-
value

Eq. N b �b �b−
eq.(12)

�b+
eq.(13)

1
2 (b2−b1)

(10)

7



b-
value

Eq. N b �b �b−
eq.(12)

�b+
eq.(13)

1
2 (b2−b1)

(9)
(10)
(9)
(10)
(9)

Even if, for the large majority of papers in the literature, the binning size is
fixed to 0.1 as in Tables 1, 2 and 3, larger bins can be assumed when the
magnitude resolution is wider as it may occur for magnitudes derived from
maximum macroseismic intensities. In Table 4 we show the results for a binning
size 2�=0.5. We can note that in this case the Aki (1965) estimator as corrected
by Utsu (1966) (eq. 4) significantly underestimates the simulated b-value. This
underestimation is observed even by varying the number of data N (100, 1000,
10000) and the theoretical b-value (0.7, 1.0, 1.5) (see Tables S10 to S18 in the
supplementary material). This confirms that the Utsu (1966) correction to the
Aki (1965) formula is approximate and only the exact formulas (7) and (15)
provide the correct results in all cases.

Table 4 - Estimates from complete simulated sets with N=1000,
2�=0.5 and b=1

Estimator Eq. b �b N p
Aki (1965) (2) 1.883026 0.106794 1000 0.000000
Aki (1965), Utsu (1966) (4) 0.902860 0.024514 1000 0.000079
This paper, magnitudes (15) 1.000895 0.033628 1000 0.978777
This paper, absolute differences (16) 1.001087 0.042059 500 0.979395
This paper, trimmed absolute differences (17) 1.004389 0.069159 240 0.949451

As van der Elst (2021) asserts that, when analyzing incomplete datasets, the
estimators are more robust if only the positive differences are used in eq. (11),
in the following computations we consider two further estimators using only
the trimmed positive and only the trimmed negative magnitude differences. In
Table 5 we show the results of simulations of incomplete datasets built by using
𝜇 = 1, 𝜆 = 0.2, N=1093 (11000 before thinning) (see Appendix L) and by
setting 𝑀𝑐=0.4, corresponding to the minimum magnitude of the simulated
datasets. The histogram of one of the simulated datasets is portrayed in Fig. 1.
We can see that all the estimators underestimate the theoretical b (𝑏𝑠 =1), even
if those based on differences seem to work slightly better.

Table 5 - Incomplete simulated sets with � = 1, � = 0.2, N=1093 (11000
before thinning), 2�=0.1 and b=1, Mc=0.4
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Estimator Eq. b �b N p
Aki (1965) (2) 0.460944 0.006947 1093 0.000000
Aki (1965), Utsu (1966) (4) 0.437711 0.006264 1093 0.000000
This paper, magnitudes (15) 0.438082 0.006280 1093 0.000000
This paper, absolute differences (16) 0.862855 0.032991 546 0.000037
This paper, trimmed absolute differences (17) 0.890224 0.036483 506 0.002752
This paper, trimmed positive differences (17) 0.892015 0.052275 253 0.039878
This paper, trimmed negative differences (17) 0.891447 0.051621 247 0.036469

Fig. 1 – Incomplete simulated dataset with 𝜇 = 1, 𝜆 = 0.2, N=1093, 2�=0.1
and b=1.

In Table 6 we show the results for the same simulation parameters when the
minimum magnitude 𝑀𝑐 is set to 1.1 corresponding to the maximum curvature
(Wiemer and Wyss, 2000) of the FMD. In this case the simple Aki (1965) esti-
mator would seem to give the correct result and to be better of the estimator
corrected by Utsu (1966) and of the exact formula using magnitudes. But this
is an artefact produced by the overestimation due to the binning which almost
perfectly compensates the underestimation due to incompleteness. The other
estimator based on magnitudes underestimate b, whereas all estimators based
on magnitude differences give reasonably correct results. The performance ap-
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pears slightly better for estimators based on trimmed differences (eq. 17) and
among them we can note a slightly better performance of positive differences
with respect to absolute and negative differences. Such evidence would seem to
confirm the claim by van der Elst (2021) but from our results the preference for
positive differences is very subtle and not so clear as in his paper.

Table 6 - Incomplete simulated sets with � = 1, � = 0.2, N=928, 2�=0.1,
b=1 and Mc=1.1

Estimator Eq. b �b N p
Aki (1965) (2) 1.026523 0.037518 786 0.479606
Aki (1965), Utsu (1966) (4) 0.917912 0.029991 786 0.006209
This paper, magnitudes (15) 0.921364 0.030332 786 0.009704
This paper, absolute differences (16) 0.973845 0.047540 393 0.582509
This paper, trimmed absolute differences (17) 0.986348 0.051871 353 0.792564
This paper, trimmed positive differences (17) 0.989979 0.074481 176 0.893128
This paper, trimmed negative differences (17) 0.988299 0.073980 154 0.874506

In Table 7 we show the results for the same parameters when the minimum mag-
nitude 𝑀𝑐 is set to 1.3 corresponding to the magnitude of maximum curvature
plus 0.2, that is the way 𝑀𝑐 is commonly set in literature (Wiemer and Wyss,
2000, Mignan and Woessner, 2012). We can see that now the simple Aki (1965)
formula (2) clearly overestimates the b-value, whereas all other estimators using
either magnitudes or differences give correct results, including the Aki-Utsu one
(4). In this case, the estimator using the trimmed positive differences seems to
be slightly better than the one using positive difference but slightly worse than
the one using the trimmed absolute differences.

Table 7 - Incomplete simulated sets with � = 1, � = 0.2, N=640, 2�=0.1,
b=1 and Mc=1.3

Estimator Eq. b �b N p
Aki (1965) (2) 1.107743 0.052196 541 0.039020
Aki (1965), Utsu (1966) (4) 0.982229 0.041025 541 0.664903
This paper, magnitudes (15) 0.986471 0.041560 541 0.744912
This paper, absolute differences (16) 0.998481 0.060113 270 0.979862
This paper, trimmed absolute differences (17) 1.001747 0.064811 240 0.978515
This paper, trimmed positive differences (17) 1.005584 0.094333 120 0.952895
This paper, trimmed negative differences (17) 1.006768 0.092576 118 0.941846

The resilience of trimmed differences estimators to magnitude incompleteness
can be improved by increasing the value of �𝑀 ′

𝑐 in eq. (17). In Table 8 we show
the results obtained with the strongly incomplete set with 𝑀𝑐=0.4 as in Table 5
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but with increasing Δ𝑀 ′
𝑐 for trimmed differences estimators (absolute, positive

and negative). For �𝑀 ′
𝑐 = 4𝛿 (twice the bin size), the p values of the Student’s

t test for both the positive and negative differences become larger than 10%.
For �𝑀 ′

𝑐 = 10𝛿 (5 times the bin size) the deviations of the estimated b-values
from the theoretical one becomes almost negligible for all of the three estimators.
Note that increasing the trimming thresholds �𝑀 ′

𝑐 obviously reduces the number
of available data but less dramatically than a similar increasing of the magnitude
threshold 𝑀𝑐. Even in this case we have a preference for positive differences
but still relatively weak.

Table 8 - Incomplete simulated sets with � = 1, � = 0.2, N=1093, 2�=0.1
and b=1, Mc=0.4

Estimator Eq. �M′
c b �b N p

This paper, trimmed absolute differences (17) 4𝛿 0.927973 0.042749 428 0.092740
This paper, trimmed positive differences (17) 4𝛿 0.930314 0.061307 214 0.256954
This paper, trimmed negative differences (17) 4𝛿 0.929565 0.060234 212 0.243569
This paper, trimmed absolute differences (17) 6𝛿 0.957032 0.049715 355 0.388007
This paper, trimmed positive differences (17) 6𝛿 0.959837 0.071424 178 0.574610
This paper, trimmed negative differences (17) 6𝛿 0.959462 0.070339 180 0.565130
This paper, trimmed absolute differences (17) 8𝛿 0.977009 0.057063 290 0.687316
This paper, trimmed positive differences (17) 8𝛿 0.980645 0.081274 145 0.812110
This paper, trimmed negative differences (17) 8𝛿 0.980056 0.081047 146 0.805975
This paper, trimmed absolute differences (17) 10𝛿 0.990306 0.064465 235 0.880598
This paper, trimmed positive differences (17) 10𝛿 0.994635 0.091919 117 0.953556
This paper, trimmed negative differences (17) 10𝛿 0.994486 0.092570 121 0.952602

Finally, in Table 9 we show the effect on various estimators of a time-variable
(decreasing) incompleteness as is known to occur after a strong main shock,
owing to the superposition of the waveforms of many aftershocks that prevents
the correct location and sizing of many small shocks in the hours or days after
the main shocks. We set the magnitude of the main shock to m=4 in eq. (L4),
p=1 and c=0.01 in eq. (L5) and TE=5 days in (L8). The number of data N is
the same of the magnitude dataset.

The estimators based on magnitudes tend to underestimate the theoretical b,
whereas those based on differences give correct results. Even in this case we
can note a slightly better performance for positive differences with respect to
the negative ones. By varying the number of data and the theoretical b (see
Tables from S19 to S27 in the supplementary material), positive differences are
in general slightly better than negative differences but in one case they are
worse (N=98, b=1.5). Both positive and negative differences are in all cases
slightly better than absolute differences (positive and negative). However, the
preference for one estimator with respect to another is in general quite weak.

Table 9 - Incomplete (time dependent) simulated sets with � = 1,
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� = 0.2, m=4, p=1, c=0.01, TE=5 days, N=1031 (30000 before thin-
ning), 2�=0.1 and b=1, Mc=1.3

Estimator Eq. b �b N p
Aki (1965) (2) 1.000924 0.033805 1031 0.978183
Aki (1965), Utsu (1966) (4) 0.897406 0.027167 1031 0.000159
This paper, magnitudes (15) 0.900628 0.027462 1031 0.000311
This paper, absolute differences (16) 0.982578 0.042176 515 0.679720
This paper, trimmed absolute differences (17) 0.988949 0.045195 460 0.806931
This paper, trimmed positive differences (17) 0.992715 0.065535 229 0.911588
This paper, trimmed negative differences (17) 0.989501 0.064272 220 0.870380

3 Conclusions

We derived the complete formulations for the exact estimators of the b-value
and of its confidence intervals of the frequency-magnitude distribution (FMD)
from datasets with binned magnitudes. Such estimators are derived considering
the discrete exponential distribution of magnitudes and the discrete Laplace
distribution of magnitude differences and are equivalent to those recently pro-
posed by van der Elst (2021). We also derive the first two moments of both
distributions and the estimators of standard one-sigma confidence intervals of
b-value.

To test the accuracy of all estimators to well reproduce the theoretical b-value,
we simulated synthetic datasets with variable size and b-value, without or with
a certain amount of incompleteness.

For estimators based on the distribution of magnitudes, exact formulations (eqs.
7 and 15) are always preferable with respect to the approximate formula by Aki
(1965) with Utsu (1966) correction (eq. 4), in particular when the bin size is
larger than 0.1.

The uncorrected formula by Aki (1965) (eq. 2) usually overestimates the the-
oretical b-value but sometimes may deceptively appear to work well when, by
chance, the overestimation due to the binning almost exactly compensates the
underestimation due to incompleteness.

Estimators using magnitude differences (eqs. 8, 11, 16 and 17) are more robust
with respect to magnitude incompleteness than those using magnitudes (eqs. 7
and 15) and give correct b-values when the magnitude cutting threshold 𝑀𝑐 is
not lower than the magnitude of maximum curvature of the FMD. Conversely,
estimators using magnitudes (eqs .7 and 15) give correct results only for 𝑀𝑐 not
lower than the magnitude of maximum curvature plus 0.2. The latter finding
confirms the goodness of a common choice, made in current literature (Mignan
and Woessner, 2012), to establish the magnitude completeness threshold.

Magnitude differences to be used in eq. (8, 11, 16 and 17) have to be computed
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so as to be independent from each other (eq. 10) particularly for computing
the analytical confidence intervals (eq. 12 and 13). The latter are found to well
correspond to the standard deviations of b-values of simulated datasets.

Estimators based on trimmed magnitude differences (discarding differences
smaller than the binning size or than a larger amount) are more accurate with
respect to untrimmed ones. If the size of trimming difference threshold �𝑀 ′

𝑐 is
increased up to about 5 times the binning size, the estimators become almost
independent of magnitude incompleteness.

Estimators based on trimmed positive differences seem to reproduce the theoret-
ical b-value better than those based on trimmed absolute and positive differences
but the improvement is relatively small and not so clear as claimed by van der
Elst (2021).
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Appendix A - The continuous and discrete exponential distributions

Earthquake magnitudes, when taken as random variables, are supposed to follow
an exponential distribution at least beyond a certain (completeness) magnitude
threshold 𝑀𝑐. Generally, they are provided up to a few decimal digits (usually
one) and therefore they can be naturally binned in classes of equal size, say
2𝛿. In the common practice, they are treated either as a discrete set of variables
or as a continuous set. In the former case, if 𝑀0 is the magnitude of the first
class, the magnitude of the 𝑖 − 𝑡ℎ class is given by:

𝑀𝑖 = 𝑀0+2𝛿𝑖 (𝐴1)

The integer 𝑖 identifying the class is a discrete random variable obeying the
probability distribution:

𝑃𝑖 = 𝐴(𝛼)𝑒−𝛼𝑖 𝑖 = 0, 1, 2, … (𝐴2)

where 𝛼 is assumed to be a positive decay parameter. Because 𝑃𝑖 represents
a probability for the random variable �, its distribution must satisfy the nor-
malization condition, i.e. the sum of all probabilities must be equal to 1. By
imposing it, we obtain:

∞
∑
𝑖=0

𝐴(𝛼)𝑒−𝛼𝑖 = 𝐴(𝛼)
∞

∑
𝑖=0

𝑒−𝛼𝑖 = 𝐴(𝛼)
1 − 𝑒−𝛼 = 1 (𝐴3)

It follows that (𝐴2) can be rewritten as:

𝑃𝑖 = (1 − 𝑒−𝛼) e−𝛼𝑖 𝑖 = 0, 1, 2, … (𝐴4)

On the other hand, when treating the magnitude 𝑀 as a continuous variable,
its probability density function is given by:

𝑃(𝑀) = 𝛽𝑒−𝛽(𝑀−𝑀𝑐) 𝑀−𝑀𝑐 ≥ 0 (𝐴5𝑎)

or

𝑃(𝑀) = 𝛽𝑒−𝛽(𝑀−𝑀0+𝛿) 𝑀−(𝑀0 − 𝛿) ≥ 0 (𝐴5𝑏)
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depending on the decay factor 𝛽. The formula (𝐴5𝑏) is justified since, usually,
the first value of the discrete set of magnitudes 𝑀0 is taken as the midpoint
of the first magnitude class, i.e. the one with the lower endpoint in 𝑀𝑐. This
means that:

𝑀𝑐 = 𝑀0−𝛿 (𝐴6)

It can be shown that the decay factors 𝛼 and 𝛽 of the discrete and continuous
distributions are linked by the relation:

𝛼 = 2𝛿𝛽 (𝐴7)

Indeed, if we consider the scaled variable:

𝑦 = 𝑀 − 𝑀𝑐
2𝛿 (𝐴8)

then its probability density has the form:

𝑃(𝑦) = 𝑃(𝑀)dM
dy = 2𝛿𝛽 e−2𝛿𝛽𝑦 = 𝛼𝑒−𝛼𝑦 𝑦 ≥ 0 (𝐴9)

If we take only integer values of 𝑦, then the 𝑦 axis results to be discretized with
unitary bins, while the M axis happens to be discretized with a resolution that
is finer and finer as 2𝛿 is made smaller and smaller. Under these circumstances,
the expression of 𝑃𝑖 tends to the continuous counterpart 𝑃(𝑀), since the factor
(1 − 𝑒−𝛼) can be approximated by 2𝛿𝛽.

In the following, the random variables we will consider are the continuous vari-
able 𝑦 defined in (𝐴8) and the discrete variable 𝑖 defined in (𝐴1). We will see
that all statistical formulas we will derive for the discrete variable 𝑖 will tend
to the corresponding formulas of the continuous variable 𝑦 as the bin size 2𝛿
becomes increasingly small. More specifically, if we approximate 𝑒−𝛼 with 1
and (1 − 𝑒−𝛼) with 2𝛿𝛽, then the discrete-case expressions transform into the
continuous-case ones.

Mean, variance and standard deviation

The formulas for the mean and variance of the continuous exponential distribu-
tion (𝐴9) are well known and will be given here for the sake of completeness.
They are:
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𝜇CE = 1
𝛼 (𝐴10)

varCE = 1
𝛼2 ; 𝜎CE = 1

𝛼 (𝐴11)

where the subscript CE denotes a continuous exponential random variable. As
regards the discrete distribution (𝐴4), we start with computing its mean 𝜇DE
that is defined as:

𝜇DE =
∞

∑
𝑖=0

i 𝑃𝑖 = (1 − 𝑒−𝛼)
∞

∑
𝑖=1

𝑖 e−𝛼𝑖 (𝐴12)

In order to compute the sum 𝑆1 of the series in (𝐴12), we note that:

𝑆1 =
∞

∑
𝑖=1

𝑖 e−𝛼𝑖 = e−𝛼
∞

∑
𝑖=0

(𝑖 + 1) e−𝛼𝑖 = e−𝛼 (
∞

∑
𝑖=0

𝑖 e−𝛼𝑖 +
∞

∑
𝑖=0

e−𝛼𝑖) (𝐴13)

In the last expression, we recognize that the first summation is 𝑆1, while the
second one is the sum of a geometric series. Therefore, the equation (𝐴13)
becomes:

𝑆1 = e−𝛼𝑆1+ e−𝛼

1 − 𝑒−𝛼 (𝐴14)

This is an equation in the unknown 𝑆1 with solution:

𝑆1 = e−𝛼

(1 − 𝑒−𝛼)2 (𝐴15)

On substituting this expression in the definition (𝐴12), we eventually get:

𝜇DE = (1 − 𝑒−𝛼) 𝑆1 = e−𝛼

1 − 𝑒−𝛼 (𝐴16)

The second moment, say 𝑀2,𝐷𝐸, of the discrete exponential distribution is by
definition:
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𝑀2,𝐷𝐸 =
∞

∑
𝑖=0

𝑖2𝑃𝑖 = (1 − 𝑒−𝛼)
∞

∑
𝑖=1

𝑖2𝑒−𝛼𝑖 (𝐴17)

To evaluate the sum of the series, we can follow a procedure analogous to the
one used earlier, that is:

𝑆2 =
∞

∑
𝑖=1

𝑖2𝑒−𝛼𝑖 = e−𝛽
∞

∑
𝑖=0

(𝑖 + 1)2𝑒−𝛼𝑖 = e−𝛼 (
∞

∑
𝑖=0

𝑖2𝑒−𝛼𝑖 + 2
∞

∑
𝑖=0

𝑖 e−𝛼𝑖 +
∞

∑
𝑖=0

e−𝛼𝑖) (𝐴18)

Remembering the values of the series in the last member of the above equation
chain, we obtain the following equation in the unknown 𝑆2:

𝑆2 = e−𝛼 (𝑆2 + 2𝑆1 + 1
1 − 𝑒−𝛼 ) (𝐴19)

Its solution is:

𝑆2 = 𝑒−𝛼

1 − 𝑒−𝛼 (2𝑆1 + 1
1 − 𝑒−𝛼 ) = 𝑒−𝛼

1 − 𝑒−𝛼 ( 2𝑒−𝛼

(1 − 𝑒−𝛼)2 + 1
1 − 𝑒−𝛼 ) = 𝑒−𝛼 (1 + 𝑒−𝛼)

(1 − 𝑒−𝛼)3 (𝐴20)

From the definition (𝐴17), we then obtain:

𝑀2,𝐷𝐸 = (1 − 𝑒−𝛼) 𝑆2 = 𝑒−𝛼 (1 + 𝑒−𝛼)
(1 − 𝑒−𝛼)2 (𝐴21)

The variance of a distribution can be computed from the mean and the second
moment according to the formula:

varDE = 𝑀2,𝐷𝐸−(𝜇DE)2 (𝐴21)

After substituting the respective values, it transforms to:

varDE = 𝑒−𝛼 (1 + 𝑒−𝛼)
(1 − 𝑒−𝛼)2 − e−2𝛼

(1 − 𝑒−𝛼)2 = e−𝛼

(1 − 𝑒−𝛼)2 = 1
4 (csch𝛼

2 )
2

(𝐴23)
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Consequently, the standard deviation 𝜎DE takes the form:

𝜎DE = e− 𝛼
2

1 − 𝑒−𝛼 = 1
2csch𝛼

2 (𝐴24)

Appendix B – The continuous and discrete distributions of the dif-
ferences of exponential variables (Laplace distributions)

If we consider the scaled random variables 𝑦 and 𝑧, both following the exponen-
tial distribution (𝐴9), then the random variable 𝑤 = 𝑧 − 𝑦 can be proven to
obey the continuous Laplace distribution with density function defined as:

𝑃(𝑤) = 𝛼
2 𝑒−𝛼|𝑤| −∞ < 𝑤 < +∞ (𝐵1)

It is a continuous density function with two symmetric exponential tails, and
the same decay parameter 𝛼 as the original distributions.

Let us now consider the differences of integer random variables 𝑖 and 𝑗, both
following the discrete exponential distribution (𝐴4) with the same parameter 𝛼.
The joint probability distribution 𝑃ij for the pair (𝑖, 𝑗) is given by the product:

𝑃𝑖,𝑗 = 𝑃𝑖𝑃𝑗 = (1 − 𝑒−𝛼)2 𝑒−𝛼(𝑖+𝑗) (𝐵2)

Here the aim is to compute the probability that the difference takes a given
value 𝑑. To this purpose, we have to sum up the probabilities of all the pairs
where the difference is exactly equal to 𝑑. If we consider the Cartesian plane
where 𝑖 runs along the horizontal axis and 𝑗 runs along the vertical axis, then the
pairs exhibiting a constant difference between 𝑗 and 𝑖 can be found on straight
lines parallel to the bisector of the first quadrant. Exactly on the bisector, the
pairs have 𝑖 = 𝑗 and the difference is identically zero. For the lines above the
bisector, the difference is positive, whereas for the parallel lines lying below it,
it is negative.

More formally, we introduce the random variable 𝑑 = 𝑗 −𝑖, 𝑑 ∈ 𝑍, and compute
its distribution 𝑃𝑑. First, we assume that 𝑗 ≥ 𝑖, and therefore that 𝑑 ≥ 0. Given
𝑑, all pairs (𝑖, 𝑗) having difference equal to 𝑑, are of the type (𝑖, 𝑖+𝑑) with 𝑖 ∈ 𝑁 .
It follows that:

𝑃𝑑 =
∞

∑
𝑖=0

𝑃𝑖𝑃𝑖+𝑑 = (1 − 𝑒−𝛼)2 𝑒−𝛼(𝑖+𝑖+𝑑) = (1 − 𝑒−𝛼)2 𝑒−𝛼𝑑
∞

∑
𝑖=0

𝑒−2𝛼𝑖 (𝐵3)
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Considering that the terms to be summed can be seen as the elements of a
geometric series with constant ratio 𝑒−2𝛼, we obtain the expression:

𝑃𝑑 = (1 − 𝑒−𝛼)2

1 − 𝑒−2𝛼 𝑒−𝛼𝑑, 𝑑 ≥ 0 (𝐵4)

When 𝑗 ≤ 𝑖, following an analogous procedure, we can get a similar expression.
Indeed, we should sum up all probabilities of the pairs (𝑗 + |𝑑|, 𝑗) getting the
result:

𝑃𝑑 = (1 − 𝑒−𝛼)2

1 − 𝑒−2𝛼 𝑒−𝛼|𝑑|, 𝑑 < 0 (𝐵5)

Remembering the identity 1−𝑒−2𝛼 = (1 − 𝑒−𝛼) (1 + 𝑒−𝛼), both expressions (𝐵4)
and (𝐵5) can be simplified to:

𝑃𝑑 = 1 − 𝑒−𝛼

1 + 𝑒−𝛼 𝑒−𝛼|𝑑| = tanh 𝛼
2 𝑒−𝛼|𝑑| −∞ < 𝑑 < +∞ (𝐵6)

where recourse is made to the identity:

1 − 𝑒−𝛼

1 + 𝑒−𝛼 = tanh 𝛼
2 (𝐵7)

In the following the distribution (𝐵6) will be referenced to as discrete Laplace
distribution.

Mean, variance and standard deviation

The computation of the mean of the continuous Laplace distribution 𝜇CL is
straightforward, since 𝑃(𝑤) = 𝑃(−𝑤)). Here the subscript CL stands for
continuous Laplace distribution. Indeed, it is trivial to see that:

𝜇CL = ∫
0

−∞
wP(𝑤)dw+∫

+∞

0
wP(𝑤)dw = − ∫

+∞

0
wP(−𝑤)dw ∫

+∞

0
wP(𝑤)dw = 0 (𝐵8)

Owing to the vanishing of 𝜇CL, the second moment of the Laplace distribution
(𝐵1) coincides with its variance:

varCL = ∫
+∞

−∞
𝑤2𝑃(𝑤)dw = 2 ∫

+∞

0
𝑤2𝑃(𝑤)dw = 𝛼 ∫

+∞

0
𝑤2𝑒−𝛼𝑤𝑑𝑤 = 2

𝛼2 (𝐵9)
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Hence, the corresponding standard deviation is:

𝜎CL =
√

2
𝛼 (𝐵10)

The mean 𝜇DLof the discrete distribution (𝐵6) is zero due to its symmetry
around the origin (i.e. 𝑃−𝑑 = 𝑃𝑑). Indeed:

𝜇DL =
−1
∑

𝑑=−∞
d P𝑑+

∞
∑
𝑑=1

d P𝑑 = −
∞

∑
𝑑=1

d P−𝑑+
∞

∑
𝑑=1

d P𝑑 = 0 (𝐵11)

And, as a consequence, its second moment and variance are coincident:

varDL =
∞

∑
𝑑=−∞

𝑑2 P𝑑 = 2
∞

∑
𝑑=1

𝑑2 P𝑑 = 21 − 𝑒−𝛼

1 + 𝑒−𝛼

∞
∑
𝑑=1

𝑑2𝑒−𝛼𝑑 = 21 − 𝑒−𝛼

1 + 𝑒−𝛼 𝑆2 = 2𝑒−𝛼

(1 − 𝑒−𝛼)2 = 1
2 (csch𝛼

2 )
2

(𝐵12)

The corresponding standard deviation results to be:

𝜎DL =
√

2𝑒− 𝛼
2

1 − 𝑒−𝛼 = 1√
2

csch𝛼
2 (𝐵13)

On comparing expressions (𝐴11) with (𝐵9) and (𝐴23) with (𝐵12), it is worth
noting that the variances of the Laplace distributions are twice larger than the
corresponding variances of the exponential distributions, i.e.:

varCL = 2varCE varDL = 2varDE (𝐵14)
Appendix C – The continuous and discrete one-sign differences dis-
tributions

If we restrict the attention only to one-sign differences, it is trivial to see that
their distribution is exponential. Indeed, for the continuous case, the distribu-
tion (𝐵1) becomes:

𝑃(𝑤) = 𝛼𝑒−𝛼|𝑤| −∞ < 𝑤 ≤ 0 (𝐶1𝑎)

𝑃(𝑤) = 𝛼𝑒−𝛼𝑤 0 < 𝑤 < +∞ (𝐶1𝑏)
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Likewise, for the discrete case, the distribution (𝐵6) splits into:

𝑃𝑑 = (1 − 𝑒−𝛼) 𝑒−𝛼|𝑑| −∞ < 𝑑 ≤ 0 (𝐶2𝑎)

𝑃𝑑 = (1 − 𝑒−𝛼) 𝑒−𝛼𝑑 0 ≤ 𝑑 < +∞ (𝐶2𝑏)
It follows that the corresponding means, variances and standard deviation have
the expressions (𝐴10) and (𝐴11) given in the Appendix A.

Appendix D – The continuous and discrete absolute differences dis-
tributions

Let us consider the absolute values of the differences, that are |𝑤| and |𝑑| re-
spectively. It is worth outlining that for the continuous case the distribution is
exponential, while for the discrete variables this is not true. In the former case,
we can write:

𝑃 (|𝑤|) = 𝛼𝑒−𝛼|𝑤| 0 ≤ |𝑤| ≤ +∞ (𝐷1)

On the other hand, for the discrete variable |𝑑|, we should distinguish the case
of null differences from the others, and their probability distributions results to
be:

𝑃0 = 1 − 𝑒−𝛼

1 + 𝑒−𝛼 (𝐷2𝑎)

𝑃|𝑑| = 21 − 𝑒−𝛼

1 + 𝑒−𝛼 𝑒−𝛼|𝑑| 1 ≤ |𝑑| < +∞ (𝐷2𝑏)

The absolute values of the continuous differences are exponential variables and
their statistical moments relevant in our context can be taken from the expres-
sions displayed in the Appendix A. We can write them explicitly here below:

𝜇CA = 1
𝛼 , varCA = 1

𝛼2 , 𝜎CA = 1
𝛼 (𝐷3)

In the adopted notation the subscript CA stands for continuous absolute differ-
ences. The mean of the absolute values of the discrete differences is by definition
given by:
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𝜇DA =
∞

∑
|𝑑|=1

|𝑑|𝑃|𝑑| = 21 − 𝑒−𝛼

1 + 𝑒−𝛼

∞
∑
𝑖=1

𝑖𝑒−𝛼𝑖 = 21 − 𝑒−𝛼

1 + 𝑒−𝛼 𝑆1 = 2𝑒−𝛼

(1 + 𝑒−𝛼) (1 − 𝑒−𝛼) = (𝐷4)

In the above computations use has been made of the expression (𝐴14) for 𝑆1.

Likewise, the second moment 𝑀2,𝐷𝐴 is computed as:

𝑀2,𝐷𝐴 =
∞

∑
|𝑑|=1

|𝑑|2𝑃|𝑑| = 21 − 𝑒−𝛼

1 + 𝑒−𝛼

∞
∑
𝑖=1

𝑖2𝑒−𝛼𝑖 = 21 − 𝑒−𝛼

1 + 𝑒−𝛼 𝑆2 = 2𝑒−𝛼

(1 − 𝑒−𝛼)2 (𝐷5)

varDA = 2𝑒−𝛼

(1 − 𝑒−𝛼)2 − 2𝑒−2𝛼

(1 + 𝑒−𝛼)2 (1 − 𝑒−𝛼)2 = 2𝑒−𝛼 (1 + 𝑒−2𝛼)
(1 + 𝑒−𝛼)2 (1 − 𝑒−𝛼)2 (𝐷6)

The related standard deviation is therefore given by:

𝜎DA = √2𝑒−𝛼 (1 + 𝑒−2𝛼)
(1 + 𝑒−𝛼) (1 − 𝑒−𝛼) (𝐷7)

It is relevant to observe that the variance of the absolute differences (𝐷6) is
smaller than the variance of the discrete Laplace distribution (𝐵12), i.e.:

varDA = varDL
1 + 𝑒−2𝛼

(1 + 𝑒−𝛼)2 < varDL (𝐷8𝑎)

since the adjusting factor is smaller than 1. Similarly, we can conclude that:

𝜎DA < 𝜎DL (𝐷8𝑏)

Appendix E - The effect of trimming

For trimming we mean here the removal of all values below a predefined limit.
Therefore, for the continuous variable 𝑦, we will consider only values 𝑦 ≥ 𝑦′ > 0,
and, likewise, for the continuous difference 𝑤 we will take into account only
values 𝑤 ≥ 𝑤′ > 0 or 𝑤 ≤ −𝑤′ < 0. It is very easy to see that the distribution
of 𝑦 follows the exponential distribution:
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𝑃(𝑦) = 𝛼𝑒−𝛼(𝑦−𝑦′ ) 𝑦 ≥ 𝑦′ (𝐸1)

We observe that trimming acts on the random variable 𝑦 as a shift, which implies
that the mean is incremented by an amount equal to the shift value, i.e.:

𝜇𝑇 ,𝐶𝐸 = 𝜇CE+𝑦′ = 1
𝛼 +𝑦′ (𝐸2𝑎)

while variance and standard deviation remain unchanged:

var𝑇 ,𝐶𝐸 = varCE = 1
𝛼2 𝜎𝑇 ,𝐶𝐸 = 𝜎CE = 1

𝛼 (𝐸2𝑏)

Here the additional subscript 𝑇 denotes the trimmed distribution. Further, it is
immediate to observe that also the one-sign differences 𝑤 − 𝑤′ and the absolute
differences ∣𝑤 − 𝑤′ ∣ follow an exponential distribution, that is:

𝑃(𝑤) = 𝛼𝑒−𝛼(𝑤−𝑤′ ) 𝑤 ≥ 𝑤′ > 0 (𝐸3𝑎)

𝑃(𝑤) = 𝛼𝑒−𝛼∣𝑤−𝑤′ ∣ 𝑤 ≤ −𝑤′ < 0 (𝐸3𝑏)

𝑃 (|𝑤|) = 𝛼𝑒−𝛼∣𝑤−𝑤′ ∣ |𝑤| ≥ 𝑤′ > 0 (𝐸3𝑐)

Therefore, even for these distributions the mean results to be shifted by an
amount equal to 𝑤′ , whereas variance and standard deviation do not change.

When considering the continuous Laplace distribution, appropriate for the dif-
ferences, trimming is realized by considering the variables with absolute value
larger than the threshold. The related density function is split into:

𝑃(𝑤) = 𝛼
2 𝑒−𝛼(𝑤−𝑤′ ) 𝑤 ≥ 𝑤′ > 0 (𝐸4𝑎)𝑃(𝑤) = 𝛼

2 𝑒−𝛼∣𝑤−𝑤′ ∣ 𝑤 ≤ −𝑤′ < 0 (𝐸4𝑏)

It is symmetric, centered in zero, and therefore, if we denote its mean by 𝜇𝑇 ,𝐶𝐿,
we can write:

𝜇𝑇 ,𝐶𝐿 = 0 (𝐸5)
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As for the variance, it identifies with the second moment and can be written as:

var𝑇 ,𝐶𝐿 = 2 ∫
∞

𝑤′
𝑤2𝑃(𝑤)dw = 𝛼 ∫

∞

𝑤′
𝑤2𝑒−𝛼(𝑤−𝑤′ )dw = 𝛼𝑒𝛼𝑤′ ∫

∞

𝑤′
𝑤2𝑒−𝛼𝑤dw (𝐸6)

After a double integration by parts, the integral in the RHS can be computed
analytically and (𝐸6) takes the form:

var𝑇 ,𝐶𝐿 = 1
𝛼2 [(1 + 𝛼𝑤′)2 + 1] (𝐸7𝑎)

with the corresponding standard deviation:

𝜎𝑇 ,𝐶𝐿 = 1
𝛼

√(1 + 𝛼𝑤′)2 + 1 (𝐸7𝑏)

Both expressions tend to the respective values (𝐵9) and (𝐵10) of the untrimmed
distributions as 𝑤′ tends to zero, i.e.:

var𝑇 ,𝐶𝐿 → varCL and 𝜎𝑇 ,𝐶𝐿 → 𝜎CL as 𝑤′ → 0 (𝐸8)

Notice further that both are increasing functions of 𝑤′ .

As regards the discrete distributions, trimming is realized by considering only
variables beyond specified integer thresholds, say 𝑖′ and 𝑑′ . Even in this case, the
trimmed exponential distributions and the one-sign differences are exponential,
i.e.:

𝑃𝑖 = (1−𝛼)𝑒−𝛼(𝑖−𝑖′ ) 𝑖 ≥ 𝑖′ > 0 (𝐸9)

𝑃𝑑 = (1−𝛼)𝑒−𝛼∣𝑑−𝑑′ ∣ 𝑑 ≤ −𝑑′ < 0 (𝐸10𝑎)

𝑃𝑑 = (1−𝛼)𝑒−𝛼(𝑑−𝑑′ ) 𝑑 ≥ 𝑑′ > 0 (𝐸10𝑏)

So means are affected by trimming, whereas variances and standard deviations
are not. For instance, for the exponential distribution we can write:
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𝜇𝑇 ,𝐷𝐸 = 𝜇DE+𝑖′ = 𝑒−𝛼

1 − 𝑒−𝛼 +𝑦′ (𝐸11𝑎)

var𝑇 ,𝐷𝐸 = varDE = 𝑒−𝛼

(1 − 𝑒−𝛼)2 𝜎𝑇 ,𝐷𝐸 = 𝜎DE = 𝑒− 𝛼
2

1 − 𝑒−𝛼 (𝐸11𝑏)

We observe that trimming affects substantially the distribution of the absolute
differences. Indeed, since trimming discards the value 𝑑 = 0, the resulting
distribution becomes exponential. It is worth to write it down explicitly:

𝑃|𝑑| = (1−𝛼)𝑒−𝛼(|𝑑|−𝑑′ ) |𝑑| ≥ 𝑑′ > 0 (𝐸12)

Its relevant statistical indices are quite different from the ones of the untrimmed
distribution (see expressions (𝐷4), (𝐷6) and (𝐷7)). They are:

𝜇𝑇 ,𝐷𝐴 = 𝑒−𝛼

1 − 𝑒−𝛼 +𝑑′ var𝑇 ,𝐷𝐴 = 𝑒−𝛼

(1 − 𝑒−𝛼)2 𝜎𝑇 ,𝐷𝐴 = 𝑒− 𝛼
2

1 − 𝑒−𝛼 (𝐸13)

For the differences distributed according to the discrete Laplace distribution,
trimming leads to the following expression for the probabilities:

𝑃𝑑 = 1 − 𝑒−𝛼

1 + 𝑒−𝛼 𝑒−𝛼(|𝑑|−𝑑′ ) = tanh 𝛼
2 𝑒−𝛼(|𝑑|−𝑑′ ) 𝑑 ≤ −𝑑′ < 0 or 𝑑 ≥ 𝑑′ > 0 (𝐸14)

It is a symmetric distribution with mean equal to zero, i.e.:

𝜇𝑇 ,𝐷𝐿 = 0 (𝐸15)

Its variance, being equal to its second moment, can be computed as:

var𝑇 ,𝐷𝐿 = 2
∞

∑
𝑑=𝑑′

𝑑2𝑃𝑑 = 21 − 𝑒−𝛼

1 + 𝑒−𝛼 𝑒𝛼𝑑′ ∞
∑
𝑑=𝑑′

𝑑2𝑒−𝛼𝑑 = 21 − 𝑒−𝛼

1 + 𝑒−𝛼 𝑒𝛼𝑑′ ∞
∑
𝑗=0′

(𝑗 + 𝑑′)2 𝑒−𝛼𝑗 (𝐸16)

The summation in the RHS of the last equation can be further elaborated:
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∞
∑
𝑗=0′

(𝑗 + 𝑑′)2 𝑒−𝛼𝑗 =
∞

∑
𝑗=0′

𝑗2𝑒−𝛼𝑗+2𝑑′
∞

∑
𝑗=0′

𝑗𝑒−𝛼𝑗+𝑑′ 2 ∞
∑
𝑗=0′

𝑒−𝛼𝑗 = 𝑆2+ 2𝑑′𝑆1+ 𝑑′ 2

1 − 𝑒−𝛼 (𝐸17)

Combining (𝐸16) and (𝐸17) and remembering the expressions (𝐴15) and (𝐴20)
respectively for 𝑆1 and 𝑆2, after some calculations we eventually get:

var𝑇 ,𝐷𝐿 = 2
(1 + 𝑒−𝛼) (1 − 𝑒−𝛼)2 {𝑒−𝛼 + [𝑒−𝛼 + 𝑑′ (1 − 𝑒−𝛼)]2} (𝐸18𝑎)

𝜎𝑇 ,𝐷𝐿 = 1
1 − 𝑒−𝛼 √ 2

(1 + 𝑒−𝛼) {𝑒−𝛼 + [𝑒−𝛼 + 𝑑′ (1 − 𝑒−𝛼)]2} (𝐸18𝑏)

It is worth noting that when 𝑑′ is set equal to zero, both the above expressions
transform into the corresponding untrimmed variables indices, that is varDL and
𝜎DL.

Appendix F – Estimating the decay parameters by means of the mean
method

For magnitudes obeying the Gutenberg-Richter formula (1) the decay param-
eter is 𝑏. If we opt for the canonical exponential expressions (𝐴5), the decay
parameter is 𝛽. If we consider binned magnitudes, the decay parameter is 𝛼.
Since these three parameters are linked by constant factors, we can estimate any
one of them and very easily deduce the others. In this paper, the main attention
goes to sequences of binned magnitudes and therefore here we concentrate on
methods suitable to estimate 𝛼 and only on discrete distributions. In this Ap-
pendix we will consider methods based on the mean value of the distributions.
If we denote the generic mean by 𝜇, and if it happens to depend on 𝛼, that is if
𝜇 = 𝑓(𝛼), then we can obtain 𝛼 by means of the expression 𝛼 = 𝑓−1(𝜇) where
𝑓−1 is the inverse function of 𝑓 , under the hypothesis the inverse exists. On the
other hand, the mean of any distribution can be estimated from experimental
data, and approximated by the sample mean value, the approximation being
better and better as the data number 𝑁 increases. The goodness of the esti-
mate of � reflects directly on how good the estimate of 𝛼 is and will be treated
later when addressing the confidence intervals. With this strategy in mind, we
will consider separately the distributions treated so far, pointing out, however,
that the method cannot be applied to the discrete Laplace distributions, either
trimmed or untrimmed, because their mean 𝜇DL and 𝜇𝑇 ,𝐷𝐿 are identically zero,
and thus not depending on 𝛼.

Estimates based on exponential distributions
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The exponential distribution applies to binned trimmed or untrimmed magni-
tudes, as well as to binned trimmed or untrimmed one-sign magnitude differ-
ences, and also to binned trimmed absolute differences. As already stated, the
untrimmed absolute differences follow a different distribution and will be ad-
dressed separately. In all these cases the formula for the mean can be written
as (see Appendix E) :

𝜇 = 𝑒−𝛼

1 − 𝑒−𝛼 +𝑘 (𝐹1)

where k is the trimming threshold and is equal to zero for untrimmed distribu-
tions.

The expression (𝐹1) can be inverted easily and leads to:

𝛼 = ln (𝜇 − 𝑘 + 1
𝜇 − 𝑘 ) (𝐹2)

Interestingly, we can observe that the ratio in the formula (𝐹2) can be written
also as:

𝜇 − 𝑘 + 1
𝜇 − 𝑘 = 2 (𝜇 − 𝑘 + 1

2 ) + 1
2 (𝜇 − 𝑘 + 1

2 ) − 1 = 𝑥 + 1
𝑥 − 1 (𝐹3𝑎)

where we have posed:

𝑥 = 2 (𝜇 − 𝑘 + 1
2) (𝐹3𝑏)

Taking advantage of the identity:

coth−1(𝑥) = 1
2 ln (𝑥 + 1

𝑥 − 1) (𝐹4)

That links the natural logarithm with the inverse of the hyperbolic cotangent,
the estimator ̃𝛼 in (𝐹2) can be alternatively given also as:

𝛼 = 2 coth−1 (2 (𝜇 − 𝑘 + 1
2)) (𝐹5)
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We stress that in the above formulas 𝛼 is the true value of the decay parameter.
Therefore we obtain an unbiased estimator of 𝛼, say ̃𝛼, if we replace 𝜇 with its
sample mean, since the sample mean tends to 𝜇 when the number of data in
the sample increases.

In terms of binned magnitudes 𝑀𝑖 given by (𝐴1) the above formulas (𝐹2) and
(𝐹5) for the estimator ̃𝛼 take the form:

̃𝛼 = ln (𝑀 − 𝑀𝑘 + 2𝛿
𝑀 − 𝑀𝑘

) = 2 coth−1 (1
𝛿 (𝑀 − 𝑀𝑘 + 𝛿)) (𝐹6)

where 𝑀 is the sample mean magnitude and

𝑀𝑘 = 𝑀0+2𝛿𝑘 𝑘 ≥ 0 (𝐹7)

is defined as the trimming threshold magnitude which coincides with the mag-
nitude of the lowest bin if no trimming is applied.

Since 𝛼 = 2𝛿𝑏 ln(10), thus the corresponding estimator of the decay parameter
𝑏 is:

̃𝑏 = 1
2𝛿 ln(10) ln (𝑀 − 𝑀𝑘 + 2𝛿

𝑀 − 𝑀𝑘
) = 1

� ln(10) coth−1 (1
𝛿 (𝑀 − 𝑀𝑘 + 𝛿)) (𝐹8)

The logarithmic version of the above formula can be rewritten as:

̃𝑏 = 1
2𝛿 ln(10) ln (1 − 2𝛿

𝑀 − 𝑀𝑘
) (𝐹9)

This is a version expandable in series. If we truncate the expansion to the second
order, we obtain:

̃𝑏 = 1
2𝛿 ln(10) [ 2𝛿

𝑀 − 𝑀𝑘
− 1

2
4𝛿2

(𝑀 − 𝑀𝑘)2 ] = 1
ln(10) (𝑀 − 𝑀𝑘) (1 − 𝛿

𝑀 − 𝑀𝑘
) (𝐹10)

It is interesting to observe that the formula (F10) when 𝑘=0, coincides with the
first terms of the expansion of the expression (4) in the main text. Indeed:
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̃𝑏 = 1
ln(10) (𝑀 − 𝑀0 + 𝛿) = 1

ln(10) (𝑀 − 𝑀0)
1

1 + 𝛿
𝑀−𝑀0

≈ 1
ln(10) (𝑀 − 𝑀0) (1 − 𝛿

𝑀 − 𝑀0
)

Therefore, we can state that the estimator (4) is an approximation of the esti-
mator for binned exponential magnitudes corrected at the second order in the
variable 𝛿/ (𝑀 − 𝑀0).

When considering the binned magnitude differences, we come to analogous ex-
pressions for the estimator. If we denote by �𝑀 the magnitude differences, by
�𝑀 the related sample mean value, and by �𝑀𝑘 the trimming threshold, then
for positive differences we obtain:

̃𝑏 = 1
2𝛿 ln(10) ln ( �𝑀 − �𝑀𝑘 + 2𝛿

�𝑀 − �𝑀𝑘
) �𝑀 ≥ �𝑀𝑘 = 2𝑘𝛿 𝑘 ≥ 0 (𝐹11)

For negative differences the formula is:

̃𝑏 = 1
2𝛿 ln(10) ln (|�𝑀| − �𝑀𝑘 + 2𝛿

�𝑀 − �𝑀𝑘
) �𝑀 ≤ �𝑀𝑘 = −2𝑘𝛿 𝑘 ≥ 0 (𝐹12)

Eventually for the trimmed absolute differences, we get:

̃𝑏 = 1
2𝛿 ln(10) ln (|�𝑀| − �𝑀𝑘 + 2𝛿

|�𝑀| − �𝑀𝑘
) |�𝑀| ≥ �𝑀𝑘 = 2𝑘𝛿 𝑘 ≥ 1 (𝐹13)

All the above expressions (𝐹11)−(𝐹13) can be also given in terms of the inverse
hyperbolic cotangent, like in (𝐹8).
Estimates based on the untrimmed absolute differences distribution

The mean 𝜇DA of the distribution of the untrimmed absolute differences is given
by:

𝜇DA = 2𝑒−𝛼

(1 + 𝑒−𝛼) (1 − 𝑒−𝛼) = 2𝑒−𝛼

1 − 𝑒−2𝛼 (𝐹14)

It is an invertible function of 𝛼, as we will see. Indeed, the expression (𝐹14)
can be transformed into:
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𝜇DA𝑒−2𝛼+2𝑒−𝛼−𝜇DA = 0 (𝐹15𝑎)

that can be interpreted as a quadratic equation in the unknown 𝑒−𝛼, with roots:

𝑒−𝛼 = −1 ± √1 + 𝜇DA
2

𝜇DA
= − 1

𝜇DA
±√ 1

𝜇DA
2 + 1 (𝐹15𝑏)

Of the two roots, only the positive one is an admissible solution, since the
exponential in the LHS must be positive. Thus we can write:

𝛼 = ln (−1 + √1 + 𝜇DA
2

𝜇DA
)

−1

= ln (1 + √1 + 𝜇DA
2

𝜇DA
) = ln ( 1

𝜇DA
+ √ 1

𝜇DA
2 + 1) = csch−1 (𝜇DA) (𝐹16)

The last equality has been introduced in virtue of the following identity involving
the natural logarithm and the inverse of the hyperbolic cosecant:

csch−1(𝑥) = ln ( 1
𝑥 + √ 1

𝑥2 + 1) (𝐹17)

Substituting 𝜇DA with the sample mean, we obtain an unbiased estimator ̃𝛼
and, in terms of the sample mean |Δ𝑀| of the absolute magnitude differences,
the corresponding estimator for ̃𝑏 turns out to be:

̃𝑏 = 1
2𝛿 ln(10) ln

⎡
⎢
⎢
⎣

2𝛿 + √4𝛿2 + (|Δ𝑀|)2

|Δ𝑀|
⎤
⎥
⎥
⎦

= 1
2𝛿 ln(10)csch−1 (|Δ𝑀|

2𝛿 ) |�𝑀| ≥ 0 (𝐹18)

Appendix G - Estimating the decay parameters through the Maxi-
mum Likelihood method

The decay parameter can be estimated also by means of the Maximum Likeli-
hood (ML) approach. As a general observation, the main conceptual difference
between the ML method and the mean method is that the former applies to
empirical samples, while the latter one uses relations proper of the theoretical
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distribution. However, provided that we replace the expected value of the dis-
tributions with the related sample means, the two methods are expected to lead
to the same result. This is exactly what we will prove here, but we outline that
there is an important caveat that we need to express for the estimator of the
binned differences.

Using samples of the discrete exponential distribution

For the sake of simplicity, we will consider here only the untrimmed exponential
distribution of binned magnitudes. Making recourse to the ML method, we
introduce the Likelihood Function 𝐿𝑁(𝛼) for a sample of 𝑁 data (𝑖1, 𝑖2, .., 𝑖𝑁),
that we write:

𝐿𝑁(𝛼) = (1 − 𝑒−𝛼)𝑁
𝑛

∏
𝑠=1

e−𝛼𝑖𝑠 = (1 − 𝑒−𝛼)𝑁 e−𝛼 ∑𝑠=𝑁
𝑠=1 𝑖𝑠 = (1 − 𝑒−𝛼)𝑁 e−𝛼𝑁𝑖 𝑖𝑠 ≥ 0 (𝐺1)

where 𝑖 is the arithmetic mean of the sample.

The ML estimate of the parameter 𝛼 is that value, say ̃𝛼, that maximizes 𝐿𝑁(𝛼)
and can be found by solving the equation obtained by imposing that the deriva-
tive of 𝐿𝑁(𝛼) with respect to 𝛼 vanishes, i.e.:

𝑑𝐿𝑁(𝛼)
d� = 𝑁 (1 − 𝑒−𝛼)𝑁−1 e−𝛼𝑁𝑖 𝑑

d� (1 − 𝑒−𝛼)−𝛼𝑁𝑖 (1 − 𝑒−𝛼)𝑁 e−𝛼𝑁𝑖 = 0 (𝐺2)

Simplifying, we obtain that the estimator has to solve the equation:

𝑑
d� (1 − 𝑒−𝛼)−𝑖 (1 − 𝑒−𝛼) = 0 (𝐺3)

Therefore we get:

𝑒−𝛼−𝑖 (1 − 𝑒−𝛼) = 0 (𝐺4)

̃𝛼 = ln (1 + 𝑖
𝑖 ) (𝐺5)

that corresponds to the expression (𝐹2), once we pose 𝑘 = 0 and substitute the
theoretical mean 𝜇 with the sample mean 𝑖.
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Using samples of the discrete Laplace distribution

We have remarked that the Laplace distribution of the magnitude differences is
unsuitable to the application of the mean method since its mean is identically
zero. However, we can apply the ML method. Let us consider the Likelihood
Function 𝐿𝑁(𝛼) as the product of three functions 𝐿𝑁+

(𝛼), 𝐿𝑁−
(𝛼) and 𝐿𝑁0

(𝛼),
where 𝑁 = 𝑁+ + 𝑁− + 𝑁0 and where the subscripts denote the absolute fre-
quencies of differences respectively greater than, smaller than and equal to zero.
If we pose (see (𝐵6)):

𝐵(𝛼) = tanh 𝛼
2 (𝐺6)

then we can write for positive differences:

𝐿𝑁+
(𝛼) = (𝐵(𝛼))𝑁+ 𝑒−𝛼 ∑𝑘=𝑁+

𝑘=1 𝑑𝑘 𝑑𝑘 > 0 (𝐺7𝑎)

Analogously, for negative differences, we have:

𝐿𝑁−
(𝛽) = (𝐵(𝛽))𝑁− 𝑒−𝛽 ∑𝑘=𝑁−

𝑘=1 |𝑑𝑘| 𝑑𝑘 < 0 (𝐺7𝑏)

And for differences equal to zero:

𝐿𝑁0
(𝛼) = (𝐵(𝛼))𝑁0 (𝐺7𝑐)

As a consequence, the Likelihood Function 𝐿𝑁(𝛼) can be given the expression:

𝐿𝑁(𝛼) = 𝐿𝑁+
(𝛼) L𝑁−

(𝛼) L𝑁0
(𝛼) = (𝐵(𝛼))𝑁 𝑒−𝛼𝑁|𝑑| −∞ < 𝑑 < ∞ (𝐺8)

By imposing that the first derivative of 𝐿𝑁(𝛼) with respect to 𝛼 is equal to zero,
we get the ML solving equation, that is:

dB ( ̃𝛼)
d� −|𝑑|𝐵 ( ̃𝛼) = 0 −∞ < 𝑑 < ∞ (𝐺9)

Recalling the position (𝐺6) and recalling further the formula of the first deriva-
tive of the hyperbolic tangent, we get:
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1
2

1
(cosh 𝛼

2 )2 = |𝑑| tanh ̃𝛼
2 −∞ < 𝑑 < ∞ (𝐺10)

After some calculations, the expression becomes:

sinh ̃𝛼 = 1
|𝑑|

−∞ < 𝑑 < ∞ (𝐺11)

which leads to the final expression for the estimator:

̃𝛼 = csch−1 (|𝑑|) −∞ < 𝑑 < ∞ (𝐺12)

It is very important to stress that the formula (𝐺12) identifies with the formula
(𝐹16) that resulted from the application of the mean method to the binned
untrimmed absolute differences. Notice that if we had applied the ML approach
to the distribution of the absolute differences, we would have obtained exactly
the same result. So the question is: what is the distribution underlying the
formula? The discrete Laplace distribution or the distribution of the absolute
differences? The matter is relevant since it has an impact on the calculation of
the confidence intervals. The answer can be given by observing that the formula
(𝐺12) contains the mean of the absolute value of the differences, and therefore
what matters are the properties of the sample mean of the untrimmed absolute
differences.

Appendix H - Confidence intervals

The decay parameters 𝛼 and 𝑏 derived in the previous Appendix F are functions
of the mean 𝜇 of a distribution of a discrete variable 𝑖 with probability 𝑃𝑖 and
standard deviation 𝜎. Let us say that:

𝑝 = 𝑔(𝜇) (𝐻1)

where 𝑝 denotes the parameter and 𝑔 the function. The corresponding estimator
̃𝑝 has been computed through the same function 𝑔 as:

̃𝑝 = 𝑔 (𝜇𝑁) (𝐻2)

where 𝜇𝑁 is the mean of an empirical sample of 𝑁 data. The sample mean,
being a linear combination of random variables, is in turn a random variable
with expected value equal to 𝜇 and with standard deviation
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𝜎𝑁 = 1√
𝑁

𝜎 (𝐻3)

According to this view, the function 𝑔 maps the random variable 𝜇𝑁 into the
random variable ̃𝑝. It is known that 𝜇𝑁 tends to follow a Gaussian distribution
𝐺(𝜇, 𝜎𝑁) as 𝑁 increases, that peaks more and more around the true value 𝜇.
If we consider the one-sigma interval 𝐼𝜇𝑁

= [𝜇𝑁 − 𝜎𝑁 , 𝜇𝑁 + 𝜎𝑁 ], then the
𝑔-mapping induces a corresponding image interval 𝐼𝑝𝑁

= [𝑝1,𝑁 , 𝑝2,𝑁] in the
estimator space, where, if the function g is monotonically decreasing as in our
case, the extremes are given by:

𝑝1,𝑁 = 𝑔 (𝜇𝑁 + 𝜎𝑁) 𝑝2,𝑁 = 𝑔 (𝜇𝑁 − 𝜎𝑁) (𝐻4)

If we call 𝑃𝜎 the probability that 𝜇 belongs to the interval 𝐼𝜇𝑁
, then, in virtue of

the mapping, it results that the parameter 𝑝 has the same probability to belong
to the interval 𝐼𝑝𝑁

. Formally it can be written that:

𝑃𝜎 = 𝑃 (𝜇 ∈ 𝐼𝜇𝑁
) = 𝑃 (𝑝 ∈ 𝐼𝑝𝑁

) (𝐻5)

Further we can state that since 𝜇𝑁 ∈ 𝐼𝜇𝑁
by construction, then its image ̃𝑝

∈ 𝐼𝑝𝑁
. Since, in general the function 𝑔 is not linear, thus ̃𝑝 is not the midpoint

of the interval. It is common practice to provide ̃𝑝 as the estimator of 𝑝 and the
extremes 𝑝1,𝑁 and 𝑝2,𝑁 of the image interval 𝐼𝑝𝑁

as the one-sigma confidence
interval. We stress that instead of ̃𝑝 as given in (𝐻2) it would be more correct
to provide the midpoint of the image interval and its half-length as the result
of the estimation process, i.e.:

̃𝑝𝑁 = 1
2 (𝑝1,𝑁 + 𝑝2,𝑁) (𝐻6)

� ̃𝑝𝑁 = 1
2 (𝑝2,𝑁 − 𝑝1,𝑁) (𝐻7)

Note that in the above formulas we assume to know 𝜎 that, through (𝐻3),
would allow us to know 𝜎𝑁 . In practice, however, 𝜎 is not known. It could be
estimated from the empirical standard deviation. Here we make the choice to
estimate it as a function of the estimator ̃𝑝 given by (𝐻2). More specifically, the
procedure to compute the confidence interval is:

1) compute 𝜇𝑁 from the 𝑁 -sample data;

2) calculate the estimator ̃𝑝;
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3) obtain 𝜎 through a proper function of ̃𝑝, say 𝜎=𝜎( ̃𝑝);
4) compute 𝜎𝑁 via (𝐻3);
5) calculate the extremes 𝑝1,𝑁 and 𝑝2,𝑁 by means of (𝐻4).
Confidence intervals for exponential distributions

As an illustrative example of the exponential distributions addressed in this
paper, let us consider the discrete untrimmed exponential distribution and write
the function 𝑔 as:

̃𝛼 = 𝑔 (𝜇𝑁) = ln (𝜇𝑁 + 1
𝜇𝑁

) (𝐻8)

Then we compute the standard deviation of a N-size sample in terms of the
computed ̃𝛼 ∶

𝜎𝑁 = 1√
𝑁

e− 𝛼
2

1 − 𝑒−𝛼 (𝐻9)

The further step is to compute the extremes of the interval 𝐼𝜎𝑁
∶

𝜇𝑁±𝜎𝑁 = e−𝛼

1 − 𝑒−𝛼 ± 1√
𝑁

e− 𝛼
2

1 − 𝑒−𝛼 = 1
𝑐 − 1 (1 ± √ 𝑐

𝑁 ) (𝐻10)

In (𝐻10) use has been made of the expression giving 𝜇𝑁 in terms of ̃𝛼. The
last member of the above chain of equalities is obtained by first multiplying all
numerators and denominators by the factor 𝑐 = 𝑒𝛼 and then by isolating the
common factor 1/(𝑐 − 1). The lower end of the interval 𝐼𝑝𝑁

is:

𝑝1,𝑁 = ln (𝜇𝑁 + 𝜎𝑁 + 1
𝜇𝑁 + 𝜎𝑁

) = ln (
1

𝑐−1 (1 + √ 𝑐
𝑁 ) + 1

1
𝑐−1 (1 + √ 𝑐

𝑁 ) ) = ln ( 𝑐 + √ 𝑐
𝑁

1 + √ 𝑐
𝑁

) 𝑐 = 𝑒𝛼 (𝐻11)

Likewise, the upper end results to be:

𝑝2,𝑁 = ln (𝜇𝑁 − 𝜎𝑁 + 1
𝜇𝑁 − 𝜎𝑁

) = ln ( 𝑐 − √ 𝑐
𝑁

1 − √ 𝑐
𝑁

) 𝑐 = 𝑒𝛼 (𝐻12)
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These calculations allow us to compute the one-sigma confidence interval for
the decay parameter 𝑏, since we may determine the end points 𝑏1,𝑁 and 𝑏2,𝑁 as
follows:

𝑏1,𝑁 = 𝑝1,𝑁
2𝛿 ln(10) = 1

2𝛿 ln(10) ln ( 𝑐 + √ 𝑐
𝑁

1 + √ 𝑐
𝑁

) (𝐻13𝑎)

𝑏2,𝑁 = 𝑝2,𝑁
2𝛿 ln(10) = 1

2𝛿 ln(10) ln ( 𝑐 − √ 𝑐
𝑁

1 − √ 𝑐
𝑁

) (𝐻13𝑏)

Here 𝑐 = 𝑒2𝛿 ln(10)�̃� = 102𝛿�̃� and ̃𝑏 is given by the formula (𝐹8), that for
untrimmed magnitudes is:

̃𝑏 = 1
2𝛿 ln(10) ln (𝑀 − 𝑀0 + 2𝛿

𝑀 − 𝑀0
) (𝐻14)

The estimated standard confidence interval can be computed as

�𝑏− = ̃𝑏− ̃𝑏1,𝑁 (𝐻15𝑎)

and

�𝑏+ = ̃𝑏2,𝑁− ̃𝑏 (𝐻15𝑏)

and finally

�𝑏 = 1
2 ( ̃𝑏2,𝑁 − ̃𝑏1,𝑁) (𝐻15𝑐)

Confidence intervals for the absolute difference distribution

The decay parameter 𝛼 of the distribution of the absolute values of the differ-
ences is linked to the distribution mean through the formula (𝐹16) that therefore
provides us with the function 𝑔:

̃𝛼 = 𝑔 (𝜇𝑁) = ln ⎛⎜⎜
⎝

1 + √1 + 𝜇𝑁
2

𝜇𝑁

⎞⎟⎟
⎠

= csch−1 ( ̃𝛼) (𝐻16)
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This formula was derived also by applying the ML method to the distribution
of the differences, as noted before, but the standard deviation to use here is
the one of the absolute differences shown in (𝐷7), while the formula (𝐵13) is
unsuitable and would lead to incorrect evaluations. By using it, we can compute
the sample standard deviation as:

𝜎𝑁 = 1√
𝑁

√2𝑒−𝛼 (1 + 𝑒−2𝛼)
(1 + 𝑒−𝛼) (1 − 𝑒−𝛼) (𝐻17)

The endpoints of the interval 𝐼𝜎𝑁
are:

𝜇𝑁±𝜎𝑁 = 2𝑒−𝛼

(1 + 𝑒−𝛼) (1 − 𝑒−𝛼)± 1√
𝑁

√2𝑒−𝛼 (1 + 𝑒−2𝛼)
(1 + 𝑒−𝛼) (1 − 𝑒−𝛼) (𝐻18)

After some manipulations this formula can be given the following version:

𝜇𝑁±𝜎𝑁 = (1 ± √cosh ̃𝛼
𝑁 ) csch ̃𝛼 (𝐻19)

In terms of the absolute difference magnitudes, the endpoints of the confidence
interval are:

𝑏1,𝑁 = 1
2𝛿 ln(10) ln

⎡
⎢
⎢
⎢
⎣

2𝛿 + √4𝛿2 + (csch ̃𝛼)2 (1 + √ cosh 𝛼
𝑁 )

2

(1 + √ cosh 𝛼
𝑁 ) csch ̃𝛼

⎤
⎥
⎥
⎥
⎦

= 1
2𝛿 ln(10)csch−1 ( (1 + √cosh ̃𝛼

𝑁 ) csch ̃𝛼) (𝐻20𝑎)

̃𝑏 = 1
2𝛿 ln(10) ln

⎡
⎢
⎢
⎣

2𝛿 + √4𝛿2 + (|Δ𝑀|)2

|Δ𝑀|
⎤
⎥
⎥
⎦

= 1
2𝛿 ln(10)csch−1 (|Δ𝑀|

2𝛿 ) |�𝑀| ≥ 0 (𝐻21)

The associated amplitude of the confidence interval is deduced like in the previ-
ous example as:

�𝑏 = 1
2 ( ̃𝑏2,𝑁 − ̃𝑏1,𝑁) (𝐻22)
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Appendix I – Derivation of eq. (15) from eq. (6) (Marzocchi et al.,
2020)

Let’s start from eq. (6) of the main text:

𝑏corrected = 1
2𝛿 ln(10) ln [ 1+𝑏 ln(10)𝛿

1−𝑏 ln(10)𝛿 ] (I1)

where b is computed by eq. (4) in which 𝑀𝑐 is diminished by 𝛿 .By substituting
(4) in (I1) we have

𝑏corrected = 1
2𝛿 ln(10) ln [ 1+ 1

ln(10)(𝑀−𝑀𝑐+𝛿) ln(10)𝛿
1− 1

ln(10)(𝑀−𝑀𝑐+𝛿) ln(10)𝛿 ] = 1
2𝛿 ln(10) ln [ 1+ 1

(𝑀−𝑀𝑐+𝛿) 𝛿
1− 1

(𝑀−𝑀𝑐+𝛿) 𝛿 ] = 1
2𝛿 ln(10) ln [

𝑀−𝑀𝑐+𝛿+𝛿
(𝑀−𝑀𝑐+𝛿)
𝑀−𝑀𝑐+𝛿−𝛿
(𝑀−𝑀𝑐+𝛿)

] = 1
2𝛿 ln(10) ln [ 𝑀−𝑀𝑐+2𝛿

𝑀−𝑀𝑐
] (I3)

This corresponds exactly to eq. (15).

Appendix L - Simulation of complete and incomplete magnitude
datasets

To generate a complete random dataset of magnitudes 𝑀 ≥ 𝑀𝑐 with exponential
distribution, we use the inverse exponential transformation

𝑀 = − ln{rand]0∶1[}
𝑏 ln(10) + 𝑀𝑐 (L1a)

where rand ]0 ∶ 1[ is a pseudo random number with uniform distribution in the
interval ]0 ∶ 1[.
The binning of magnitudes is obtained by

𝑀binned = round ( 𝑀
2𝛿 ) 2𝛿 (L2)

where round(x) indicates the closest integer to the argument value x and 2𝛿 the
binning size. In such case, in order the simulated dataset be complete, the latter
must include magnitudes down to 𝑀𝑐 − 𝛿

𝑀 = − ln{rand]0∶1[}
𝑏 ln(10) + 𝑀𝑐 − 𝛿 (L1b)
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As suggested by Ogata and Katsura (1993), magnitude data incompleteness
can be mimicked by a Gaussian cumulative probability distribution with mean
𝜇 and standard deviation 𝜆

𝑝 (𝑀|𝜇, 𝜆) = 1
𝜆

√
2𝜋 ∫𝑀

−∞ 𝑒− (𝑚−𝜇)2
2𝜆2 dm (L3)

In this formulation the mean 𝜇 corresponds to the threshold magnitude at which
p=0.5, that means that above it, the 50% of earthquakes are correctly located
and sized by the seismic network.

It can be introduced in the simulated dataset using the thinning method (Ogata,
1981), which consists in discarding the magnitudes for which an extracted ran-
dom number in the interval ]0 ∶ 1[ is larger than the cumulative Gaussian prob-
ability (L3).

Van der Elst also simulated datasets with time varying incompleteness as it
may occur in the first hours or days after a strong main shock. For modelling
such decaying incompleteness threshold, Helmstetter et al. (2006) proposed the
empirical equation

𝑚𝑐 = 𝑚 − 4.5 − 0.75𝑡 (L4)

where 𝑚𝑐 is the time dependent magnitude threshold of completeness, m is the
magnitude of the mainshock and t is the time elapsed since the mainshock in
days. Van der Elst suggested to use equation (L4) to set the time varying mean
𝜇(𝑡) in eq. (L3).

In order to simulate the time t of each shock after a main shock, we assumed a
simple Omori-Utsu decay law (Utsu, 1961) with equation

𝑟(𝑡) = 𝐾
(𝑡+𝑐)𝑝 (L5)

where 𝑟(𝑡) is the time varying rate (in shocks per day) of a non-homogeneous
Poisson process, p and c are empirical parameters and K is a normalization
factor depending on the number shocks and on the considered time interval.
Usually, 𝑝 ≈ 1 and c is of the order of some tens of minutes (about 0.01 days).
The time integration

𝜏 = ∫𝑡
0 𝑟(𝑠)ds = 𝐹(𝑡) (L6)
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produces a set of transformed times which follow a stationary Poisson process
with intensity 1 (Ogata, 1988).

Conversely, given a set of times 𝜏𝑖 generated according to a stationary Poisson
process with intensity 1, the inverse integral transformation

𝑡 = 𝐹 −1(𝜏) (L7)

corresponds to a non-homogeneous Poisson process with rate 𝑟(𝑡).
Moreover, it is often useful to generate sequences of exactly N events over a
given time interval [0, 𝑇𝐸]

∫𝑇𝑒
0 𝑟(𝑠)ds = 𝑁 (L8)

This implies that

p
p = 1
(L9)

Then, the direct timescale transform is

p
N p = 1

(L10)

and the inverse timescale transform is

p
+ (c) - c p = 1

(L11)

The set of stationary Poisson times withy intensity 1 can be generated
by cumulating exponentially distributed interevent times (starting from
𝜏1 = − ln {1 − rand ]0 ∶ 1[ })

𝜏𝑖 = 𝜏𝑖−1 − ln {1 − rand ]0 ∶ 1[ } , 𝑖 = 2, 𝑁 (L12)
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