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Abstract

The drought resilience of forest ecosystems is generally believed to strongly depend on the dominant tree species’ hydraulic

traits. These traits define the maximum water transport capacity and the degree of vulnerability to hydraulic failure of a

given tree species. This work evaluates the effect of the intraspecific variability of hydraulic traits on the simulated tree

water use in the Community Land Model (CLM, version 5.0). We selected two broadleaved tree species with contrasting

phenologies, geographical distribution, degrees of vulnerability to hydraulic failure, and water use strategies. We performed a

series of numerical experiments by modifying the parameters of the plant vulnerability curve and the maximum xylem hydraulic

conductance to account for the variability within each tree species. Our prescribed parameter sets represent vulnerable and

resistant tree responses to the water deficit. At sites with an ample water supply, the resistant configuration simulates reduced

water stress and increased transpiration compared to the vulnerable configuration, whereas at temporarily dry sites, the model

results are counter-intuitive when water availability is the limiting factor. The numerical experiments demonstrate the emergent

role of the maximum xylem conductance as a modulator of the plant water use strategy and the simulated transpiration. Using

the default value for maximum xylem conductance, the model tends to overestimate the spring transpiration at drier sites,

forcing the vegetation to experience unrealistic water stress in summer. Our findings suggest that the parameterization of

maximum xylem conductance is an important and yet unresolved problem in the CLM and similar land surface models.
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Key Points: 8 

• We explore the impact of the intraspecific variability of plant hydraulic traits on the 9 
simulated transpiration by CLM5. 10 

 11 
• We find that a choice of plant hydraulic traits that reproduces observed plant transpiration 12 

also reduces simulated water stress. 13 
 14 

• We demonstrate the critical role of the maximum xylem conductance in the model and its 15 
dependency on factors other than vegetation type.  16 
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Abstract 17 

The drought resilience of forest ecosystems is generally believed to strongly depend on the 18 
dominant tree species’ hydraulic traits. These traits define the maximum water transport capacity 19 
and the degree of vulnerability to hydraulic failure of a given tree species. This work evaluates 20 
the effect of the intraspecific variability of hydraulic traits on the simulated tree water use in the 21 
Community Land Model (CLM, version 5.0). We selected two broadleaved tree species with 22 
contrasting phenologies, geographical distribution, degrees of vulnerability to hydraulic failure, 23 
and water use strategies. We performed a series of numerical experiments by modifying the 24 
parameters of the plant vulnerability curve and the maximum xylem hydraulic conductance to 25 
account for the variability within each tree species. Our prescribed parameter sets represent 26 
vulnerable and resistant tree responses to the water deficit. At sites with an ample water supply, 27 
the resistant configuration simulates reduced water stress and increased transpiration compared 28 
to the vulnerable configuration, whereas at temporarily dry sites, the model results are counter-29 
intuitive when water availability is the limiting factor. The numerical experiments demonstrate 30 
the emergent role of the maximum xylem conductance as a modulator of the plant water use 31 
strategy and the simulated transpiration. Using the default value for maximum xylem 32 
conductance, the model tends to overestimate the spring transpiration at drier sites, forcing the 33 
vegetation to experience unrealistic water stress in summer. Our findings suggest that the 34 
parameterization of maximum xylem conductance is an important and yet unresolved problem in 35 
the CLM and similar land surface models. 36 

 37 

Plain Language Summary 38 

The survival of trees under drought conditions depends on their adaptation to water scarcity. Part 39 
of this adaptation is characterized by specific plant traits, which are an important component of 40 
the Land Surface Models, largely determining the relationship between soil moisture and canopy 41 
gas exchange. Our study explores how the variability of specific plant traits of individual tree 42 
species may affect the model's ability to reproduce the observed water use by forest stands in 43 
Europe. In climates with a pronounced summer dry period, we found that the default model 44 
settings overestimate the vegetation water use in the early growing season, when water is 45 
abundant, resulting in severe water stress and underestimation of transpiration as the dry season 46 
progresses. Specifically, we demonstrate that the rarely considered plant trait representing the 47 
maximum water transport capacity plays an essential role in controlling the magnitude of 48 
simulated water use and that adjustments to this parameter greatly help to reproduce observed 49 
vegetation water use in seasonally dry climates. 50 

1 Introduction 51 

The recent worldwide increase in drought incidence and severity (He et al., 2020) has 52 
been associated with high rates of tree mortality (Powers et al., 2020; Senf et al., 2020), altered 53 
soil carbon and nitrogen dynamics (Deng et al., 2021), and a diminution in forest evaporation 54 
(Lansu et al., 2020; Lindroth et al., 2020). The severity of drought impacts on forest ecosystems 55 
and the spatial extent of them depends on the difference between precipitation and potential 56 
evaporation, atmospheric water demand, and forest resilience. The latter reflects the lumped 57 
vulnerability of individual trees (Haberstroh & Werner, 2022) and is driven by the safety 58 
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mechanisms used to overcome disturbances in the whole tree hydraulic system (Arend et al., 59 
2022).  60 

The resilience of a species to water stress is commonly expressed in the plant 61 
vulnerability curve and the recovery patterns shown by the tree species (Klein et al., 2018). This 62 
curve postulates a continuous decline of plant organ conductance with declining water pressure 63 
in the plant organ (Sperry & Love, 2015; Venturas et al., 2017). The parameters of the curve 64 
differ among and within tree species (Rosner et al., 2019), and are influenced by the provenance 65 
of the species (Hajek et al., 2016; Lobo et al., 2018) and xylem features such as lignin content 66 
(Pereira et al., 2018). This relationship between hydraulic conductivity and pressure has been 67 
analyzed across species and biomes (Choat et al., 2012), allowing to quantify the degree of 68 
vulnerability to hydraulic failure (Venturas et al., 2017). Vulnerable trees commonly have an 69 
early loss of conductance, small safety margins, and low wood density. Resistant trees have 70 
vulnerability curves ranging from gradual to steep responses at lower water potentials. These 71 
trees commonly have large safety margins and high wood density (Meinzer & McCulloh, 2013; 72 
Mrad et al., 2019). The degree of vulnerability to hydraulic failure is related to the trade-off 73 
between xylem safety and efficiency (Gleason et al., 2016; Hacke et al., 2006; Venturas et al., 74 
2017). This trade-off requires the coordination of the plant hydraulic traits and water use strategy 75 
(WUS), which ranges from aggressive to conservative (Flo et al., 2021; Mrad et al., 2019). Also, 76 
the WUS is influenced by the stomatal regulation capacity of the tree species (Konings & 77 
Gentine, 2017) and modulated by the vapor pressure deficit irrespective of the soil water content 78 
(Fu et al., 2022; Novick et al., 2019). 79 

The plant hydraulic theory is numerically implemented in models using either a plant 80 
pipe model, a porous media model, or an electrical analogy model (see Mencuccini et al. (2019) 81 
for a more detailed overview). Plant pipe models follow the Hagen-Poiseulle law and require the 82 
use of allometric scaling laws (Li et al., 2021; Mrad et al., 2018), whereas porous media models 83 
are based on Richards equation assuming that water movement through the xylem mimics an 84 
unsaturated porous media flow (Christoffersen et al., 2016; Li et al., 2021). Finally, the electrical 85 
analogy models resemble an electrical circuit with resistance and capacitance parameters that 86 
control the water flow following Darcy's law (Eller et al., 2018; Li et al., 2021). An electrical 87 
analogy model has low to moderate computational requirements making it a suitable model for 88 
implementation in large scale Land Surface Models (LSMs). For example, the Community Land 89 
Model 5.0 (CLM5, Lawrence et al., 2019) implements an electrical analogy model using the 90 
plant vulnerability curve to downscale the segment conductance according to the percent loss of 91 
conductance (PLC) (Kennedy et al., 2019). Given its recent implementation, the simulated plant 92 
hydraulic response (e.g., vulnerability to hydraulic failure) of CLM5 during drought conditions 93 
and across different forested ecosystems has not yet been evaluated in detail. Specifically, it has 94 
never been examined in detail to what extent the current (and default) plant hydraulic 95 
formulation and parameterization of the model reproduces realistic transpiration rates and plant 96 
water status under varying soil moisture availability and atmospheric water demand.  97 

The implementation of the plant hydraulic formulation in LSMs relies on the definition of 98 
plant hydraulic traits within the Plant Functional Type (PFT) classification framework (Bonan et 99 
al., 2002). This classification assumes that hydraulic traits are spatially homogeneous and 100 
temporally fixed within predefined vegetation categories, which is equivalent to assuming the 101 
same drought sensitivity within the same PFT class. Several studies have addressed the 102 
implications associated with the loss of diversity in the PFT classification in terms of water and 103 
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carbon dynamics by using deterministic or stochastic coordinated plant attributes (Christoffersen 104 
et al., 2016; Pappas et al., 2016; Wang et al., 2012; Xu et al., 2016) or by exploiting plant trait-105 
climate relationships (Verheijen et al., 2013). A recent study by Butler et al. (2022) showed that 106 
the aggregation of allocation and hydraulic traits into PFTs reduces the productivity of the 107 
modelled ecosystem with respect to the flux data of sites with a strong dependency on vegetation 108 
phenology. Overall, representing the plant trait inter- and intraspecific diversity within the PFT 109 
broad classification scheme remains a challenging task requiring the characterization of the 110 
emergent plant response by coordinating water use strategies with the xylem vulnerability 111 
(Skelton et al., 2015). While the trade-off between plant hydraulic traits has been addressed in 112 
previous studies using detailed plant hydrodynamic models (e.g., Mirfenderesgi et al. (2019)), 113 
the coordination between hydraulic traits and water use strategies remains unexplored for the 114 
plant hydraulic framework implemented in LSMs. Addressing this issue may provide an 115 
opportunity to define optimal strategies for large-scale parameterizations of key plant hydraulic 116 
traits (e.g., maximum xylem conductance), which are rarely documented in existing hydraulic 117 
trait databases. 118 

This manuscript aims to evaluate the effect of the intraspecific variability of plant 119 
hydraulic traits on the simulated transpiration response of two contrasting tree species in CLM5. 120 
The intraspecific variability of plant hydraulic traits defines the spectrum of vulnerability 121 
responses to hydraulic failure and the water use strategies of each species. This spectrum 122 
considers that individual tree species have different boundaries determining their degree of 123 
vulnerability to hydraulic failure. Our hypothesis is that vulnerable trees transpire more than 124 
resistant trees under unstressed water conditions and perform poorly during dry periods. On the 125 
other hand, resistant trees maintain low transpiration rates but experience less stress on the plant 126 
hydraulic system. For each species, we distinguish between a resistant and vulnerable hydraulic 127 
trait configuration by extracting from the reported parameter sets for that species the plant 128 
vulnerability curve with the minimum and maximum loss of 50% of conductance (Ψp50) value, 129 
respectively. This hypothesis is evaluated for two broadleaved tree species, Quercus ilex L. and 130 
Fagus sylvatica L., with contrasting phenologies and provenances. The results of point-scale 131 
numerical experiments with CLM5 based on each parameterization are compared to the sap flux 132 
observed at four experimental sites across Europe. The representation of the simulated 133 
vulnerability to hydraulic failure and the water use strategy of each species are interpreted using 134 
the simulated leaf water stress factor (β) and percent loss of conductance (PLC) in different plant 135 
organs. 136 

2 Materials and Methods 137 

2.1 Tree Species and Experimental Sites 138 

The tree species selected for this study, Fagus sylvatica L. and Quercus ilex L., belong to 139 
the same botanical family (Fagaceae) but differ in their phenology and spatial distribution in 140 
Europe (Figure 1). Fagus sylvatica is a deciduous broadleaved tree distributed in Central and 141 
Western Europe, from Southern Italy to Southern Norway. This tree species grows from sea level 142 
to 1000 m a.s.l., with a higher upper elevation limit in dryer regions. It does not survive in 143 
locations with poor drainage or stagnant water, and its relatively shallow root system makes it 144 
susceptible to drought and high temperatures (Houston Durrant et al., 2016; von Wuehlisch, 145 
2008). Quercus ilex is a broadleaved evergreen species that grows as a tree or shrub. It inhabits 146 
the Mediterranean basin from the coast up to 1800 m a.s.l., can survive low temperatures, and its 147 
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sclerophyllous character allows transpiration to be reduced during dry periods and its resistance 148 
to drought to be improved (de Rigo & Caudullo, 2016; Schirone et al., 2019). 149 

Two experimental sites for each species were selected from the SAPFLUXNET database 150 
(Poyatos et al., 2020). Fagus sylvatica is the dominant tree species in Hesse (France, FR-Hes) 151 
and Hinnensee (Germany, DE-Hin), over the sampling periods of 2001-2005 and 2012-2014, 152 
respectively (Table 1). Both sites have a temperate oceanic climate (Cfb) according to Köppen-153 
Geiger’s climate classification (Beck et al., 2018), with no significant intraseasonal precipitation 154 
variability. The stand age marks the main difference between these two sites; trees in FR-Hes 155 
were 34 years old during the selected measurement period while those in DE-Hin were more 156 
than 200 years old. The mean tree diameter reflects this age difference, with 12.9 cm at FR-Hes 157 
and 43.6 cm at DE-Hin. Quercus ilex is the dominant tree species in Puechabon (France, FR-158 
Pue) and Alto Tajo (Spain, ES-Alt). These sites cover the monitoring periods 2001-2005 and 159 
2012-2014, respectively. The climate differs slightly between these two sites; FR-Pue has a hot-160 
summer Mediterranean climate (Csa) while ES-Alt has a warm-summer Mediterranean climate 161 
(Csb). The different elevations of the sites explain the differences in climate classification (Table 162 
1). Despite a lack of differences in the stand age between these two sites, the diameter recorded 163 
for the trees in FR-Pue (9.1 cm) is much smaller than the diameter in ES-Alt (24.4 cm). 164 

 165 
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Figure 1. Geographical location of the four experimental sites and the spatial distribution of 166 
Fagus sylvatica L. and Quercus ilex L. across Europe. The spatial distribution of the tree species 167 
is based on Mauri et al. (2022). 168 

2.2 Model Setup 169 

The Community Land Model version 5.0 (CLM5, Lawrence et al. (2019)) was 170 
implemented at each experimental site using point-scale setups. Hourly atmospheric forcing was 171 
retrieved from the SAPFLUXNET dataset. This dataset includes precipitation, wind speed, air 172 
temperature, relative humidity, and incoming shortwave radiation. The incoming longwave 173 
radiation was calculated according to An et al. (2017) using the vapor pressure deficit and 174 
temperature. The COSMO-REA6 reanalysis product (Bollmeyer et al., 2015) was used to fill in 175 
the missing variables (i.e., atmospheric pressure) and  temporal data gaps for each site. The 176 
monthly leaf area index (LAI) in m2 m-2 was determined based on the Global Land Surface 177 
Satellite (GLASS) product (Liang et al., 2013, 2014) for the different periods under analysis. The 178 
monthly stem area index (SAI) in m2 m-2 was retrieved from the global surface dataset of the 179 
model as described in (P. J. Lawrence & Chase (2010). The root area index (RAI) in m2m-2 is 180 
calculated in the model (see Equation 2.11.15 of the technical documentation (UCAR, 2020)) 181 
based on plant functional type-specific parameters such as the LAI, SAI,  root fraction in each 182 
soil layer, and the root-to-shoot ratio. The main soil characteristics (e.g., soil texture, organic 183 
matter content) were taken from Bonan et al. (2002), while the depth to bedrock was taken from 184 
Pelletier et al. (2016). Multi-year spin-up runs were performed for each experimental site by 185 
reinitializing soil moisture and soil temperature until a dynamic equilibrium condition was 186 
reached. The tree species at the selected sites pertain to two distinctive plant functional types 187 
(PFTs), with Fagus sylvatica representing the Temperate Broadleaf Deciduous Tree (BDT) in 188 
FR-Hes and DE-Hin and Quercus ilex representing the Temperate Broadleaf Evergreen Tree 189 
(BET) in FR-Pue and ES-Alt; see Table 2 for the default plant hydraulic configuration (DC) of 190 
these two PFTs. 191 

2.3 Plant Vulnerability Curve 192 

The plant vulnerability curve (PVC) implemented in CLM5 (Equation 1) determines the 193 
plant segment specific hydraulic conductance k (mmH2O mmH2O

-1s-1) based on three parameters: 194 
the xylem pressure inducing 50% loss of hydraulic conductance (Ψp50, MPa), the non-195 
dimensional sigmoidal shape parameter of the curve (ck), and the maximum plant hydraulic 196 
conductance (kmax, mmH2O mmH2O

-1s-1). CLM5 uses kmax, Ψp50 and ck as static parameters 197 
that may differ between plant segments (i.e., root, xylem, and sunlit and shaded leaf) and PFTs. 198 
The plant hydraulic system of CLM5 uses k to determine the flux per plant segment by applying 199 
a Darcy’s law equation, where the reference area varies between plant segments: the leaf area 200 
index (LAI, m2m-2) for the stem-to-leaf, the stem area index (SAI, m2m-2) for the root-to-stem, 201 
and the root area index (RAI, m2m-2) for the soil-to-root segment. A detailed description of the 202 
equations used by the plant hydraulic system of CLM5 is provided in Kennedy et al. (2019) and 203 
Lawrence et al. (2019). 204 

 205 𝑘 = 𝑘 2  Equation 1 
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2.4. Intraspecific Variability of Plant Hydraulic Traits 206 

The intraspecific variability of both tree species was determined based on the loss of hydraulic 207 
conductance at 12%, 50%, 88%, and in some cases at 10% (Ψp12, Ψp50, Ψp88, and Ψp10, 208 
respectively), as reported in the Xylem Functional Traits (XFT) database (Choat et al., 2012). 209 
Additional data sources for Fagus sylvatica were retrieved from the literature review; see table 210 
S1 for a complete list of references for the additional data. The ck parameter of each dataset was 211 
determined by converting the reported slope of the vulnerability curve at Ψp50 to ck or by solving 212 
the CLM vulnerability curve for ck and inserting any provided combination of PLC and Ψp10, or 213 
Ψp12, or Ψp88 values reported in the XFT database, with a preference for Ψp10 or Ψp12 if available. 214 
The procedure to determine the ck parameter assumes that Equation 1 follows the Weibull 215 
distribution, allowing to use the vulnerability curve formulation from Domec and Gartner (2001). 216 
From this formulation, we derived Equation 2 to calculate the ck parameter based on the Ψp50, the 217 
slope of the curve (s) at Ψp50 (Pa-1), and V as a constant dimensionless value of 34.66. To 218 
determine V, we deduced Equation 3 from Domec and Gartner (2001) and inserted the percent 219 
loss of conductivity (τ ) of 50%. Equation 4 is used to calculate s (Pa-1) using the slope at any 220 
specific loss of conductivity (𝜏). This indicator is calculated with Equation 5 using 𝜏 in %, Ψp50, 221 
and Ψx that represents the matric potential at the selected 𝜏. Finally, the two curves with the 222 
highest and lowest Ψp50 values were selected for each species to represent the vulnerable (VC) 223 
and resistant (RC) response, respectively (Figure 2); see Table 2 for more details on the obtained 224 
values. 225 

 226 𝑐 = Ψ ∙ 𝑠𝑉  Equation 2 

 227 𝑉 = τ − 100 ∙ ln 1 − τ100  Equation 3 

 228 

𝑠 = −25 log 100 − ττΨ − Ψ  Equation 4 

 229 

The xylem water potentials of Fagus sylvatica have a narrow distribution, with the Ψp12, 230 
Ψp50, and Ψp88 values ranging from -2.0 MPa to -5.0 MPa (Figure 2). The two extreme curves 231 
obtained from this dataset have a steep decline of hydraulic conductance with the diminution of 232 
water potentials, with a small range in ck (1.73 to 3.33) and Ψp50 (-1.9 MPa to -4.7 MPa) values 233 
(Table 2). Quercus ilex has a larger range of xylem water potentials than Fagus sylvatica, 234 
ranging from -0.5 MPa to -7.0 MPa. This species shows a large difference between the extreme 235 
vulnerability curves, with ck values ranging from 1.70 to 8.04 MPa and Ψp50 from -1.23 to -5.72 236 
MPa for the VC and RC, respectively.  237 

The kmax values used by default in CLM5 are assumed constant for the different PFTs and 238 
homogeneous across the different plant organs (i.e., root, xylem, and leaf). kmax values for each 239 
plant segment can be determined based on the experimental specific hydraulic conductance (ks, 240 
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that the RC describes a plant response less affected by low soil water potentials, while the VC 266 
describes a plant response with a high susceptibility to hydraulic failure at low water potentials. 267 

The second set of experiments explored the role of kmax in constraining the whole plant 268 
water use strategy of the different tree species. This was achieved by changing the kmax value to 269 
the high (Hkmax) and low (Lkmax) xylem conductance while keeping the default model 270 
configuration for the shape parameters (Table 2). Finally, two additional intermediate values 271 
were added to this experiment representing a half order of magnitude difference between the 272 
boundaries and the default kmax (1.1 x 10-7 mmH2O mmH2O

-1s-1 and 1.1 x 10-8 mmH2O mmH2O
-1s-1) 273 

and are referred to as intermediate-high (IHkmax) and intermediate-low (ILkmax) xylem 274 
conductance, respectively. 275 

The third set of experiments aimed to evaluate the role of coordinated changes in safety 276 
(i.e., shape parameters) and transport capacity (i.e., maximum xylem conductance). We analyzed 277 
the plant hydraulic response simulated by CLM5 using the best fitted kmax value obtained for 278 
each site in the second set of experiments together with both Ψp50 and ck values used in the first 279 
set of experiments (Table 2). That is, the response of each vulnerable and resistant model 280 
configuration was evaluated across a wide spectrum of xylem conductance. We hypothesized 281 
that a resistant tree species (i.e., with low Ψp50) associated with high kmax values would 282 
experience more stress (i.e., large degree of vulnerability) than a vulnerable tree species having a 283 
low kmax. 284 

2.6. Data Analysis 285 

2.6.1. Reference Evaporation 286 

Equation 5 is based on Equation 6 from Allen et al. (1998), and calculates the reference 287 
evaporation (Eo) used as a descriptive variable of the atmospheric water demand for each 288 
experimental site. Equation 5 assumed a reference crop of 0.12 m height, a surface resistance of 289 
70 s m-1, and an albedo of 0.23. This equation requires wind speed (u) in m s-1, net radiation (Rn) 290 
and ground heat flux (G) both in MJ m-2d-1, air temperature (T) in C, and the actual and saturated 291 
vapor pressures (ea and es, respectively) in kPa. G was extracted from the modeled results of the 292 
default configuration of each experimental site. The slope of the saturation vapor pressure curve 293 
at air temperature (∆, kPa K-1) was computed using Equation 6, based on Equation 13 from Allen 294 
et al. (1998). The psychrometric constant (𝛾) was estimated with Equation 7 based on Equation 8 295 
from Allen et al. (1998), where 𝜆 is the latent heat of vaporization (2.45 MJ kg-1), cp is the 296 
specific heat at constant pressure (1.013 x 10-3 MJ kg-1 K-1), p is the atmospheric pressure (kPa), 297 
and 𝜖 is the molecular weight ratio of water vapor and dry air (0.622). 298 

 299 

𝐸 = 0.408 ∙ ∆ ∙ 𝑅 − 𝐺 + 𝛾 900𝑇 + 273 ∙ 𝑢 ∙ 𝑒 − 𝑒∆ + 𝛾 ∙ 1 + 0.34 ∙ 𝑢  Equation 5 

 300 

∆= 4098 ∙ 0.6108 ∙ 𝑒𝑥𝑝 . ∙ .𝑇 + 237.3  Equation 6 
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 301 𝛾 = 𝑐 𝑝𝜖𝜆  Equation 7 

2.6.2. Upscaled Transpiration 302 

Observed forest transpiration (ET) in mm hr-1 was calculated based on the hourly and sub-303 
hourly sap flux of individual trees (Qtree) in cm3 hr-1 available on the SAPFLUXNET data set 304 
(Poyatos et al., 2020). We used equation 8 to obtain ET and summarized it in daily time steps 305 
following the recommendations of Nelson et al. (2020). Equation 8 requires Qtree aggregated in 306 
hourly fluxes per tree (m3 hr-1tree-1), the basal tree area (𝛺tree) in m2 tree-1, the stand basal area 307 
(𝛺stand) in m2 m-2, and the number of measured trees (n). All the information required in Equation 308 
8 is available on the SAPFLUXNET data set for each site. The stand basal area of DE-Hin was 309 
missing in the SAPFLUXNET data set, so we obtained it from Moreno et al. (2017) according to 310 
the geographical location of the plot. 311 

 312 𝐸 = 𝛺𝑛 ∙ 10 ∙ 𝑄𝛺  Equation 8 

2.6.3 Plant Water Stress 313 

The plant water stress was evaluated by comparing the percent loss of conductance (PLC) 314 
and the transpiration water stress parameter (β). The PLC was calculated using Equation 9 at the 315 
root-stem (hereafter named stem) and stem-leaf (hereafter named leaf) plant segments. This 316 
equation uses the simulated (k) and the maximum (kmax) plant organ conductance. The water 317 
stress parameter β was calculated as a weighted average of shade and sunlit components 318 
according to their corresponding LAI components. Further details on the mathematical 319 
formulation of the water stress factor of CLM5 are provided in Kennedy et al. (2019). 320 

 321 𝑃𝐿𝐶 = 100 ∙ 1 − 𝑘𝑘  Equation 9 

3. Results 322 

The impact of the different plant hydraulic parametrizations was investigated by 323 
comparing the simulated time series of transpiration (ETm) to the upscaled sap flux measurements 324 
(ET). The comparison was carried out for the spring, summer, and autumn seasons. Furthermore, 325 
a comprehensive insight into the simulated plant hydraulic response was gained by analyzing the 326 
temporal evolution and probability density of PLC, the transpiration water stress parameter (β), 327 
and the water potentials across the soil-vegetation continuum (Ψ).  328 

3.1. Reference Evaporation and Measured Transpiration  329 

Figure 3 shows the seasonal distribution of Eo and ET for the four sites and two tree 330 
species selected. For most of the seasons, the atmospheric water demand is two- and four-times 331 
larger than the ET in FR-Hes/DE-Hin and FR-Pue/ES-Alt, respectively. It is worth noticing that 332 
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despite belonging to the same climate classification, the DE-Hin and FR-Hes sites have highly 333 
contrastingly Eo values. This difference is explained by a lower mean annual precipitation (606.4 334 
mm yr-1) and temperature (8.7 °C) at DE-Hin compared to FR-Hes, which receives 1003.8 mm 335 
yr-1 of precipitation and experiences a mean annual temperature of 9.97 °C. Seasonal ET patterns 336 
differ strongly among species and seasons, with sites dominated by Fagus sylvatica (i.e., FR-Hes 337 
and DE-Hin) showing values close to 0 in spring and autumn due to the deciduousness of the 338 
forest species. In contrast, the evergreen Quercus ilex at FR-Pue and ES-Alt express smaller 339 
intraseasonal variations, with greater spring and autumn ET, but smaller values in summer 340 
compared to the Fagus sylvatica sites. 341 

 342 

Figure 3. Seasonal variation of measured daily transpiration (ET) and reference evaporation (Eo) 343 
of the four forested sites in Europe. The area of the violin plots represents the data density 344 
distribution. The horizontal line is the median of the data set with the respective value. The black 345 
box represents the first and third quartiles of the data set. The elongated tales outwards from the 346 
black boxes represent the data outliers. 347 

 348 

3.2. Effects of Changing the Shape of the Vulnerability Curve 349 

The experimental sites dominated by Fagus sylvatica have similar measured and modeled 350 
transpiration values (Figure 4), with minor differences during the summer and autumn seasons, 351 
but significant over-estimation of ET in early spring. Note that for both deciduous sites, the sap 352 
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flow starts after the 105th day of the year, around the time of leaf flush, whereas the LAI values 353 
used in our simulations also include the understory of the forest, and therefore likely over-354 
estimate early season tree LAI (see Figure S1). Figure 4 indicates that there are marginal 355 
differences at both sites (i.e., FR-Hes and DE-Hin) when representing a vulnerable (VC) and 356 
resistant (RC) shape of the vulnerability curve. As expected, the VC tends to produce, especially 357 
during the summer period, lower transpiration rates and higher water stress conditions 358 
represented by low β values. These stress conditions are mainly found at the stem-leaf level with 359 
the median of the PLC values going beyond 12% while those at the root-stem level remain close 360 
to zero. The comparison of the distribution of the PLC values at different plant levels (i.e., root-361 
stem and stem-leaf) with those of the β stress factor provides some additional insights into the 362 
relative effect of stomata and plant hydraulics on the simulated transpiration response. 363 

The effects of changing the shape of the vulnerability curve are remarkably different at 364 
the evergreen sites (i.e., FR-Pue and ES-Alt) populated with Quercus ilex species (Figure 4). At 365 
these sites, the default (DC) plant hydraulic model parameterization largely overestimates the 366 
transpiration response during spring/early summer (see Figure S1), which leads to a strong 367 
underestimation of ET during prolonged dry conditions followed by a slow recovery in autumn. 368 
Counterintuitively, this tendency is amplified by the resistant configuration (RC) and is 369 
alleviated by the vulnerable configuration (VC) of plant hydraulics, with this latter simulating 370 
higher transpiration rates during most of the summer. The unexpected model response is 371 
confirmed by the distribution of the simulated water stress factor and PLC values, with the 372 
response of the RC reflecting a higher level of hydraulic failure compared to DC and VC during 373 
the summer. 374 
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kmax (IHkmax) did not show differences in the simulated ET for the selected sites, as within this 390 
range of kmax values transpiration rates are limited by the atmospheric water demand. Most 391 
effective changes in the simulated ET values occur in the range between the default kmax (DCkmax) 392 
and low kmax (Lkmax), with the best correspondence between observed sap flow and simulated 393 
transpiration rates achieved by the DCkmax at FR-Hes, and the ILkmax for the other sites. Here it is 394 
interesting to note that at ES-Alt, the model performances can be further improved by increasing 395 
the sampled kmax values between ILkmax and Lkmax (see Figure S4), with an ‘optimal’ kmax value 396 
of 6.5 x 10-8 mmH2O mmH2O

-1s-1. 397 

We found that gradual changes in kmax systematically affected soil evaporation across all 398 
sites, where soil evaporation increased from Hkmax towards Lkmax (Figure 5). These effects are 399 
visible at the top 12 cm of soil (first three layers), where the model allocates 34 % of the root 400 
biomass. This tendency shows the impact of transpiration on the soil water reservoir by 401 
increasing the plant water acquisition. Higher kmax values allow extracting more water from the 402 
soil and hence reducing the soil moisture. In contrast, reduced kmax compared to the default value 403 
result in a reduced water transport capacity and diminishing soil water acquisition. As a result, 404 
when kmax is smaller than DC, soil evaporation increases considerably at all sites (Figure 5). The 405 
Lkmax configuration restricts the plant water transport at all sites to a point where the soil matric 406 
potential is close to 0 all year round (Figure S3), allowing the soil to evaporate more water while 407 
transpiration rates are reduced. For the evergreen sites (i.e., FR-Pue and ES-Alt), the Lkmax 408 
configuration makes soil water to evaporate at high rates, even matching the transpiration 409 
measured in summer at FR-Pue and similar values all year round at ES-Alt. 410 

Sites covered with Fagus sylvatica do not experience extreme transpiration stress (β<0.5) 411 
even when the ET is overestimated as in the Hkmax, IHkmax, and DC configurations. The 412 
increment of leaf water stress with the Lkmax configuration at these two sites (i.e., FR-Hes and 413 
DE-Hin) does not go beyond 0.5. This is the consequence of the limited water transport within 414 
the plant, impacting the stomatal conductance used to determine the β values. The sites with 415 
Quercus ilex (i.e., FR-Pue and ES-Alt) experience a more significant leaf water stress in summer 416 
when the kmax overestimates the transpiration in spring (Hkmax, IHkmax, and DC). The use of 417 
smaller kmax values at these drier sites triggers a more restricted vegetation water use under wet 418 
conditions (i.e., spring and early summer). Using a smaller kmax at sites with stronger dry seasons 419 
enables the vegetation to not use all the water in spring, allowing the soil water reservoir to 420 
supply the moisture needed in summer. The most suitable kmax at FR-Hes corresponds to the DC. 421 
DE-Hin, which has the same tree species as FR-Hes, shared with FR-Pue the ILkmax as the best 422 
performing kmax. This is despite the differences between the two sites in tree species, tree size, 423 
and stand age (Table 1). The fact that a similar kmax does not characterize the same species points 424 
out that xylem conductance can be influenced by factors other than genetics (e.g., environmental 425 
conditions, growth history). 426 
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3.4. The Combined Effects of Changing the Shape of the Vulnerability Curve and the 436 
Maximum Xylem Conductance 437 

The third set of experiments was designed to evaluate the sensitivity of ET to the plant 438 
vulnerability curve (PVC) parameters with the modified kmax. We expect that the use of best-439 
fitted kmax values obtained in the second set of experiments allows a better evaluation of the 440 
impacts of the coordinated changes between ck and Ψp50. As compared to Figure 1, the simulated 441 
ET is much closer to the observed at all sites for DC, also avoiding extreme stress at xylem level 442 
(PLC < 50%) for extended periods (Figure 6). Furthermore, the coordinated changes of the shape 443 
parameters with the kmax enable the simulation of a more realistic hydraulic response of the root-444 
stem and stem-leaf segment to dry season conditions across the four selected sites (Figure 6). 445 
The results indicate that in sites populated by Fagus sylvatica, the severe hydraulic failure events 446 
(PLC > 50%) simulated by the model are much less frequent at FR-Hes and are completely 447 
absent at DE-Hin. Meanwhile, the Mediterranean sites (i.e., FR-Pue and ES-Alt) are 448 
characterized by low PLC values (<20 %) for the root-stem plant segment, while more severe 449 
PLC values are simulated at the stem-leaf level. Only the RC of these evergreen sites shows a 450 
more severe stress response in summer, where the root-stem compartment experiences PLC 451 
values larger than 20% for half of the time (second half of the violin plot of Figure 6). At the 452 
same time, the xylem-leaf compartment also shows a strong reduction of conductance (PLC > 453 
50%). The impact of the RC also affects the xylem-leaf compartment, where the bimodal 454 
distribution depicts the problem of the reduced provision of water for vegetation during summer 455 
due to a more aggressive soil water extraction in late spring or early summer. 456 
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2000; Heinrich et al., 2018), where the species were found to be more susceptible to reductions 472 
of soil water availability due to dry spells and droughts. This tree species prefers to grow under 473 
favorable climatic conditions with abundant precipitation and no water stagnation or prolonged 474 
dry periods (Houston Durrant et al., 2016; von Wuehlisch, 2008). This could be why Fagus 475 
sylvatica, keeps significant transpiration rates as leaf water potentials decline, but it is also 476 
frequently observed to shed leaves prematurely under extreme drought, which could be to reduce 477 
water loss and hydraulic failure or due to hydraulic failure (Leuschner, 2020). 478 

Quercus ilex can grow deep roots, increasing the accessible water reservoir and allowing 479 
the trees to withstand long dry periods (Peñuelas & Filella, 2003; Zapater et al., 2011), as has 480 
been shown at FR-Pue and ES-Alt (Baldocchi et al., 2010; Forner et al., 2018). Its evergreen 481 
character is maintained during summer thanks to its physiological adaptations such as 482 
sclerophyllous leaves, summer growth reduction, and strong stomatal control (Barbeta & 483 
Peñuelas, 2016; Terradas & Savé, 1992). The high wood density of oak is linked to its reduced 484 
porosity, allowing it to resist lower matric potentials during summer, reducing its susceptibility 485 
to hydraulic failure (Terradas & Savé, 1992). The strong stomatal control of this species 486 
classifies it as the most isohydric species of the Quercus genus (Barbeta & Peñuelas, 2016). This 487 
process is clearly visible in summer at FR-Pue and ES-Alt, where precipitation is scarce, and the 488 
trees reduce transpiration rates by closing their stomata. Overall, the difference between the two 489 
selected species relies on the degree of vulnerability to hydraulic failure and the WUS, with 490 
Fagus sylvatica showing a vulnerable response and aggressive WUS, while Quercus ilex is more 491 
resistant to hydraulic failure with a conservative WUS. 492 

4.2. Some unexpected effects of the vulnerability curve shape parameters  493 

The pant vulnerability curve (PVC) is widely used to model the plant water use response 494 
to water stress from single trees up to the ecosystem scales (Kennedy et al., 2019; Li et al., 2021; 495 
Mackay et al., 2015; Mencuccini et al., 2019; Sloan et al., 2021). To our knowledge, the impact 496 
of characterizing the shape parameters of the curve (Ψp50 and ck) for the different species or plant 497 
functional types (PFTs) has not been investigated in detail for the current implementations of the 498 
PVC in land surface models (LSMs). In CLM5, the default parameterization of the plant 499 
hydraulic traits is the same for the PFTs under analysis at the four experimental sites. This 500 
provided the opportunity to evaluate the effect of the environmental conditions, namely the 501 
dynamics of atmospheric water demand and soil water availability, on the simulated plant 502 
hydraulic response. FR-Hes and DE-Hin are sites with a continuous water supply during summer 503 
due to the low intra-seasonal variability of precipitation (Blume et al., 2022; Granier et al., 504 
2008). Regular precipitation prevents the drying out of the soil water reservoir during summer, 505 
allowing the vegetation to operate at low to moderate levels of water stress throughout the year. 506 
The default plant hydraulic parameterization of CLM5 reproduces an aggressive water use 507 
strategy (WUS) of Fagus sylvatica at FR-Hes, allowing the vegetation to transpire at rates close 508 
to the atmospheric water demand. However, the use of the same plant hydraulic parameterization 509 
across the selected PFTs (Table 2) does not reflect the conservative WUS expected at 510 
Mediterranean sites, such as FR-Pue and ES-Alt, which are inhabited by Quercus ilex. These two 511 
sites have a strong atmospheric water demand but receive very little precipitation in summer 512 
(Allard et al., 2008; Lorenzo-Lacruz et al., 2010), resulting in extremely negative soil water 513 
potentials and severe plant water stress in the default model simulations (Jiménez-Rodríguez et 514 
al., 2022). Although inclusion of water uptake from deeper soil reservoirs can reduce the severity 515 
of simulated water stress and under-estimation of transpiration rates in the model (Jiménez-516 
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Rodríguez et al., 2022), here we found that reducing the plant hydraulic conductance can 517 
improve both, the over-estimation of transpiration in the early growing season and the under-518 
estimation in late summer, due to more carry-over soil resources from the early to the late 519 
season.  520 

The limitations underscored by the default plant hydraulic parameterization of CLM5 in 521 
reproducing the aggressive and conservative WUS persist when changes are applied only to the 522 
Ψp50 and ck parameters. That is, the model response is dominated by the instantaneous 523 
atmospheric water demand and restricted by the soil water availability. Therefore, at sites where 524 
water supply is continuous throughout the year (e.g., FR-Hes and DE-Hin) the decrease of Ψp50 525 
with the resistant configuration (RC) allows more water to be extracted under given 526 
meteorological conditions while reducing plant water stress (PLC and β) as expected (Knüver et 527 
al., 2022; Walthert et al., 2021). However, the RC overestimates transpiration rates (ET) for both 528 
sites (Figure 4 and Figure S1). This pattern of the model response illustrates the dominant role of 529 
plant hydraulics over stomatal control of ET. Under seasonally limited soil water supply, as is the 530 
case at FR-Pue and ES-Alt during summer, the model simulates a counter-intuitive response 531 
when changing the shape parameters of the PVC, with the resistant configuration (RC) suffering 532 
more water stress and a reduced ET than the default or vulnerable configurations (DC and VC, 533 
respectively) (Figure 4). The entire intraspecific variability in PVC shape parameters for  534 
Quercus ilex does not reproduce the conservative WUS in the model that would be expected of a 535 
tree species able to withstand significant water shortage conditions (Barbeta & Peñuelas, 2016; 536 
Terradas & Savé, 1992). In the contrary, the choice of more resistance PVC shape parameters 537 
diminished soil water availability simulated at FR-Pue and ES-Alt during summer due to over-538 
use of water in spring, magnifying the overall vegetation water stress. 539 

4.3. Uncovering the role of maximum xylem conductance 540 

The results of the second set of numerical experiments highlight the role of the maximum 541 
xylem conductance (kmax) in determining the transpiration rates under ample water supply and 542 
therefore shaping the seasonal water use strategy. The presented results illustrate the effective 543 
role of kmax in constraining the water use at sites with seasonal water limitations (i.e., FR-Pue and 544 
ES-Alt). The maximum specific hydraulic conductance is a parameter highly influenced by local 545 
environmental conditions rather than genetics (Hochberg et al., 2018; Lu et al., 2022). This 546 
characteristic is represented by the range of kmax values observed for the same species (Figure 547 
S5). The observed kmax values vary by two orders of magnitude for Fagus sylvatica (BDT) and 548 
five orders of magnitude for Quercus ilex (BET), with similar maximum values for both. The 549 
primary role of kmax for the plant hydraulic system of CLM5 is in constraining the water transport 550 
during unstressed conditions and thereby determining the magnitude of plant water use and how 551 
much water is left in the ground, some of which might be available later. At FR-Hes, larger kmax 552 
values compared to the default value increase the water transport in the model, allowing to match 553 
the atmospheric water demand and observations. In contrast, smaller kmax values are needed at 554 
ES-Alt and FR-Pue to prevent the vegetation from depleting the soil water reservoir in spring 555 
and therefore enable continued plant water use under moderate stress during the dry summer. A 556 
lower kmax depicts a transport limitation allowing to reduce the water stress on the plant in the 557 
model, while a larger kmax allows the model to transpire at higher rates, mimicking an aggressive 558 
WUS. CLM5 differs from other numerical models that rely on stomatal conductance to control 559 
or mimic the WUS (Sloan et al., 2021). Therefore, in CLM5, an adequate selection of kmax plays 560 
the role of restraining the vegetation from transpiring excessively in spring and at the beginning 561 
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of summer to ensure an adequate water supply as summer progresses in a Mediterranean 562 
(summer-dry) climate. Note that in the Darcy's law equation used in the plant hydraulics system 563 
of CLM5 a certain sensitivity in the simulated transpiration fluxes could be expected by 564 
changing also the cross-sectional area of the different plant segments (e.g., SAI). However, there 565 
is not a direct correspondence between the prescribed SAI values in the model (defined as the 566 
sum of all non-photosynthetic vegetation, including stems, branches, and dead leaves (P. J. 567 
Lawrence & Chase, 2007)) and the basal area reported from the selected sites (Table 1), which 568 
adds uncertainty in the simulated transpiration fluxes. 569 

Most models describe the plant vascular factor by lumping the entire system into a single 570 
term (Fatichi et al., 2016), omitting the large variability of the forest ecosystems related to tree 571 
species and age (Weithmann et al., 2022). This is the case for kmax within the plant hydraulic 572 
system of CLM5, where the default kmax value is commonly used, disregarding the variability of 573 
different tree species and stand density within the PFT classification. Previous studies argue that 574 
kmax expresses the maximum xylem specific conductance of vegetation under the most favorable 575 
environmental conditions (Sabot et al., 2020) and its determination depends on the measurements 576 
of specific xylem conductance (ks), which is a key plant hydraulic trait contributing to the control 577 
of the water transport capacity of vegetation (Eamus et al., 2016). This plant hydraulic trait 578 
(PHT) varies accordingly with the plant species, environmental conditions, and tree size 579 
(Anfodillo & Olson, 2021; Domec et al., 2012; Domec Jean-Christophe et al., 2008; Hochberg et 580 
al., 2018; Willigen et al., 2000). 581 

The use of plant hydraulics in land surface modelling provides a framework to connect 582 
the environmental conditions with the stomatal response (Venturas et al., 2017), allowing a better 583 
control on the simulated plant water use strategies. However, we found that the site-specific 584 
character of kmax has largely been ignored by the modelling community. The default value for 585 
kmax is the same for all PFTs, and an order of magnitude lower than the lowest reported specific 586 
xylem conductance (ks) for Fagus sylvatica, whereas the reported values for Quercus ilex have 587 
two outliers, one and three orders of magnitude below the default value (see Figure S5 for more 588 
details). The ks values of Fagus sylvatica do not match the range of kmax used in the second 589 
experiment, where the high xylem conductance (Hkmax) is close to the lowest ks value found for 590 
this tree species. However, we found little difference in the simulations between the highest 591 
values of kmax, so exploring the range of values where most observations lie would not improve 592 
the model simulations.  The differences between the reported ks and model-default kmax 593 
highlights the complexity of defining the kmax value for different plant functional types (PFTs) 594 
based on experimental data with a larger number of species. Here we show how important is the 595 
correct parametrization of kmax in CLM5 for capturing the water use by vegetation in summer-dry 596 
climates. To progress, we need a better understanding of how kmax is controlled by a complex set 597 
of growing conditions and co-ordination between the root system and leaf area index (Aranda et 598 
al., 2015; Lemoine et al., 2002).  599 

 600 

4.4. Understanding the impact of coordinated changes of plant hydraulic traits in CLM5  601 

We found that the adjustment of the hydraulic vulnerability curve shape parameters (Ψp50  602 
and ck) alone did not enable the reproduction of the observed water use dynamics (Figure 4), as 603 
choosing a parameterization that is more resistant to hydraulic failure (RC) resulted in even more 604 
reduced dry season water use, if the maximum hydraulic conductance (kmax) was too high. 605 
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Indeed, the drastic effect caused by the more negative Ψp50 of the RC is diminished by using a 606 
smaller kmax, reducing the water extraction in spring, and letting the vegetation experience lower 607 
PLC values in summer (Figure 6). Also, the fact that the VC of Fagus sylvatica results in low 608 
PLC for the root-stem and more severe PLC for stem-leaf shows the model’s ability to reproduce 609 
important physiological processes along the PLC curve (Huber et al., 2019). These processes 610 
may trigger different drought survival strategies depending on the species. For Fagus sylvatica, 611 
water stress and loss in conductance may result in premature shedding of leaves during dry 612 
conditions (Arend et al., 2022) or stomatal closure (Schuldt et al., 2016). The sites populated by 613 
Quercus ilex are better simulated using low kmax values (Figures 5 and S4), which allow to better 614 
reproduce the WUS of species adapted to water scarce environments (Terradas & Savé, 1992). 615 
Nonetheless, extremely low Ψp50 still trigger an excessive water uptake during the driest part of 616 
the summer at Mediterranean sites (Figure 6), demonstrating the lack of stomatal regulation in 617 
the model and its strong dependency on hydraulic limitations and soil water availability to 618 
control the magnitude of ET. Note that in our study, kmax was selected based on the default 619 
vulnerability curve shape parameters, whereas the latter were adjusted in a second step, using the 620 
previously selected kmax. The results could likely be improved by choosing an optimal 621 
combination of kmax, Ψp50 and ck, but model calibration is not the goal of the present study. 622 

The results of our study also demonstrate that generalizing the use of kmax as a 623 
homogeneous parameter across PFTs in CLM5 prevents an adequate reproduction of the 624 
magnitude and timing of ET at sites in different climates. Also, the independence between 625 
stomatal control and hydraulic conductance in the model is contradictory to what the existing 626 
evidence suggests (Franks, 2004). These aspects magnify the effect that more negative Ψp50 has 627 
on the water extraction when we change only the curve shape parameters, something that was 628 
overlooked in previous studies (e.g., Bai et al. (2021), Song et al. (2020)). The results of the 629 
coordinated changes in safety (i.e., the shape parameters Ψp50 and ck) and efficiency (i.e., kmax) 630 
hydraulic traits underline how kmax rules the WUS in the model, while Ψp50 and ck modulate the 631 
level of the hydraulic stress experienced. An adequate parameterization of kmax, Ψp50 and ck in 632 
combination is critical for obtaining a simulated plant hydraulic response that conforms with the 633 
plant water supply theory and the expected physiological response of vegetation subjected to dry 634 
conditions. 635 

4.5. Addressing the plant hydraulic traits: homogeneity versus diversity 636 

The plant functional type (PFT) classification system has been a valuable tool for 637 
understanding drought resilience from an ecosystem perspective (Sturm et al., 2022). However, 638 
the large variation in ecosystem functional properties related to the water cycle is insufficiently 639 
explained by this classification system (Reichstein et al., 2014). Skelton et al. (2015) stressed the 640 
need to characterize the plant response to drought by merging the current knowledge of the water 641 
use strategies (WUS) with the xylem vulnerability. To fulfill this need, this classification system 642 
requires the characterization of the physiological traits per vegetation type and growing stage. 643 
Nonetheless, these aspects are heavily homogenized using the current PFT classification system, 644 
affecting the capacity to correctly predict the ecosystem water use (Konings & Gentine, 2017) 645 
and leading to a poor predictive skill of the vulnerability to hydraulic failure. 646 

Fagus sylvatica and Quercus ilex represent part of the variability of the plant hydraulic 647 
traits (PHT) within the broadleaf deciduous (BDT) and broadleaf evergreen (BET) PFT classes. 648 
Aiming to provide a broader context of the role of homogeneity versus diversity in plant 649 
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hydraulic trait studies, we sampled the XFT database (Choat et al., 2012) for a preselected set of 650 
species per PFT in Europe (Buras & Menzel, 2019; Fyllas et al., 2020; Leuschner & Meier, 651 
2018) with the emphasis placed on the temperate BDT, BET, and adding the needleleaf 652 
evergreen (NET) PFT to enrich the analysis (see Table S2 for details of the sampled species). 653 
Figure 7 illustrates that the Ψp50 used by default in CLM5 fails to capture the values of Ψp50 for 654 
NET and BDT in Europe, as the default values are not even close to the median values of the 655 
distributions. The Ψp50 of NET in CLM5 is way beyond the Ψp88 for this PFT, representing an 656 
extremely resistant tree with respect to the published data, while the Ψp50 of BDT depicts a more 657 
vulnerable tree closer to the reported median of Ψp12. The default Ψp50 of BET in CLM5 matches 658 
the median of the published data, but the large range showed by this PFT (-0.5 MPa to -9 MPa) 659 
raises the question of how much of this variability is driven by geography or environmental 660 
conditions. An even more important aspect to be considered is an adequate selection of kmax for 661 
the PFTs, where the large variability showed for individual species does not agree with the best 662 
fitted kmax of the model. This finding depicts the issue of considering kmax as constant among 663 
PFTs when the variability of the species describing these PFTs is large (see Figure S5). 664 

Liu et al. (2020) showed the benefit of considering the plant hydraulics in LSMs, where 665 
the overestimation of vegetation water use is a common issue. They also recognize the ability of 666 
plant hydraulics to predict vulnerability to droughts. In this regard, Kennedy et al. (2019) 667 
introduced the plant water stress routine in CLM5 that compartmentalized the PHT according to 668 
PFT type. From an ecosystem perspective, simplifying hydraulic traits into single plant 669 
functional types has additional repercussions. Matheny (2021) highlighted the importance of 670 
incorporating flexible traits based on prevalent environmental stressors since tree species’ 671 
sensitivity to water stress is determined by their plasticity to the environment (Haberstroh & 672 
Werner, 2022). This plasticity is exemplified by the different kmax values in Fagus sylvatica and 673 
Quercus ilex in this manuscript, and the reported variability of xylem specific conductance 674 
reported across many orders of magnitude for each species (e.g., Bär et al., 2018; Carevic et al., 675 
2014; Charra-Vaskou et al., 2012; Choat et al., 2012; David et al., 2007; Limousin et al., 2010; 676 
Lübbe et al., 2022; Martínez-Vilalta et al., 2002; Tomasella et al., 2019). Flexible traits based on 677 
the environmental stressors in CLM5 can be used by the spectrum of PVCs per PFT and 678 
exploiting the role of kmax in regulating the WUS in the model. By adjusting the kmax to better 679 
represent the transpiration response we may be able to identify the timing of important 680 
physiological processes (e.g., leaf shedding) that differ between the VC and RC. In this way, we 681 
may be able to better understand the significant changes in different ecosystem processes 682 
triggered by intense dry periods (Oddi et al., 2022).  683 
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or conservative WUS in CLM5, crucial for adequate reproduction of plant water use dynamics in 713 
different climates.  Given the large intra-specific variation in plant hydraulic traits and the 714 
importance of the stand characteristics (e.g., tree height, stem area index) for limiting 715 
transpiration rates in the model, a more fundamental understanding of the drivers for adjustments 716 
in these parameters is needed.  717 
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Table 1. Summary of the environmental characteristics of each experimental site. All data is 1135 
based on Poyatos et al. (2021) except those explicitly mentioning the source. 1136 

 DE-Hin ES-Alt FR-Hes FR-Pue 
Country Germany Spain France France 
Site Name Hinnensee Alto Tajo Hesse Puechabon 
Latitude (°) 53.33 40.802 48.674 43.741 
Longitude (°) 13.192 -2.230 7.065 3.596 
Elevation (m a.s.l.) 90 981 300 270 
Mean Annual Precipitation (mm yr-1) 606.40 566.90 1003.48 1022.97 
Mean Annual Temperature (°C) 8.68 11.74 9.97 13.80 
Köppen-Geiger Climate Classification (Beck et 
al., 2018) Cfb Csb Cfb Csa 

Slope (%) 2-5 5-10 0-2 0-2 
Soil Texture Sandy n.a. Silty Clay-Loam 
Soil Depth (cm) n.a. n.a. 120 52.5 
Species under analysis Fagus sylvatica Quercus ilex Fagus sylvatica Quercus ilex 
Stand Age (yr) ~200 59 34 58 
Stand Basal Area (m2 ha-1) n.a. 13.1 19.7 28.1 
Stand Height (m) 24.0 4.9 13.0 5.0 
Period of Analysis 2012-2014 2012-2014 2001-2005 2001-2005 

 1137 
 1138 

Table 2. Plant hydraulic traits describing the vulnerable and resistant curves of the two selected 1139 
tree species. 1140 

 Parameter Units Fagus sylvatica Quercus ilex 

Default Model Configuration 
kmax mmH2O mmH2O

-1s-1 2 x 10-8 2 x 10-8 
ck - 3.95 3.95 

Ψp50 MPa -2.70 -2.70 

Vulnerable Tree 
Configuration 

kmax mmH2O mmH2O
-1s-1 2 x 10-8 2 x 10-8 

ck - 1.73 1.70 
Ψp50 MPa -1.90 -1.23 

Resistant Tree Configuration 
kmax mmH2O mmH2O

-1s-1 2 x 10-8 2 x 10-8 
ck - 3.33 8.04 

Ψp50 MPa -4.7 -5.72 
 1141 
 1142 


