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Abstract

In the past, global maps of major oxides and Mg # of the lunar surface had been derived from spectral data with “ground

truth” geochemical information from Apollo and Luna samples. These compositional maps provide insights into the chemical

variations of different geologic units, thus the regional and global geologic evolution. In this study, we produced new global

maps of major oxides (Al2O3, CaO, FeO, MgO, and TiO2) and Mg # with imaging spectral data of KAGUYA multiband

imager (MI) with the one dimensional-convolutional neural network(1D-CNN)algorithm, taking advantage of recently acquired

geochemical information of China’s Chang’E-5 (CE-5) samples. The coefficients of determination (R2) and Root Mean Squared

Error (RMSE) were selected as the model evaluation indicators, and compared with the models used by Wang et al. (2021)

and Xia et al. (2019), the results showed that the 1D-CNN algorithm model used in this study had a higher degree of fit

and smaller dispersion between the ground true value and the predicted value. The 1D-CNN algorithm generally performs

better in describing the complex nonlinear relationship between spectra and chemical components. In addition, we present

regions of mare domes in Mairan Dome (43.76°N, 49.90°W), and irregular mare patches (IMPs) in Sosigenes (8.34°N, 19.07°E)

to demonstrate the geologic implications of these new maps. With the highest spatial resolution (˜ 59 m / pixel), these new

maps of major oxides and Mg # will serve as an important guide in the future study of lunar geology.
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Key Points:

• By introducing the CE-5 sample point data, the previous lunar sample
point data are enriched and supplemented

• Based on the MI multispectral data and 1D-CNN model, new distribution
maps of five oxides and Mg # are generated

• We present regions of mare domes, and irregular mare patches (IMPs) to
demonstrate the composition variations and geologic implications of these
new maps.

Abstract

In the past, global maps of major oxides and Mg # of the lunar surface had
been derived from spectral data with “ground truth” geochemical information
from Apollo and Luna samples. These compositional maps provide insights into
the chemical variations of different geologic units, thus the regional and global
geologic evolution. In this study, we produced new global maps of major ox-
ides (Al2O3, CaO, FeO, MgO, and TiO2) and Mg # with imaging spectral data
of KAGUYA multiband imager (MI) with the one dimensional-convolutional
neural network�1D-CNN�algorithm, taking advantage of recently acquired geo-
chemical information of China’s Chang’E-5 (CE-5) samples. The coefficients of
determination (R2) and Root Mean Squared Error (RMSE) were selected as the
model evaluation indicators, and compared with the models used by Wang et
al. (2021) and Xia et al. (2019), the results showed that the 1D-CNN algorithm
model used in this study had a higher degree of fit and smaller dispersion be-
tween the ground true value and the predicted value. The 1D-CNN algorithm
generally performs better in describing the complex nonlinear relationship be-
tween spectra and chemical components. In addition, we present regions of mare
domes in Mairan Dome (43.76°N, 49.90°W), and irregular mare patches (IMPs)
in Sosigenes (8.34°N, 19.07°E) to demonstrate the geologic implications of these
new maps. With the highest spatial resolution (~ 59 m / pixel), these new maps
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of major oxides and Mg # will serve as an important guide in the future study
of lunar geology.

Plain Language Summary

The moon is composed of many elements and oxides. The compositional maps
of major oxides and Mg # of the lunar surface provide insights into the chemical
variations of different geologic units, thus the regional and global geologic evolu-
tion. In this study, we produced new global maps of major oxides (Al2O3, CaO,
FeO, MgO, and TiO2) and Mg # with imaging spectral data of KAGUYA multi-
band imager (MI) with the one dimensional-convolutional neural network�1D-
CNN�algorithm, taking advantage of recently acquired geochemical information
of China’s Chang’E-5 (CE-5) samples. These results have high inversion ac-
curacy and a high spatial resolution of 59 m / pixel. In addition, we present
regions of mare domes in Mairan Dome (43.76°N, 49.90°W), and irregular mare
patches (IMPs) in Sosigenes (8.34°N, 19.07°E) to demonstrate the composition
variations and geologic implications of these new maps.

1 Introduction

The study of the major oxides (e.g., Al2O3, CaO, FeO, MgO, and TiO2) and
Mg # (molar or atomic ratio of Mg / [Mg + Fe]) of the lunar surface is of great
significance for understanding the geologic evolution of the moon. Among them,
iron is one of the most abundant elements in lunar silicate minerals (Wilcox et
al., 2005). Titanium is used in mare basalt classification (e.g., Charette et al.,
1974; Taylor et al., 1991; Giguere et al., 2000). The study of iron and titanium
elements is important for the recognition of mineralogy and crustal evolution of
the moon (Taylor, 1987; Lucey et al., 1995, 2000a; Ling et al., 2010, 2011; Sun et
al., 2016). In addition, the distribution of iron and titanium on the lunar surface
is also of great significance to the development and utilization of lunar resources
(Heiken et al., 1991). Besides the elements of iron and titanium, the elements
of aluminum, calcium, and magnesium are also major chemical compositions in
lunar rock (Papike, 1988). Mg # is related to the source region, composition,
partial melting degree of primitive magma, and the evolution process of magma
(Taylor et al., 2006).

Various studies have shown correlations between spectra and the abundance of
major oxide elements on the moon surface (Haggerty, 1972; Adams and Charette,
1975; Hapke et al., 1975; Liebermann and Ringwood, 1976; Pieters et al., 2000).
Major oxides maps have been produced with Lunar Reconnaissance Orbiter
Camera (LROC) Wide Angle Camera (WAC) Ultraviolet-Visible (UV-VIS) data
(Sato et al., 2017), China’s Chang’E-1 (CE-1) Interference Imaging Spectrometer
(IIM) data (Wu, 2012; Yan et al., 2012; Sun et al., 2016; Xia et al., 2019),
Clementine UV-VIS data (Lucey et al., 1995, 2000a; Gillis et al., 2003, 2004),
The Moon Mineralogy Mapper (M3) data (Bhatt et al., 2020; Surkov et al., 2020)
and KAGUYA Multiband Imager (MI) data (Otake et al., 2012; Lemelin et al.,
2015, 2016; Qiu et al., 2021; Wang et al., 2021). The FeO and TiO2 abundances
were calculated with linear inversion models constructed with spectral band
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ratios (Lucey et al., 1995, 2000a; Otake et al., 2012; Wu et al., 2012; Yan et
al.,2012). Other oxides (e.g., Al2O3, CaO and MgO) abundances have been
derived with non-linear inversion models, including the partial least squares
regression (PLSR) model (Wu 2012; Sun et al., 2016), neural networks (NN)
model (Xia et al., 2019), support vector machine (SVM) model (Bhatt et al.,
2020; Wang et al., 2021), random forest (RF) model (Qiu et al., 2021)and other
machine learning algorithm models (Zhuang et al., 2020; Vulova et al., 2021).

Geochemical data of the returned lunar samples and in situ measurements are
bench marks of the oxide maps derived from orbital reflectance spectral data.
The samples used in previous studies include the Apollo and Luna samples and
the Alpha Particle X-ray spectrometer (APXS) data (Fu et al., 2014) of the
Chang’E-3 (CE-3) Yutu rover at northern Imbrium. In December 2020, China’s
Chang’E-5 (CE-5) mission returned 1.731kg samples from the northern Oceanus
Procellarum (43.06°N, 51.92°W). These samples are mostly derived from local
basalt (Qian et al., 2021a, 2021b; Jia et al., 2021, 2022), which erupted ~ 2 Ga
ago (Che et al., 2021; Li et al., 2021), thus the youngest samples returned. The
addition of the new sample data of CE-5 is of great value for the update of lunar
surface oxide abundance maps.

The one dimensional-convolutional neural network (1D-CNN) model is a non-
linear inversion model, which is demonstrated better (Chen et al., 2016; Malek et
al., 2018; Qiu et al., 2021) in learning the relevant information between spectra
as features from the spectral data than linear models and other machine learning
models (e.g., random forest algorithm). The KAGUYA MI of preprocessing
is a lunar imaging spectrometer with the highest spatial resolution (~ 59 m
/ pixel) (Ohtake et al., 2013). With the MI global mosaic and the additional
geochemical information from CE-5 samples, we use 1D-CNN algorithm to build
an optimized spectral inversion model, and generate lunar surface abundance
maps of five major oxides (Al2O3, CaO, MgO, FeO, and TiO2) and Mg #. We
have also selected several regions to demonstrate the usage of these new maps.

2 Data and Methods

2.1 Data

The MI data includes 9 spectral bands, of which the UV-VIS band centers are
415, 750, 900, 950, and 1001 nm, and the NIR band centers are 1000, 1050,
1250, and 1550 nm. The global mosaic covers the range from 65°N ~ 65°S on
the lunar surface (Ohtake et al., 2008), with a spatial resolution of ~ 59 m /
pixel. We use eight bands (415, 750, 900, 950, 1001, 1050, 1250, and 1550 nm)
of the MI global mosaic to calculate the abundances of the oxides.

For the bench mark points (Table 1), we included CE-5 samples (Tian et al.,
2021; Li et al., 2022; Zong et al., 2022), Apollo samples (except for Apollo 11,
whose sampling site is not covered by the MI global mosaic), Luna samples,
and in situ measurements of CE-3 rover (Zhang et al., 2015; Ling et al., 2015).
In order to reduce the noise impact of MI data, the reflectance of each bench
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mark points by adopting the average reflectance value in the 2×2 or 3×2 pixels
(Dataset S1).

2.2 Methods

2.2.1 Correlation coefficients between oxides and MI spectra

High Pearson correlation coefficients exist between MI spectra and oxide content
(Figure 1), therefore, MI spectra can be used to retrieve the abundances of five
oxides. In Figure 2, for each oxide, an MI wavelength (e.g., 1001nm, 1049nm,
1548nm) is used as an example to show the correlation between MI spectra
and oxide content, in which univariate linear or polynomial regression models
for some major oxides (such as CaO and FeO) can obtain good fitting results.
However, some oxides (such as TiO2) are difficult to calculate with traditional
univariate regression models due to their complex relationship with the spectra.
Therefore, we use the 1D-CNN algorithm to calculate the abundances of all five
major oxides on the lunar surface.

2.2.2 The convolutional neural network model

As one of the representative deep learning algorithms, Convolutional neural net-
work (CNN) was initially proposed to solve the problem of image recognition
and classification (Lecun et al., 1998). In recent studies, CNN has been in-
troduced in spectroscopy analysis to extract local abstract features of spectral
data and establish end-to-end models between spectral data and target indica-
tors and then used to solve regression problems (Malek et al., 2018; Chen et
al., 2019; Qiu et al., 2021; Yuan et al., 2022). CNN belongs to the feedforward
neural network, which is generally composed of convolution layers, activation
functions, pooling layers, and fully connected layers.

In the convolution layer, the convolution kernel slides on the data signal to
complete feature extraction, and then the nonlinear activation function is used
to output the feature vector. The CNN activation function usually selects ReLU
with faster calculation speed and convergence speed (Glorot et al., 2011). The
formula for ReLU is as follows:

(1)

The convolution operation process is:

(2)

where y is the output result after weighted average of convolution layer; is the
weight of the convolution kernel; b is the offset parameter.

After the convolution layer, there is a pooling layer, which is usually used to
prevent information redundancy and overfitting. The fully connected layer is
usually set before the network output layer, which is used to integrate the fea-
tures extracted by multiple convolution layers and pooling layers, and obtain
the target indicators.

4



Based on CNN, we use the 1D-CNN to construct a mathematical model to de-
scribe the relationship between the measured oxide content and the reflectivity
of each sampling area (Dataset S1). 1D-CNN can avoid the extraction of in-
formation from other non-important elements, which can improve the learning
efficiency of the network. Meanwhile, 1D-CNN adopts a weight-sharing mecha-
nism, which can greatly reduce the number of parameters of the whole network,
which is very important to improve the regression efficiency of the network.
As shown in Figure 3, the 1D-CNN includes 4-layer convolution layer, 2-layer
pooling layer and 1-layer full connection layer in this study. The input data
corresponds to the spectral reflectance of 8 bands. The feature between bands
is extracted by convolution. Then, the size of feature vectors is compressed by
pooling to avoid overfitting. Next, feature vectors are extracted from the full
connectivity layer. Finally, by using the linear activation function, the extracted
features are transformed into the corresponding sample data (i.e., the measured
value of oxide content).

2.2.3 Model tuning and evaluation measures

The proposed network was trained on the training and validation set to establish
the calibration model. The mean square error was selected as the loss function of
the regression model to detect the deviation between the predicted and measured
values. During the training stage, the model weights were adjusted adaptively
based on the Adam algorithm (Kinama & Ba, 2014) and the model batch size
was set to 10. ReLU function was used as the activation function in the model.
The initial learning rate was set as 0.001 and the maximum number of training
iterations was set to 500 epochs. The model was implemented in Python using
Keras framework (Ketkar, 2017).

The model performance was evaluated by the root mean squared error (RMSE),
the coefficient of determination (R2) in this work.

R2 measures how well a statistical model predicts an outcome. The lowest
possible value of R2 is 0 and the highest possible value is 1. Put simply, the
better a model is at making predictions, the closer its R2 will be to 1. The
formula for calculating R2 is as follows:

(3)

where y represents predicted sampling point data; represents real sampling point
data; represents the average value of real sampling point data.

RMSE is used to measure the deviation between the predicted value and the
true value. The formula for calculating RMSE is as follows:

(4)

3 Results

3.1 Maps of the Major Elements and Mg #

The global maps of five major oxides and Mg # are shown in Figure 4. From a
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global perspective, the five oxides exhibit dichotomous distributions between the
highlands and the maria. For example, there is an obvious negative correlation
between Al2O3, CaO and TiO2, FeO, MgO in the maria. The least Al2O3 and
CaO are present in the central regions of Oceanus Procellarum, Mare Imbrium,
Tranquillitatis, and Serenitatis, but more in the boundary regions between the
maria and highlands, while it is the opposite for TiO2, FeO and MgO. In ad-
dition, ray materials of some craters (e.g., Tycho crater) are prominent in the
maps of the major oxides, especially Al2O3 and CaO (Figure 4a and Figure 4b).
We identify that the bottom and eastern parts of Tycho crater are elevated in
Al2O3 and CaO. The global average Mg # is 0.675 is very close to the MI Mg
# reported (0.67) by Wang et al. (2021), but higher than the CE-1 IIM-derived
Mg # (0.644, Wu, 2012; 0.646, Xia et al., 2019), the Clementine optimized Mg #
(0.57, Crites & Lucey, 2015), the LP GRS Mg # (0.606, Prettyman et al., 2006)
and the Diviner Mg # (0.652, Ma et al., 2022). The average Mg # in maria is
0.527, while that of the highlands is 0.705. With the characteristics of the Mg #,
we are able to distinguish the boundaries of three lunar crustal terranes (Figure
4f, red polyline, and blue polyline) including the Procellarum KREEP Terrane
(PKT), The Feldspathic Highland Terrane (FHT) and the South Pole-Aitken
Terrane (SPAT) proposed by Jolliff et al. (2000).

3.2 Comparison with previous work

The systematic differences in the average oxide abundances in the maria, high-
lands, and global (Table 2) are presented. The global abundance of Al2O3 and
CaO in this study are 23.44 wt.% and 14.37 wt.%, Close to 23.56 wt.% and
14.20 wt.% proposed by Wang et al. (2021), Less than 25.32 wt.% and 16.89
wt.% proposed by Wu (2012). The global abundance of FeO and MgO in this
study are 7.42 wt.% and 7.46 wt.%, Close to 7.40 wt.% and 7.67 wt.% of Wang
et al. (2021), Higher than 6.42 wt.% and 6.46 wt.% of Wu (2012). The global
abundance of TiO2 in this study is 1.34 wt.%, Higher than 1.15 wt.% of Wang
et al. (2021), Less than 1.54 wt.% of Wu (2012).

The histograms of the five oxide abundances and Mg # are shown in Figure 5, re-
spectively. Except for TiO2, which features a unimodal continuum distribution,
all other elements exhibit bimodal distributions, excluding spike interference,
corresponding to the maria and highlands respectively, generally consistent with
previous studies on the distribution difference of major elements in the maria
and highlands (Lucey et al., 1998; Gillis et al., 2004; Prettyman et al., 2006;
Wu 2012; Lu et al. 2021). For example, the lower modal Fe abundance of ~
4.12 FeO wt.% and the higher modal Fe abundance of ~ 18.23 FeO wt.%, which
correspond to the highland areas and mare areas, respectively, are a little lower
than the abundance of ~ 5.57 wt.% given by Wu (2012), close to the abundance
of ~ 4.1 wt.% given by Wang et al. (2021), or ~ 4.7 wt.% and ~ 4.82 wt.% given
by Prettyman et al.(2006) and Lucey et al. (1998).

4 Discussion

4.1 Model accuracy evaluation
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The 1D-CNN model establishes a nonlinear regression model between the MI
8 band spectra and 40 sampling points by learning the data characteristics
between the MI 8 band spectra and the true values of 40 sampling points, so
that the major oxide abundance information of the sampling points can be
retrieved based on the MI spectral data, and the data inversion results from
40 sampling points can be obtained. The effect of 1D-CNN model is evaluated
by calculating R2 and RMSE between 1D-CNN inversion data and laboratory
truth data of 40 sampling points. See Table 3 and Figure 6 for inversion results
and accuracy of five major oxides of 1D-CNN model.

The prediction accuracies of the 1D-CNN model for the five oxides are shown
in Figure 6. All the R2 are greater than 0.95 and greater than 0.99 for Al2O3,
especially. To further illustrate the advantages of 1D-CNN model, a comparison
of five major oxide abundances derived from this work with Wang et al. (2021)
and Xia et al. (2019) is shown in Table 3. Compared with the inversion results
of Wang et al. (2021), the 1D-CNN model in this study has higher R2, and
the regression model fitting effect is better; Compared with the results of Xia
et al. (2019), their R2 is equivalent, but the RMSE value of 1D-CNN model is
lower, and the dispersion of the inversion data of regression model is lower. On
the whole, compared with the former two models, the accuracy of this research
model is relatively better.

On a global scale, we also compare the new maps of major oxides in this work
and the maps of Wang et al. (2021) within the range 65°N ~ 65°. These maps
are generally consistent (Figure S1).

4.2 Regional Analysis

We selected two compositionally interesting regions shown in this study (Fig-
ure 7; Figure S2), including Mairan Domes (43.76°N, 49.90°W) and Sosigenes
(8.34°N, 19.07°E). Then, by analyzing the inversion results of five major oxides
to demonstrate the geologic implications of these new maps.

4.2.1 Mairan Domes

Lunar mare domes are rounded to somewhat irregular convex landforms. They
are characterized by a lower slope (generally less than 5°) and can reach a diam-
eter of 30 km (Head & Gifford, 1980). Lunar mare domes can be divided into
two different types. One type is mainly located in the center of the mare likely
Marius Hills. The composition of these domes is similar to the background.
The others are distributed near the highlands of the mare. Their composition
is quite different from the surrounding mare basalt. Head & Gifford (1980) con-
sider that the two types of domes are related to the interaction of lava deposits
with preexisting topography by draping or kipuka formation and primary lava
vent areas.

We analyzed Mairan Domes in this study (Figure 8). The Mairan Domes are a
group of four domes at the northeast of Oceanus Procellarum near the highlands
(Glotch et al., 2011). The four domes are Northeast Dome, Mairan T Dome,
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Middle Dome, and South Dome from north to south, respectively. Five elements
content of Mairan Domes are shown in Table 5. The four domes have a signifi-
cant difference in composition with the surrounding mare. The domes have FeO
abundances ranging from 9 – 13 wt.% FeO. This means that the domes were
formed at a different time than the surrounding mare. The Northeast Dome has
very close components to the highlands of the east. However, the other three
domes also have some differences with the composition of the highlands, espe-
cially the Middle Dome. Although the Middle dome is partly bordered by the
highlands, there are significant differences in the content of Al2O3. The Al2O3
contents of the three domes (Mairan T, Middle, and South) are higher than the
highlands and Northeast Dome. This suggested that the origin of Northeast
Dome may be different from the other three domes. Based on our model, the
Al2O3 content of the units from high to low are the Mairan T Dome, South
Dome, Middle Dome, Northeast Dome, highlands, and surrounding mare in the
Mairan Domes region.

4.2.2 Sosigenes

IMPs are characterized by their young and small irregularly shaped depression
composed of mounds and hummocky and blocky terrains (Qiao et al., 2020).
Most of the IMPs are distributed in the mare unit from 3.9 to 3.1 billion years
ago, suggesting that their origin may be related to the peak period of global
lunar volcanism (Braden et al., 2014).

We analyzed Sosigenes in this study (Figure 9). Sosigenes (8.34°N, 19.07°E) was
discovered on the Lunar Reconnaissance Orbiter Narrow Angle Camera (LROC
NAC) image by Stooke (2012). Qiao et al. (2018) produced a Geologic sketch
map of Sosigenes. The Sosigenes IMP floor can be categorized in terms of three
morphologic units (Mound Units, Hummocky Units, and Blocky Units) (Qiao
et al., 2018).

Five elements content of Sosigenes are shown in Table 6. Our oxide diagrams
clearly distinguish the three units, indicating a huge difference in the oxide
composition of the three units (Figure 9). Mound Units are characterized by
high MgO, CaO, Al2O3 and low TiO2 compared with the other two units likely
surrounding mare. Hummocky Units have a similar oxide composition to Blocky
Units, with the main difference being Al2O3. Hummocky Units have lower
Al2O3 than Blocky Units.

5 Conclusions

This work complements the data of the CE-5 sampling point based on the pre-
vious sampling point data and reports the new map of five major oxides and
Mg # on the moon of high spatial resolution (� 59 m / pixel). The 1D-CNN
model, one of the deep learning algorithms, was selected as the method. The
prediction results of the proposed model were compared with Xia et al. (2019)
and Wang et al. (2021) models. The 1D-CNN model had higher R2 (R2 → 1)
and lower RMSE, which implied that it had a satisfactory generalization ability
and high fitting degrees. It could make a good quantitative prediction of the
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major oxide content on the lunar surface by establishing a linear and complex
nonlinear relationship between chemical composition and spectral characteris-
tics. By analyzing the major oxide content of lunar mare domes and IMPs in
the study area, we found that the formation and lithology can be identified ac-
cording to the oxide content. thus, the new oxide maps suggested in this work
may provide clues for the identification of formation and lithology and further
for lunar evolution.
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oxide contents and MI reflection value. Where, positive correlation (Al2O3,
CaO) and negative correlation (FeO, MgO, TiO2). The correlation coefficient
was calculated from 40 lunar sampling points. The r (mean) represents the
average value of the Pearson correlation coefficient in all bands.

Figure 2.Linear or nonlinear relations between (a) Al2O3, (b) CaO, (c) FeO,
(d) MgO, and(e) TiO2 contents and the reflectance values of one MI band. Only
(b) is linear, and (a), (c), (d), and (e) are nonlinear.
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Figure 3. Regression model of lunar major oxides based on 1D-CNN. The input
layer of the network is the average spectral data of lunar sampling points with
the size of 1×8. The size of convolution kernel used in convolution operation
is 1×2. After the Conv1, 16 characteristic maps of 1×7 size are output; after
the Conv2, 16 characteristic maps of 1×6 size are output; after down sampling,
the Pooling layer outputs characteristic maps of 1×3 size; after the Conv3, 128
characteristic maps of 1×2 size are output; after the Conv4, 128 characteristic
maps of 1×1 size are output; after the Pooling layer, 64 characteristic maps of
1×1 size are output; the Flatten layer pulls these characteristic maps to a vector
of 1×64 size. Finally, the predicted value is output through the output layer.
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Figure 4. Maps of (a) Al2O3; (b) CaO; (c) FeO; (d) MgO; (e) TiO2 abundances
and (f) Mg #. The Mg # map highlights the approximate boundaries of three
lunar geological terranes (PKT, FHT, and SPAT) (Jolliff et al., 2000). The
red lines mark the PKT unit, the blue lines encircle the SPAT unit, and the
remaining region is the FHT unit.
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Figure 5. Histograms of (a) Al2O3; (b) CaO; (c) FeO; (d) MgO; (e) TiO2 and
(f) Mg # for the lunar surface. The ordinate is the Log value of the percentage of
pixels with a certain abundance in the total number of pixels. The black line is
the result of this study; the blue line is the histograms of elemental abundances
derived from MI data (Wang et al., 2021); the green line is the histograms
of elemental abundances derived from IIM data (Wu, 2012); the orange line
is the histograms of FeO and TiO2 abundances derived from LP GNRS data
(Prettyman et al., 2006); the purple line is the histograms of FeO and TiO2

21



abundances derived from Clementine data (Lucey at al., 1998); the yellow line
is the histograms of Mg # derived from MI data (Wang et al., 2021); the gray
line is the histograms of Mg # derived from IIM data (Xia et al., 2019).
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Figure 6. Scatter plots of the measured and predicted values for CNN model
for (a) Al2O3, (b) CaO, (c) FeO, (d) MgO, and (e) TiO2.

Figure 7. Location map of the region of interest includes Mairan Dome
(43.76°N, 49.90°W) and Sosigenes (8.34°N, 19.07°E). The background is CE-1
Digital Orthophoto Map (DOM) of 120 m/pixel.
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Figure 8. Color composite image of Mairan Domes. The red channel is FeO
abundance (stretched from 0.50 to 31.10). The Green channel is MgO abun-
dance (stretched from 1.48 to 13.81). The blue channel is Al2O3 abundance
(stretched from 9.17 to 32.50). Black lines correspond to the boundaries of the
domes as determined from the oxides content and the digital elevation model
(DEM) based on Lunar Orbiter Laser Altimeter (LOLA) on board the Lunar
Reconnaissance Orbiter mission (LRO).
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Figure 9. Color composite image of Sosigenes. The red channel is FeO abun-
dance (stretched from 15.50 to 25.58). The Green channel is MgO abundance
(4.31 to 9.43). The blue channel is Al2O3 abundance (7.52 to 17.12). The green
line indicates the identified Mound units; the blue line indicates the identified
Hummocky units; the red line indicates the identified Blocky units.

Table 1. Contents of chemical components at sampling points of monthly
surface oxides.

Site Al2O3�wt.%� CaO�wt.%� FeO
�wt.%�

MgO
�wt.%�

TiO2
�wt.%�

Apollo12LM
Apollo14LM
Apollo15LM
Apollo16LM
Apollo16S1
Apollo16S2
Apollo16S4
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Site Al2O3�wt.%� CaO�wt.%� FeO
�wt.%�

MgO
�wt.%�

TiO2
�wt.%�

Apollo16S5
Apollo16S6
Apollo16S8
Apollo16S9
Apollo16S11
Apollo16S13
Apollo17LM
Apollo17S1
Apollo17S2
Apollo17S3
Apollo17S4
Apollo17S5
Apollo17S6
Apollo17S7
Apollo17S8
Apollo17S9
Apollo17LRV1
Apollo17LRV2
Apollo17LRV3
Apollo17LRV4
Apollo17LRV5
Apollo17LRV6
Apollo17LRV7
Apollo17LRV8
Apollo17LRV9
Apollo17LRV10
Apollo17LRV11
Apollo17LRV12
Luna16
Luna20
Luna24
CE-3
CE-5

Table 2. Means of five oxide abundances of the moon.

Al2O3
(wt.%)

CaO
(wt.%)

FeO
(wt.%)

MgO
(wt.%)

TiO2
(wt.%)

This study
Global
Mare
Highland
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Al2O3
(wt.%)

CaO
(wt.%)

FeO
(wt.%)

MgO
(wt.%)

TiO2
(wt.%)

Global
(Wu, 2012)
Global
(Wang et
al., 2021)

Table 3. The predicted values for the five oxides of the 1D-CNN model

Site Al2O3
�wt.%�

CaO
(wt.%)

FeO
(wt.%)

MgO
(wt.%)

TiO2
(wt.%)

Apollo12LM
Apollo14LM
Apollo15LM
Apollo16LM
Apollo16S1
Apollo16S2
Apollo16S4
Apollo16S5
Apollo16S6
Apollo16S8
Apollo16S9
Apollo16S11
Apollo16S13
Apollo17LM
Apollo17S1
Apollo17S2
Apollo17S3
Apollo17S4
Apollo17S5
Apollo17S6
Apollo17S7
Apollo17S8
Apollo17S9
Apollo17LRV1
Apollo17LRV2
Apollo17LRV3
Apollo17LRV4
Apollo17LRV5
Apollo17LRV6
Apollo17LRV7
Apollo17LRV8
Apollo17LRV9
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Site Al2O3
�wt.%�

CaO
(wt.%)

FeO
(wt.%)

MgO
(wt.%)

TiO2
(wt.%)

Apollo17LRV10
Apollo17LRV11
Apollo17LRV12
Luna16
Luna20
Luna24
Chang’E 3
Chang’E 5

Table 4. Comparison of five major oxide abundances derived from this work
with Wang et al. (2021) and Xia et al. (2019) models.

Al2O3
�wt%�

CaO
(wt%)

FeO
(wt%)

MgO
(wt%)

TiO2
(wt%)

This work
R2

RMSE
Wang et al.
(2021)
R2

RMSE
Xia et al.
(2019)
R2

RMSE

Table 5. Five elements content of the Mairan Domes.

MgO�wt%� Al2O3
�wt%�

CaO
�wt%�

TiO2
�wt%�

FeO
�wt%�

Northeast
Mairan T
Middle
South
mare
highlands

Table 6. Five elements content of Sosigenes.
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MgO�wt%� Al2O3
�wt%�

CaO
�wt%�

TiO2
�wt%�

FeO
�wt%�

Mound
units
Hummocky
units
Blocky
units
mare
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