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Abstract

Transpiration is a key process driving energy, water and thus carbon dynamics. Global T products are fundamental for

understanding and predicting vegetation processes. However, validation of these transpiration products is limited, mainly due to

lack of suitable datasets. We propose a method to use SAPFLUXNET, the first quality-controlled global tree sap flow database,

for evaluating transpiration products at global scale. Our method is based on evaluating temporal mismatches, rather than

absolute values, by standardizing both transpiration and sap flow products. We evaluate how transpiration responses to hydro-

meteorological variation from the Global Land Evaporation Amsterdam Model (GLEAM), a widely used global transpiration

product, compare to in-situ responses from SAPFLUXNET field data. Our results show GLEAM and SAPFLUXNET temporal

trends are in good agreement, but diverge under extreme conditions. Their temporal mismatches differ depending on the

magnitude of transpiration and are not random, but linked to energy and water availability. Despite limitations, we show that

the new global SAPFLUXNET dataset is a valuable tool to evaluate T products and identify problematic assumptions and

processes embedded in models. The approach we propose can, therefore, be the foundation for a wider use of SAPFLUXNET,

a new, independent, source of information, to understand the mechanisms controlling global transpiration fluxes.
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Key points 12 

• Transpiration products are vital for understanding land-atmosphere processes, but their 13 

validation is limited by lack of suitable datasets. 14 

• We propose a method to use SAPFLUXET - the first global database of tree sap flow data - to 15 

evaluate transpiration products at global scale. 16 

• We show SAPFLUXNET to be a valuable tool to evaluate potential errors in the assumptions 17 

and processes embedded in transpiration models. 18 

Abstract 19 

Transpiration is a key process driving energy, water and thus carbon dynamics. Global T products are 20 

fundamental for understanding and predicting vegetation processes. However, validation of these 21 

transpiration products is limited, mainly due to lack of suitable datasets. We propose a method to 22 

use SAPFLUXNET, the first quality-controlled global tree sap flow database, for evaluating 23 

transpiration products at global scale. Our method is based on evaluating temporal mismatches, 24 

rather than absolute values, by standardizing both transpiration and sap flow products. We evaluate 25 

how transpiration responses to hydro-meteorological variation from the Global Land Evaporation 26 

Amsterdam Model (GLEAM), a widely used global transpiration product, compare to in-situ 27 

responses from SAPFLUXNET field data. Our results show GLEAM and SAPFLUXNET temporal trends 28 

are in good agreement, but diverge under extreme conditions. Their temporal mismatches differ 29 

depending on the magnitude of transpiration and are not random, but linked to energy and water 30 

availability. Despite limitations, we show that the new global SAPFLUXNET dataset is a valuable tool 31 

to evaluate T products and identify problematic assumptions and processes embedded in models. 32 

The approach we propose can, therefore, be the foundation for a wider use of SAPFLUXNET, a new, 33 

independent, source of information, to understand the mechanisms controlling global transpiration 34 

fluxes. 35 

Plain language summary 36 

Transpiration, the water evaporating from leaves, is a key element in the energy, water and carbon 37 

cycles of terrestrial ecosystems. Understanding patterns of transpiration at global scales is 38 

fundamental for prediction of future climates. Several models are used for estimating global 39 

transpiration, however identifying limitations and biases in these models is difficult, because we lack 40 

field data to compare them against. In this work, we propose a new method to enable tree-level sap 41 

flow data from SAPFLUXNET, the first global sap flow database, to be used to evaluate transpiration 42 

products and models. We evaluated how well GLEAM, a widely used transpiration product, matches 43 
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SAPFLUXNET field data. We found GLEAM and SAPFLUXNET data to be in reasonable agreement 44 

however, mismatches occur under extreme dry or wet meteorological conditions, conditions which 45 

are likely to become more common under future climates. The detection of mismatches between 46 

SAPFLUXNET and GLEAM data is valuable for the identification of model processes and assumptions 47 

which could be reasonable within current climate, but inadequate for future climate conditions. The 48 

method we propose allows the use of SAPFLUXNET to understand the true mechanisms controlling 49 

global transpiration providing a new, independent, source of information to evaluate transpiration 50 

products and models. 51 

Index terms: 3322 Land/atmosphere interactions, 1840 Hydrometeorology, 1878 Water/energy 52 

interactions, 0426 Biosphere/atmosphere interactions 53 

Keywords: transpiration, sap flow, SAPFLUXNET, GLEAM, transpiration scaling, product validation  54 
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1 Introduction 55 

Transpiration (T), the evaporation of water from within plants, is a key process linking ecosystem 56 

energy, water and carbon dynamics, and accounts for ~60% of global terrestrial evaporation, or 57 

'evapotranspiration' (ET) (Wei et al., 2017; Stoy et al., 2019). T is regulated by a complex 58 

combination of energy availability and soil and atmospheric water stresses (Dolman et al. 2014). The 59 

responses of T to drought stress, at leaf, plant, and ecosystem scales, remain a huge source of 60 

uncertainty in understanding biosphere-atmosphere feedbacks (Maes et al. 2020).Understanding T 61 

responses under climate change is an even more challenging task, as responses to combined 62 

environmental changes, for example changes in water, nitrogen and CO2 availability, alongside land 63 

use changes additively and interactively modulate the way T is controlled by vegetation (Lemordant 64 

et al. 2018, Keenan et al. 2013). Additionally, ongoing global changes are causing plants to acclimate 65 

and communities to change, which might be shifting or modifying the way T is regulated by 66 

vegetation (Kumarathunge et al. 2019, Stephens et al. 2021). Recent studies indicate climate change 67 

is making global T fluxes more sensitive to vegetation responses (Forzieri et al. 2020). Global T 68 

products are therefore key to help us determine the mechanisms driving plant and ecosystem T at 69 

global scales and to monitor vegetation responses as climate changes. However, without quality-70 

controlled T products, validated against empirical data, our capabilities to predict land surface 71 

interactions may be limited (Stoy et al., 2019). 72 

In the past decade, multiple models have been developed to derive global T and ET largely from 73 

remotely sensed (RS) data (Fisher et al. 2017). These RS-derived ET products, such as the Global Land 74 

Evaporation Amsterdam Model (GLEAM; Miralles et al., 2011; Martens et al., 2017) are used for a 75 

diversity of purposes, e.g., quantification of water resources (Immerzeel et al., 2020), driving basin 76 

hydrological models (Dembélé et al., 2020), studying global climate (Miralles et al., 2014; Martens et 77 

al., 2018) and benchmarking climate models, such as those from CMIP6 (Wang et al., 2021). These 78 

RS models retrieve ET indirectly by applying process-based (Miralles et al., 2016) or machine learning 79 

(Jung et al., 2019) algorithms. This modelling induces errors, which are tightly related to the 80 

difficulties to properly capture the T component of ET, whose uncertainties can be two to three 81 

times larger than for the total ET (Miralles et al., 2016; Talsma et al., 2018; Feng et al., 2020).  Model 82 

improvement is limited by a lack of suitable datasets to directly validate T products, test the model`s 83 

embedded mechanisms and constrain its parameters (Stoy et al., 2019). In fact, validation exercises 84 

are often insufficient (Bayat et al., 2021), hindered by the sparseness of in situ data (Fisher et al., 85 

2017) and the limited availability of measurement techniques and datasets at the necessary spatial 86 

and temporal scales (Kool et al., 2014; Talsma et al., 2018; Bayat et al., 2021).  87 
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Plant gas exchange measurements in the field provide accurate T data at leaf or branch level (e.g., 88 

Sabater et al., 2020), but are difficult to scale and monitor continuously. Isotope-based methods can 89 

be used to unravel the T components of ET and provide information at ecosystem scale (Williams et 90 

al., 2004), but are expensive and require additional information for end-member analysis. Most 91 

commonly, the validation of T products involves the use of latent heat flux measurements from eddy 92 

covariance, basin-level water balances, soil lysimeters or soil water balance approaches – yet all 93 

these methods involve explicit assumptions regarding the partitioning of ET. Carbonyl-sulphide flux 94 

(Whelan et al., 2018) and solar-induced fluorescence (Maes et al., 2020) measurements have also 95 

been used to independently evaluate T products, however both rely on physiological modelling 96 

assumptions to derive T.  97 

On the other hand, sap flow (SF) measurements are a promising source of information to directly 98 

evaluate T products and model mechanisms (Wang & Dickinson, 2012; Stoy et al., 2019; Poyatos et 99 

al., 2021). At daily or longer time scales, average SF can be equated to T with minimal errors 100 

(Kumagai et al., 2009; Kool et al., 2014). To date, SF data have never been used to evaluate T 101 

products globally, due to limitations in data availability (Stoy et al., 2019). However, a new 102 

coordinated network of SF data (SAPFLUXNET; (Poyatos et al., 2016, 2021)) has recently generated 103 

the first quality-controlled SF dataset at a global scale. SAPFLUXNET opens new opportunities to 104 

validate T products directly (Bright et al. 2022). However, new generalised procedures need to be 105 

developed to enable the comparison between tree level T and T at larger spatial scales (Nelson et al., 106 

2020). SF is usually measured on a unit-sapwood-area basis, and scaling SF to tree level is a common 107 

procedure with known sources  of uncertainty, requiring estimation of tree sapwood area and 108 

knowledge of wood thermal and anatomical traits (Forster, 2017; Flo et al., 2019). However, scaling 109 

tree-level SF to stand-level poses a more difficult challenge, as it requires within and between 110 

species replication of SF measurements to account for individual, size and species variations, as well 111 

as forest inventory and structure information to weigh the importance of trees of different sizes and 112 

species to stand SF (Čermák et al., 2004). Scaling from stand-level (hundreds of meters to a few 113 

kilometres) to global datasets spatial scales (10–50km), requires further consideration of landscape 114 

heterogeneity, which increases uncertainty (Ford et al. 2008; Mackay et al. 2010). Consequently, the 115 

use of sap flow data to evaluate T products has so far been limited to few sites (Nelson et al., 2020).      116 

In this study, we use the novel SAPFLUXNET dataset to evaluate the GLEAM T product under 117 

different climate conditions, and explore potential mismatches between the two estimates of T. We 118 

develop a new procedure which shortcuts the challenges of scaling site SF to grid cell T by focussing 119 

on temporal mismatches rather than absolute values. We use SF data from >80 sites across the 120 

globe and analyse temporal mismatches between GLEAM and SAPFLUXNET to demonstrate the 121 
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capacity of our new approach to contribute to validating global T products and testing their 122 

assumptions. While comparisons between grid-scale and individual scale T at individual sites may be 123 

subject to large sources of systematic biases caused by lack of representativeness of the temporal 124 

trends in the sampled trees relative to the entire pixel, we propose here that, by analysing a 125 

sufficient large number of sites under different environmental conditions, these systematic site-126 

specific biases will average out allowing to identify general differences between the behaviour of 127 

ground SF data and modelled T data. We assess, for days with low, median, and high transpiration 128 

values, (i) how GLEAM and SAPFLUXNET compare over time, (ii) whether GLEAM and SAPFLUXNET 129 

sensitivity to vapour pressure deficit and radiation match, and (iii) whether temporal mismatches 130 

between the products can be explained by site model parameters and meteorological conditions. 131 

Although our analysis is limited to GLEAM, the generic approach that we present could easily be 132 

applied to validate other remotely sensed T products, as well as T fields and models from land-133 

surface, climate and hydrological models.134 
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2 Material and Methods 135 

2.1 Sap flow and transpiration datasets 136 

We use the SAPFLUXNET global database of tree SF (SFN v0.1.5; Poyatos et al., 2021). SAPFLUXNET 137 

contains half-hourly tree-level SF data and is accompanied by tree metadata (size, species, SF sensor 138 

type), site information (vegetation type, soil, elevation, etc) and local hydro-meteorological data. 139 

Normally, multiple trees of different species are sampled per site and SF data are given per unit 140 

xylem area, per unit leaf area or per tree. We use all SAPFLUXNET data available after filtering out 141 

sites which either (i) had non-native vegetation, (ii) were affected by experimental manipulations or 142 

recent fire, or (iii) had less than 6 months of data available, considering only months with at least 20 143 

days of data. After this filtering, the total number of sites available was 83 and the total number of 144 

trees was 1195 (Table S1).  145 

We use the outputs from the GLEAM model (Miralles et al., 2011; Martens et al., 2017). GLEAM uses 146 

remote sensing data to calculate potential ET based on the Priestley & Taylor (1972) model. 147 

Potential ET is converted into actual ET using models of water stress derived from vegetation optical 148 

depth and root-zone soil moisture; the latter is calculated based on retrievals of precipitation and 149 

surface soil moisture. This procedure is applied at a daily time step to each land fraction of a 0.25° 150 

(~25km at equator) grid cell (water, soil, short and tall vegetation); these fractions are derived based 151 

on the Moderate Resolution Imaging Spectroradiometer (MODIS) product MOD44B (DiMiceli, 152 

Charlene et al., 2015). For each grid cell, the contribution per land fraction is then aggregated, and 153 

rainfall interception based on the (Gash, 1979) model is added to yield the total ET. Here, we use the 154 

GLEAM v3.5b tall vegetation T product. For each SAPFLUXNET site, we extracted the GLEAM time 155 

series from the corresponding 0.25° grid-cell. 156 

2.2 Meteorological data  157 

To describe the sensitivity of SAPFLUXNET and GLEAM to environmental drivers and site climate, we 158 

obtain time series of mean monthly incoming surface solar radiation (S↓), air temperature and 159 

vapour pressure deficit (VPD) from 2003 to 2018 for each site. For S↓ and air temperature we use 160 

the ERA5 reanalysis (Hersbach et al., 2020) at the monthly time scale. We calculate VPD from the 161 

CRUJRA monthly dataset of air vapour pressure and air temperature (Harris et al., 2020) after 162 

standardizing it to each site elevation. 163 

2.3 Scaling sap flow temporal patterns from tree to site 164 

To scale SF temporal variability from tree level to stand level, we first average hourly to daily SF for 165 

each tree after filtering out nighttime data. We define nighttime as any hour in which solar altitude – 166 
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the angle between the sun and the horizon – is lower than 0°. We calculate solar altitude for each 167 

hour using the site latitude, longitude and astronomical geometry (Michalsky, 1988) using the 168 

“sunAngle” method in the R package “oce” (Kelley & Richards 2020). We then standardize the daily 169 

average SF per tree by calculating its Z-score (i.e., subtracting the mean and dividing by the standard 170 

deviation of the entire time series; Fig. 1a, b). Z-scores remove differences in absolute values across 171 

sites while preserving information on temporal variability, facilitating comparisons among 172 

heterogeneous samples. Therefore, this standardization has the effect of removing size- and species-173 

dependent effects on SF mean and variance, while retaining the full temporal variability of the data. 174 

We then scaled SF temporal variability to site level by averaging the standardized SF of all trees for 175 

each site (Fig. 1c). We performed analogous experiments using diameter-at-breast height weighted 176 

mean but found no differences in results and thus decided to report site-level scaling using mean 177 

only. 178 

2.4 Extraction of low, median and high transpiration and sap flow days 179 

To evaluate the agreement between GLEAM and SAPFLUXNET for days with contrasting conditions, 180 

we extract T and SF values representative of days with low, median and high T and SF conditions. We 181 

first quantify the monthly distribution, for each site, of SF and T using R`s base function quantile with 182 

default arguments (i.e. method 7 of Hyndman & Fan 1996, based on modal position). Then, from 183 

each distribution of SF and T, we extracted the 5th, 50th and 95th percentiles of T and SF (Fig. 1c-d 184 

to Fig. 1e-f). The resulting time series reflect the monthly dynamics of the days with low, median and 185 

high T and SF. Then, for each site-level time series of monthly percentiles, we standardize the values 186 

by calculating Z-scores so that T and SF temporal variability could be compared (Fig. 1e-f to Fig. 1g-187 

h). This is the same process used to standardize tree-level SF values within a site (see previous 188 

section). Here, the Z-score standardization removes any information on absolute values from both 189 

SF and T, so that the variability in SF and T is now in the same scale (i.e., standard deviation units) 190 

and can be directly compared. Hereafter, we refer to these Z-score standardized values as GLEAM-T 191 

and SAPFLUXNET-SF consistently. 192 

2.5 Site level GLEAM and SAPFLUXNET agreement indexes 193 

For each site, we calculate two indices to evaluate how well GLEAM-T matches SAPFLUXNET-SF over 194 

time: 1) the root mean squared difference (RMSD) of T in relation to SF (Fig. S2c) and 2) the bivariate 195 

correlation between T and SF (r - the Pearson`s correlation): 196 

1) RMSD = 
∑ √(𝑇𝑚

2−𝑆𝐹𝑚
2 )

𝑗
𝑖

𝑛
 197 
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2) r = 
∑ (𝑇𝑚−𝑇)(𝑆𝐹𝑚−𝑆𝐹)
𝑗
𝑖

√∑ (𝑇𝑚−𝑇)
2𝑗

𝑖
∑ (𝑇𝑚−𝑇)

2𝑗
𝑖

 198 

Where “i” and “j” are the first and last month in the time series, “m” indicates a given month, “n” 199 

the total number of months and the overline symbol for T and SF indicates the mean of the time 200 

series. Both indices were calculated for each of the time series (i.e., low, median and high T and SF 201 

percentiles). 202 

2.6 Sensitivity to vapour pressure deficit and solar radiation 203 

For each site, we calculate the sensitivity of T and SF to VPD and S↓, by fitting the data using a linear 204 

mixed-effect model (Zuur et al., 2009), with VPD and S↓ having both a fixed effect on T or SF (first 205 

two terms on right-hand side on equations 3 and 4, overall intercept and slope), as well as a random 206 

effect depending on site (two terms following the vertical bar, indicating that intercepts (the 1s) and 207 

slopes vary by site): 208 

3) T or SF = a + b*VPD + (1 + VPD|site) 209 

4) T or SF = a + b* S↓ + (1 + S↓|site) 210 

Mixed-effects models produce both population-level estimates of the mean intercepts and slopes 211 

for all sites, as well as site-level estimates of these same quantities (best linear unbiased 212 

predictions). These site-dependent intercepts and slopes of the response functions against VPD or 213 

S↓, allow us to compare T versus SF sensitivities across sites. VPD and S↓ values were centred prior 214 

to use in the model. Procedures for fitting the linear mixed models are the same as those used in 215 

hypothesis testing and described in the next section. We calculate the VPD or S↓ sensitivity 216 

mismatch (VPDsm and S↓sm), for each site, as GLEAM-T`s sensitivity to VPD or S↓ minus the site 217 

SAPFLUXNET-SF sensitivity to VPD or S↓. 218 

2.7 Analysis 219 

We evaluate whether GLEAM-T scales proportionally to SAPFLUXNET-SF (i.e., whether the scaling 220 

relationship is consistent with a 1:1 relationship) and whether the scaling is different among days 221 

with low, median and high transpiration (i.e., whether the scaling relationship changes with the 222 

percentile analysed) using standardized major axis regression (SMA; Smith, 2009). We then test 223 

whether site-level indices of mismatching between T and SF (RMSD and r) are different for different 224 

percentiles using a mixed-effect model, where the mismatching indices are the response variable, 225 

the percentile is the fixed effect and site is a random effect on the intercept, which allows pairing 226 

percentiles by site and controlling for site effects. We use the same approach to evaluate how VPDsm 227 

and S↓sm scale and whether the scaling is affected by percentiles. Moreover, we evaluate whether 228 
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mismatches between GLEAM-T and SAPFLUXNET-SF were explained by site climatology (long-term 229 

site-averages of VPD, S↓, temperature and precipitation) and GLEAM input variables (S, potential 230 

and actual ET) using linear fixed effect models. We use principal component analysis (PCA) to 231 

collapse the variables into principal components as they were highly correlated. We evaluate the 232 

first and second PCA axis capacity to explain variability of the mismatch indices for the different 233 

percentiles. 234 

We used the R programming environment (v3.6; R Core Team 2019) for all analysis and data 235 

processing; R base package for linear fixed-effects models (function “lm”) and PCA (function 236 

“prcomp”); the SMATR3 package (Warton et al., 2012) for SMA analysis; the NLME package  237 

(Pinheiro et al. 2020) for mixed-effect models. We followed the guidelines of (Zuur et al., 2009) and 238 

Thomas et al. (2017) for assessing significance of model terms, validating model assumptions and 239 

verifying model sensitivity to outliers using Cook’s distance. We tested for significance of fixed 240 

variables in mixed-effect models using likelihood ratio tests between the model with and without 241 

the fixed effect.242 
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3 Results 243 

3.1 GLEAM and SAPFLUXNET scaling and occurrence of temporal mismatches 244 

Analysing the agreement between GLEAM-T and SAPFLUXNET-SF using standardized major-axis 245 

regression, we found their temporal variability scales with a slope of 1.06 ± 0.007 (mean ± 246 

confidence interval here and in following values) and with an intercept of 0.20 ± 0.008 (p < 0.001; 247 

Fig. 2. This indicates a good match in temporal patterns between GLEAM-T and SAPFLUXNET -SF, 248 

despite a high overall variability (R2 = 0.30). The scaling for days with low, median and high 249 

transpiration (i.e., the 5th, 50th and 95th percentiles – P05, P50 and P95) differed across percentiles (p 250 

< 0.001; Fig. 3). The percentiles had significantly different slopes (0.94 ± 0.03, 1.03 ± 0.04 and 1.01 ± 251 

0.04 for P05, P50 and P95, respectively; p < 0.001) and the intercept of the relationship was close to 252 

zero for all percentiles (-0.04 ± 0.04, -0.004 ± 0.04 and -0.003 ± 0.03 for P05, P50 and P95). Their 253 

agreement explained 32% of the variability of P05, 39% of P50 and 34% of P95. These results 254 

indicate that GLEAM-T captures the overall SAPFLUXNET -SF temporal variability, but the match 255 

differs for different transpiration conditions as shown by the slope between SAPFLUXNET-SF and 256 

GLEAM-T being lower than one for low transpiration conditions. We also found this result to be 257 

robust when the analysis was repeated using tree diameter at breast height to calculate site SF using 258 

weighted mean, instead of simple mean (data not shown).  259 

We tested whether site-level statistics of the match between the variability of GLEAM-T and 260 

SAPFLUXNET-SF (root mean squared deviation, RMSD and bivariate correlation, r) were different 261 

across percentiles (Fig. 4a-c). We found RMSD of the P50 to be 0.18 ± 0.01, which is 10.4% and 9.5% 262 

lower than the RMSD of P05 and P95 (p <= 0.03; Fig. 4a). Similarly, the bivariate correlation of SF and 263 

T (r) was greater for the P50 (0.62) and lower for the P05 and P95 (0.54 and 0.56; p <= 0.01; Fig. 4c), 264 

indicating GLEAM-T has a better temporal match to SAPFLUXNET-SF under median conditions.  265 

3.2 Differences in sensitivity to VPD and S↓ between GLEAM-T and SAPFLUXNET -SF 266 

We analysed how site-specific sensitivities of GLEAM-T and SAPFLUXNET-SF to VPD and S↓ relate to 267 

each other and whether this relationship was different across daily conditions with low, median and 268 

high transpiration, using standardized major axis regression. Our results show sensitivity to VPD 269 

scaled with a similar slope of 0.76 for all percentiles (p = 0.15 for slope differences across 270 

percentiles; Fig. 5a), but with different intercepts of -0.34, 0.14 and 0.07 for P05, P50 and P95 (p < 271 

0.001), causing GLEAM-T sensitivity to VPD to approach SAPFLUXNET -SF sensitivity at lower VPD 272 

sensitivity sites. The scaling between GLEAM-T and SAPFLUXNET-SF sensitivity to VPD is significant 273 

for all percentiles (p < 0.001) and explained 39%, 49% and 49% of the variability in the relationship 274 
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for P05, P50 and P95. The VPD sensitivity mismatch (VPDsm) is higher for P05 than P50 and P95 (p < 275 

0.001; Fig. 4d) but was always above 0, indicating a higher VPD sensitivity overall for GLEAM-T across 276 

all percentiles.  277 

Regarding radiation responses, GLEAM-T and SAPFLUXNET -SF show again a good scaling to the 1:1 278 

line, with a slope of 0.91 for all percentiles (p = 0.87; Fig. 5b). The intercepts were significantly 279 

different across the percentiles (-0.030, -0.008 and -0.008 for P05, P50 and P95; p < 0.001). The S↓ 280 

sensitivity mismatch (S↓sm) increases from P95 to P05 (p < 0.01; Fig. 4e). 281 

3.3 Drivers of mismatches between GLEAM-T and SAPFLUXNET-SF 282 

We evaluated whether mismatches between GLEAM-T and SAPFLUXNET -SF (RMSD and r), and their 283 

VPDsm and S↓sm, were related to site-level climate data (VPD, S↓, air temperature and precipitation) 284 

or model variables (potential ET, actual ET and GLEAM`s stress factor S). To simplify the analysis, we 285 

collapsed the predictor variable space onto two principal component analysis (PCA) axes (Fig. 6). The 286 

first and second axis of the PCA (PC1 and PC2) explained most of the dataset variability (50% and 287 

38%) and we restricted our analysis to these axes. PC1 inversely reflected variables which control a 288 

site’s evaporative demand (VPD, S↓ and temperature) while the PC2 directly water limitation related 289 

variables (precipitation and actual ET; Table 1). GLEAM`s water stress factor and potential ET were 290 

distributed across both axes. We found the different predictors of mismatch between GLEAM-T and 291 

SAPFLUXNET -SF to be related to both the first and the second PCA axes (Table 2). The GLEAM-T to 292 

SAPFLUXNET-SF bivariate correlation for all percentiles and the VPDsm for the P5 and P95 increase 293 

with PC1 (i.e., they decrease with increased evaporative demand). RMSD, VPDsm and S↓sm increased 294 

with PC2 (i.e. site actual ET and precipitation). Our results indicate GLEAM-T mismatches relative to 295 

SAPFLUXNET-SF are not random and are related to site level differences in evaporative demand and 296 

water availability, generally increasing with them. However, the way in which both site level 297 

evaporative demand and water availability influenced the GLEAM-T vs. SAPFLUXNET -SF mismatches 298 

varied depending on the percentile analysed (P5, P50, P95). This suggests the driver was often 299 

different for different transpiration conditions and, thus, the capacity of GLEAM to capture T is not 300 

the same for mean and extreme, low and high, T conditions. 301 
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4 Discussion 302 

Evaluating T products has been a major challenge preventing improvements in our capabilities to 303 

understand and predict water and energy dynamics (Stoy et al., 2019). While the use of sap flow has 304 

been proposed as a mean to evaluate T datasets, constraints in spatially scaling these fluxes have 305 

limited these evaluations to a handful of sites globally (Nelson et al., 2020). Using the recently 306 

assembled and quality-controlled SAPFLUXNET database (Poyatos et al., 2021), combined with a 307 

novel approach to allow stand-scale comparisons to global T products, we provided the first global 308 

evaluation of a widely used transpiration model – GLEAM (Martens et al., 2017). Our new technique 309 

can be used to infer GLEAM-T and SAPFLUXNET-SF have a strong temporal agreement (Fig. 2 and 3) 310 

with a scaling close to 1:1 and an intercept close to 0. Interestingly, days with different transpiration 311 

levels scale differently, with low transpiration days scaling with a slope of 0.94, leading to higher 312 

mismatches at extreme values. Therefore, the mismatch will be greater for extreme low and high 313 

transpiration conditions within a site and between sites with different conditions, highlighting the 314 

limitations of T products to capture extreme patterns (Miralles et al., 2016; Talsma et al., 2018; Feng 315 

et al., 2020). 316 

Our work has shown that a quality controlled, standardized, SF product can be used for large-scale 317 

evaluation of the temporal trends in T products at monthly time scales. While the analysis of 318 

temporal patterns constitutes only a partial validation of a product, it provides valuable information 319 

on mechanisms which should be targeted for product improvement. Our results show, for example, 320 

days with low transpiration to be particularly problematic for GLEAM`s current model. GLEAM-T 321 

generally captures the VPD and S↓ sensitivities well, but overestimates them slightly but 322 

systematically relative to SAPFLUXNET-SF (Fig. 4d and e), especially for low transpiration conditions. 323 

Lower agreement between GLEAM and eddy-covariance data in arid conditions has been reported 324 

previously (Michel et al., 2016), but to our knowledge, this is the first time T mismatches under low 325 

evaporative conditions have been identified generally. Ultimately, the fact that GLEAM is overly- 326 

responsive to radiation under low transpiration conditions relates to the use of the Priestley and 327 

Taylor formulation, which has difficulties to properly capture ET at low radiation conditions (Fisher et 328 

al., 2011; Miralles et al., 2016). While solar radiation and temperature (which drive the Priestley and 329 

Taylor model) account for most of the variability in atmospheric demand, air humidity and wind 330 

speed also have some influence (Penman, 1948). This could be the cause of the mismatches in RMSD 331 

and VPD and S↓ sensitivities increasing with site energy-availability (Table 2). Our new method 332 

highlights these biases as potential targets for further model development. Such development is 333 

particularly significant considering the importance of ensuring these products capture extreme 334 

values of transpiration correctly, given the likelihood that extreme values of transpiration are likely 335 
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to increase globally (Diffenbaugh et al., 2017) and the fact that RS products are used to evaluate 336 

global climate models (Wang et al., 2021). 337 

Our tree-to-grid cell scaling approach does however have limitations – analysis is restricted to 338 

relative temporal trends rather than absolute values. Our work also assumes sap flow sensor data is 339 

equally accurate at different transpiration conditions, which may not be true (Flo et al. 2019). Using 340 

temporal trends of SF and T also cannot address issues of spatial mismatches between the products 341 

(often 0.25o for GLEAM-T versus one site/forest for SAPFLUXNET-T), which could be driving some of 342 

the disagreements between the products if site values are not representative of the broader 343 

landscape dynamics within that grid cell. Furthermore, it is possible that unmeasured trees have a 344 

different temporal dynamics compared to measured trees. All these sources of potential error 345 

should cause site-specific differences in temporal patterns. Given a sufficiently large number of sites 346 

however, such as used in this study, the differences are expected to be random, rather than creating 347 

the systematic mismatches we observe, which are instead related to climatic variables and GLEAM 348 

model parameterisation (Table 2).  Consequently, with our approach confidence in conclusions 349 

reached for specific sites is limited, but cross-site analyses are likely to be robust. 350 
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5 Conclusions 351 

Our work provides an initial template which could be expanded to evaluate other remote sensing 352 

based or T products, or T estimates from land surface and hydrological models. Other types of 353 

analyses, such as time lags between driver and T response and spatial correlations analysis, could 354 

provide valuable insights into evaluating other types of mismatches. A bridge between our 355 

approach, based on temporal trends, to an approach based on absolute SF values, such as done by 356 

Nelson et al. (2020), could be done by a joint comparison of both methods for those sites where 357 

sufficient data are available for this analysis. Future expansion of SF monitoring in a controlled and 358 

standardized way, particularly if paired with eddy-covariance towers, could greatly improve our 359 

capacity to utilize SF data to evaluate T products and optimize merging of different products 360 

(Jiménez et al., 2018). Models behind global T products usually assume parameters are constant, 361 

which is an incorrect but necessary assumption, given the lack of data needed to monitor parameter 362 

stationarity (Stephens et al. 2021). Improved capabilities of evaluating T products, such as a global SF 363 

network, may also provide means to monitor how ongoing changes in vegetation structure and 364 

physiological acclimation to climate change may be shifting the parameters embedded in T products. 365 

We believe the initial steps we provide here can be the foundation for a wider SF based validation of 366 

T products, models and mechanisms.  367 
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Table 1. Variable loadings and percentage contributions to the first and second axis of the principal 530 

component analysis (PC1 and PC2) of the climatic and model variables studied. Variables with high 531 

loading/contributions for each axis are highlighted in bold. 532 

 PC1  PC2  

 Loading Contribution Loading Contribution 

VPD -0.49 24.0 -0.11 1.1 

Temp. -0.44 19.7 0.26 7.0 

S↓ -0.50 24.6 0.02 0.1 

Prec. 0.20 3.9 0.48 23.5 

ETp -0.39 15.0 0.40 16.0 

ET -0.02 0.1 0.60 35.8 

S 0.36 12.8 0.41 16.6 

VPD – mean vapour pressure deficit; S↓– total monthly incoming net surface solar radiation (MJ m-2);   533 

Temp – mean surface temperature; Prec. – mean precipitation; ET and ETp – GLEAM mean actual ET 534 

and potential ET;  S – mean GLEAM evaporative stress factor (S equal to one equates to no stress). 535 

Site climatic data from ERA5 and CRUJRA products for the period 2001–2020. 536 
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Table 2. Results of the linear models of the first and second principal component analysis axes (PC1 537 

and PC2) of the climatic and model variables studied as predictors of mismatches between GLEAM-T 538 

and SAPFLUXNET-SF: root mean squared difference (RMSD), bivariate correlation (r), VPD sensitivity 539 

mismatch (VPDsm) and incoming solar radiation mismatch (S↓sm). The mismatch indices were scaled 540 

prior to analysis, thus the magnitude of their slopes is directly comparable. Blank cells for PC1 or PC2 541 

indicates that predictor is not significant. Values in the PC1 and PC2 columns give the slope of the 542 

relationships, r2 is percent of explained variance and p is probability value. 543 

Index Percentile PC1 PC2 r2 p 

RMSD 

P5  0.18 0.09 0.009 

P50  0.25 0.16 <0.001 

P95  0.24 0.15 <0.001 

r 

P5 0.14  0.07 0.02 

P50 0.24  0.21 <0.001 

P95 0.18 0.18 0.21 <0.001 

VPDsm 

P5 0.23 0.21 0.3 <0.001 

P50  0.17 0.07 0.03 

P95 0.23 0.20 0.29 <0.001 

S↓sm 

P5 0.12 0.27 0.24 <0.001 

P50  0.26 0.17 <0.001 

P95    0.14 

  544 
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Figure 1. Example of processing of individual tree sap flow (SAPFLUXNET) and transpiration (GLEAM) 546 

to yield standardised ecosystem sap flow and standardised transpiration. For SAPFLUXNET site 547 

AUS_WOM (37.42o S, 144.09o E; Melbourne, Australia). a) Daily SF for eleven trees (each colour 548 

representing one tree) at the site; b) Standardized (Z-score) SF for the eleven trees. c) Site-level daily 549 

SF, calculated as the average of the standardized SF for the eleven trees; d) GLEAM daily tall 550 

vegetation T for the grid cell closest to site AUS_WOM; e-f) Monthly percentiles (5th, 50th and 95th; 551 

blue, orange and red, respectively) of SF (e) and T (f), hereafter designated as SAPFLUXNET-SF and 552 

GLEAM-T, calculated from the monthly distribution of daily values in c) and d). The percentiles 553 

represent, in each month, conditions of days with low, median and high SF and T. g-h) Standardized 554 

(Z-scores) monthly SF and T percentiles (i.e. in number of standard deviations, SD).555 
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 556 

 557 

Figure 2. SAPFLUXNET-SF as a function of GLEAM-T variability for all daily points combined. Values 558 

are Z-scores for daily mean values of sap flow and transpiration; data point colour indicates the 559 

count of data point in each 0.05 bin. R2 is the coefficient of determination of the standardized major 560 

axis regression model. The black line is the model fit and the dashed line marks the 1:1 relationship. 561 

The scaling slope of the relationship is 1.06 ± 0.007 (mean ± 95% confidence interval).562 
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 563 

  564 

Figure 3. SAPFLUXNET-SF as a function of GLEAM-T. Graphs a, b and c are, respectively, low, median 565 

and high transpiration daily values within a month and site (i.e., the 5th, 50th and 95th monthly 566 

percentiles of daily values). Data point colour indicates the count of data point in each 0.1 bin. R2 is 567 

the coefficient of determination of the standardized major axis regression model with sap flow 568 

scaling with transpiration and percentile as a covariate affecting the slope of the scaling. The black 569 

line is the model fit and the dashed line marks the 1:1 relationship. 570 
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 572 

Figure 4. Site level mismatching indices between GLEAM-T and SAPFLUXNET-SF for the 5th, 50th and 95th monthly percentiles (P5, P50 and P95; blue, orange 573 

and red, respectively): a) mean root squared difference (RMSD), b) bivariate correlation (r), c) VPD sensitivity mismatch (VPDsm) and (d) and incoming solar 574 

radiation sensitivity mismatch (S↓sm).  Groups with different letters in are significantly different from each other at least at p <0.05 in a mixed model with 575 

site as random effect and percentile as fixed effect.576 
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Figure 5. Relationships between GLEAM-T and SAPFLUXNET-SF sensitivities to vapour pressure 578 

deficit (VPD; a) and surface solar radiation (S↓; b). Blue, orange and red points indicate, respectively, 579 

daily conditions, within months, with low, median and high T (or SF) (i.e., 5th, 50th and 95th monthly 580 

percentiles of daily values, P5, P50 and P95, respectively). Each point is a different site. Sensitivity is 581 

the slope of the relationship between GLEAM-T (or SAPFLUXNET-SF) and site VPD (or S↓) (i.e., a 582 

value of 1 indicates T increases by one standard deviation per 1 kPa increase in VPD). Coloured lines 583 

are the standardized major axis fits for each percentile and the black dashed line is the 1:1 line. 584 
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 585 

Figure 6. Principal component analysis of site climatic (vapour pressure deficit – VPD, incoming solar 586 

radiation, air temperature and precipitation) and model variables (potential and actual ET, and their 587 

ratio, i.e. S). The loadings of each variable into the PC1 and PC2 axis, as well as their contribution, are 588 

presented in Table 1. The grey circle is the correlation circle marking the correlation between 589 

variables and principal components. 590 
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Table S1. Summary of the SAPFLUXNET sites used in this study (site codes given here correspond to those in SAPFLUXNET), temporal range of available 1 

data, total number of months of available data (n) and site summaries. P – mean precipitation (mm month-1);  Temp – mean surface temperature (oC); VPD 2 

– mean vapour pressure deficit (kPa); S↓– mean monthly incoming surface solar radiation (MJ m-2); T, ETp and ET – GLEAM mean tall vegetation T, potential 3 

ET and actual ET, respectively (mm month-1); T/ET – mean tall vegetation T to total ET fraction; S – mean GLEAM evaporative stress factor (i.e. ET/ETp). Site 4 

climatic data from ERA5 and CRUJRA for the period 2001–2020. 5 

 Range n P Temp. VPD S↓ T ETp ET T/ET S Lat. Long. 

AUS_ELL_UNB 08/2010 to 02/2012 28 89 12.8 0.80 15.1 55.7 80.9 72.6 0.91 0.77 146.6 -36.8 

AUS_MAR_UBD 02/2011 to 02/2012 24 92 12.9 0.72 13.9 58.5 82.5 79.7 0.97 0.73 145.6 -37.7 

AUS_MAR_UBW 01/2011 to 02/2012 21 85 13.1 0.72 13.7 58.6 79.3 75.9 0.96 0.77 145.6 -37.9 

AUS_RIC_EUC_ELE 08/2013 to 08/2014 24 74 17.1 0.73 14.2 57.9 79.5 67.0 0.86 0.86 150.7 -33.6 

AUS_WOM 05/2014 to 10/2015 34 53 11.9 0.79 14.1 47.3 65.0 53.6 0.85 0.88 144.1 -37.4 

AUT_PAT_FOR 07/2007 to 10/2007 6 143 4.1 0.20 9.4 28.8 49.9 48.9 0.97 0.59 11.5 47.3 

AUT_TSC 06/2012 to 10/2012 8 135 2.5 0.18 9.3 28.1 50.2 49.5 0.98 0.57 10.8 47.2 

BRA_CAM 07/2011 to 11/2011 9 152 16.6 0.40 15.1 69.9 85.8 81.6 0.95 0.86 -45.5 -22.7 

BRA_CAX_CON 11/2015 to 11/2016 24 189 26.6 0.63 15.2 39.2 132.8 131.4 0.99 0.30 -51.4 -1.7 

BRA_SAN 01/2009 to 09/2009 15 157 18.5 0.38 14.2 72.4 102.2 101.2 0.99 0.72 -45.2 -23.3 

CHE_DAV_SEE 06/2010 to 12/2010 12 122 -0.6 0.19 9.6 29.6 41.8 40.5 0.97 0.73 9.9 46.8 

CHE_LOT_NOR 01/2014 to 11/2015 34 147 -1.3 0.24 8.1 20.8 44.4 39.8 0.94 0.52 7.8 46.5 

CHN_YUN_YUN 04/2011 to 10/2011 13 132 20.5 0.65 13.3 52.1 88.8 81.7 0.92 0.64 117.4 24.0 

CRI_TAM_TOW 10/2015 to 07/2016 19 204 22.6 0.62 13.7 78.6 100.0 98.9 0.99 0.80 -84.6 10.4 

CZE_LIZ_LES 08/2008 to 10/2009 28 91 6.6 0.35 10.1 32.2 49.9 48.6 0.97 0.66 13.7 49.1 

CZE_STI 07/2016 to 10/2016 7 71 8.7 0.36 9.7 33.7 48.1 46.3 0.96 0.73 18.0 49.0 

DEU_HIN_OAK 07/2013 to 09/2014 15 57 9.4 0.34 8.9 25.3 42.4 38.1 0.92 0.66 13.2 53.4 

DEU_HIN_TER 07/2013 to 09/2014 15 57 9.4 0.34 8.9 25.3 42.4 38.1 0.92 0.66 13.2 53.4 

ESP_ALT_ARM 05/2012 to 10/2014 54 50 11.6 0.66 14.6 28.5 59.0 37.1 0.72 0.77 -2.3 40.8 

ESP_ALT_HUE 06/2011 to 04/2013 41 49 11.4 0.66 14.5 28.5 59.0 37.1 0.72 0.77 -2.3 40.8 

ESP_ALT_TRI 05/2012 to 10/2014 58 49 11.3 0.66 14.5 28.3 58.1 38.1 0.74 0.74 -2.2 40.8 

ESP_CAN 12/2011 to 12/2012 23 54 14.6 0.69 13.6 15.1 78.4 63.1 0.86 0.24 2.1 41.5 
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ESP_GUA_VAL 12/2012 to 10/2013 14 62 9.7 0.65 13.9 24.8 57.7 35.1 0.71 0.71 -4.0 40.9 

ESP_MAJ_MAI 09/2016 to 05/2018 39 71 16.1 0.86 14.2 33.0 64.4 38.0 0.70 0.87 -5.8 39.9 

ESP_MAJ_NOR_LM1 09/2016 to 05/2018 39 71 16.1 0.86 14.2 33.0 64.4 38.0 0.70 0.87 -5.8 39.9 

ESP_MON_SIE_NAT 09/2011 to 07/2013 35 58 9.7 0.65 14.0 27.6 57.9 37.6 0.74 0.73 -3.5 41.1 

ESP_RON_PIL 06/2012 to 11/2013 25 59 14.6 0.71 15.6 33.4 77.4 40.2 0.63 0.83 -5.0 36.8 

ESP_TIL_MIX 01/2012 to 10/2013 42 47 13.7 0.74 14.0 28.3 65.8 37.2 0.66 0.76 1.0 41.4 

ESP_TIL_OAK 01/2011 to 10/2011 17 47 13.7 0.74 14.0 28.3 65.8 37.2 0.66 0.76 1.0 41.4 

ESP_TIL_PIN 03/2011 to 11/2011 15 47 13.6 0.74 14.0 28.3 65.8 37.2 0.66 0.76 1.0 41.4 

ESP_VAL_BAR 06/2004 to 08/2005 17 73 8.2 0.46 13.8 43.8 65.2 56.9 0.89 0.77 1.8 42.2 

ESP_VAL_SOR 07/2004 to 08/2005 27 72 8.1 0.46 13.6 43.8 65.2 56.9 0.89 0.77 1.8 42.3 

ESP_YUN_C1 07/2012 to 10/2014 37 55 15.0 0.78 15.5 32.3 79.5 38.9 0.61 0.83 -5.0 36.8 

ESP_YUN_C2 05/2013 to 10/2014 26 55 15.0 0.78 15.5 32.3 79.5 38.9 0.61 0.83 -5.0 36.8 

ESP_YUN_T1_THI 09/2012 to 11/2014 36 59 14.5 0.78 15.9 32.3 79.5 38.9 0.61 0.83 -5.0 36.7 

ESP_YUN_T3_THI 04/2012 to 11/2014 55 55 15.0 0.78 15.5 32.3 79.5 38.9 0.61 0.83 -5.0 36.8 

FIN_HYY_SME 02/2015 to 11/2016 32 60 4.7 0.23 7.4 22.1 37.3 36.9 0.99 0.60 24.3 61.8 

FRA_FON 08/2010 to 12/2014 77 60 11.7 0.45 9.9 30.6 47.8 41.4 0.88 0.74 2.8 48.5 

FRA_HES_HE2_NON 01/2003 to 11/2005 24 86 10.1 0.40 9.9 35.2 48.6 46.6 0.96 0.76 7.1 48.7 

FRA_PUE 12/2007 to 12/2015 156 91 13.3 0.67 13.2 37.8 64.7 47.5 0.80 0.80 3.6 43.7 

GBR_GUI_ST1 07/2003 to 10/2003 6 124 5.8 0.16 6.6 22.1 37.5 37.2 0.99 0.59 -4.8 57.4 

GUF_GUY_GUY 03/2015 to 05/2016 29 207 25.8 0.53 15.6 0.0 139.2 132.1 0.96 0.00 -52.9 5.3 

GUF_GUY_ST2 10/2008 to 01/2009 7 208 25.8 0.53 15.6 0.0 139.2 132.1 0.96 0.00 -52.9 5.3 

HUN_SIK 02/2015 to 11/2015 12 64 9.5 0.44 10.4 31.9 53.6 43.9 0.84 0.73 20.4 48.0 

IDN_PON_STE 06/2008 to 12/2008 12 257 19.4 0.61 14.5 87.5 128.0 127.9 1.00 0.68 120.1 -1.5 

ITA_KAE_S20 11/2013 to 11/2014 17 92 -0.9 0.15 8.0 24.9 42.6 39.0 0.93 0.64 10.6 46.8 

ITA_MAT_S21 05/2013 to 11/2014 19 94 -0.5 0.15 7.2 24.9 42.6 39.0 0.93 0.64 10.7 46.7 

ITA_REN 07/2016 to 10/2016 7 90 5.5 0.18 10.9 32.0 46.1 44.1 0.95 0.73 11.4 46.6 

ITA_RUN_N20 07/2013 to 11/2014 25 93 1.5 0.15 9.1 24.9 42.6 39.0 0.93 0.64 10.6 46.7 

ITA_TOR 01/2016 to 12/2016 22 109 3.5 0.29 9.2 15.6 45.9 40.1 0.92 0.39 7.6 45.8 

MEX_VER_BSJ 08/2015 to 02/2016 6 135 16.4 0.52 15.9 81.5 105.2 100.5 0.96 0.81 -97.0 19.5 

MEX_VER_BSM 08/2015 to 02/2016 6 138 15.8 0.52 15.5 81.5 105.2 100.5 0.96 0.81 -97.0 19.6 

NZL_HUA_HUA 07/2013 to 09/2015 51 97 15.5 0.25 13.9 0.0 84.9 84.6 1.00 0.00 174.5 -36.8 
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PRT_LEZ_ARN 12/2007 to 09/2008 18 43 16.8 0.70 14.6 27.9 78.1 45.3 0.70 0.62 -8.8 38.8 

PRT_MIT 06/2002 to 12/2003 12 48 16.5 0.72 14.1 35.5 71.7 39.6 0.67 0.90 -8.0 38.5 

RUS_CHE_Y4 08/2014 to 08/2015 7 25 -9.6 0.14 6.5 8.1 21.2 19.1 0.96 0.42 161.4 68.7 

RUS_FYO 11/2001 to 09/2004 13 68 5.4 0.24 8.0 27.2 43.5 42.2 0.97 0.64 32.9 56.6 

SWE_NOR_ST1_AF1 01/2010 to 10/2010 12 54 6.7 0.22 8.1 21.6 39.7 37.1 0.96 0.58 17.5 60.1 

SWE_NOR_ST1_AF2 03/2010 to 10/2010 11 54 6.7 0.22 8.1 21.6 39.7 37.1 0.96 0.58 17.5 60.1 

SWE_NOR_ST1_BEF 02/2008 to 09/2008 8 54 6.7 0.22 8.1 21.6 39.7 37.1 0.96 0.58 17.5 60.1 

SWE_NOR_ST3 12/2004 to 10/2007 19 54 6.7 0.22 8.1 21.6 39.7 37.1 0.96 0.58 17.5 60.1 

SWE_SVA_MIX_NON 12/2016 to 06/2017 12 57 2.8 0.18 7.2 19.8 32.9 31.8 0.98 0.62 19.8 64.4 

USA_BNZ_BLA 08/2014 to 09/2016 32 34 -1.7 0.27 7.9 15.0 29.4 25.6 0.94 0.58 -148.3 64.8 

USA_DUK_HAR 12/2003 to 12/2005 29 91 14.9 0.62 13.1 56.8 74.7 69.8 0.94 0.81 -79.1 37.0 

USA_HIL_HF1_POS 10/2013 to 09/2016 62 95 15.4 0.59 13.1 57.5 79.7 74.2 0.93 0.78 -78.9 36.3 

USA_HIL_HF1_PRE 10/2010 to 01/2011 7 95 15.4 0.59 13.1 57.5 79.7 74.2 0.93 0.78 -78.9 36.3 

USA_HIL_HF2 09/2013 to 12/2016 74 95 15.4 0.59 13.1 57.5 79.7 74.2 0.93 0.78 -78.9 36.3 

USA_MOR_SF 07/2012 to 08/2013 6 98 12.2 0.47 12.3 45.5 62.6 58.2 0.93 0.78 -86.4 39.4 

USA_PJS_P04_AMB 10/2012 to 12/2015 73 22 13.7 0.85 16.9 6.9 63.9 20.8 0.38 0.33 -106.5 34.4 

USA_PJS_P08_AMB 10/2012 to 12/2015 73 22 13.7 0.85 16.9 6.9 63.9 20.8 0.38 0.33 -106.5 34.4 

USA_PJS_P12_AMB 06/2010 to 12/2013 73 22 13.7 0.85 16.9 6.9 63.9 20.8 0.38 0.33 -106.5 34.4 

USA_SIL_OAK_1PR 02/2010 to 11/2010 16 99 12.7 0.59 12.3 48.1 66.7 63.6 0.96 0.76 -74.6 40.0 

USA_SIL_OAK_2PR 05/2007 to 11/2008 30 99 12.7 0.59 12.3 48.1 66.7 63.6 0.96 0.76 -74.6 40.0 

USA_SIL_OAK_POS 07/2012 to 12/2013 34 99 12.7 0.59 12.3 48.1 66.7 63.6 0.96 0.76 -74.6 40.0 

USA_SMI_SCB 03/2014 to 12/2014 15 88 12.2 0.55 12.4 49.8 67.5 63.4 0.94 0.79 -78.1 38.9 

USA_SMI_SER 03/2015 to 12/2015 16 101 13.8 0.66 12.7 42.3 70.6 64.9 0.94 0.65 -76.6 38.9 

USA_SYL_HL1 03/2003 to 12/2003 9 74 4.9 0.24 10.8 28.1 55.9 53.1 0.97 0.53 -89.3 46.3 

USA_SYL_HL2 02/2016 to 12/2016 19 74 4.9 0.24 10.8 28.1 55.9 53.1 0.97 0.53 -89.3 46.3 

USA_UMB_CON 10/2013 to 09/2016 30 75 6.6 0.24 11.7 24.5 57.2 55.4 0.98 0.44 -84.7 45.6 

USA_UMB_GIR 11/2013 to 09/2016 29 75 6.6 0.24 11.7 24.5 57.2 55.4 0.98 0.44 -84.7 45.6 

USA_WIL_WC2 03/2016 to 11/2016 17 73 5.2 0.27 11.0 33.4 54.7 52.7 0.98 0.63 -90.1 45.8 

ZAF_FRA_FRA 08/2015 to 02/2016 13 66 15.3 0.68 16.6 37.7 81.7 48.5 0.68 0.78 19.1 -33.8 

ZAF_WEL_SOR 05/2014 to 10/2014 11 51 17.4 0.88 16.1 29.7 78.4 37.2 0.58 0.80 19.0 -33.4 
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